
École Polytechnique

CSC 52064 : Compilation
examen 2025 (X2022)

Jean-Christophe Filliâtre

17 mars 2025 — 14h00–17h00

The test lasts 3 hours. Handwritten or printed course notes are the only documents allowed. Most
questions are independent, in the sense that it is not necessary to have answered the previous questions in
order to deal with a question. On the other hand, questions can call on definitions or results introduced in

previous questions. Unless explicitly stated otherwise, all answers must be justified.
Feel free to answer in French or English.

Figures 1–3 are grouped together at the end of the subject on page 5.
Suggestion: detach the last sheet.

Throughout this subject, we consider a small imperative language called while, whose abstract
syntax is given in figure 1. A program is limited to a single statement. A statement (noted s) is an
assignment, a display with print, a conditional, a while loop or a block (a sequence of statements,
possibly empty). A variable (noted x) contains an integer and assignments are limited to nonnegative
constants and subtractions of variables. Here is an example:

{ a=0 b=1

while n<>0 do { t=0 t=t-b b=a-t a=b-a t=1 n=n-t }

print a }

Semantics. We equip while with a small-step operational semantics, taking the form of a binary
relation noted → between two configurations. A configuration, noted ⟨E, s⟩, is an environment E
and a statement s. An environment is a partial function from variables to integers. Its domain, that
is the set of variables for which E is defined, is noted dom(E). The relation ⟨E, s⟩ → ⟨E ′, s′⟩ reads
as follows: In the environment E, the statement s successfully executes one step of computation and
reaches environment E ′ and statement s′.

Figure 2 defines the relation → with a set of inference rules. In these rules, notation E⊕{x 7→ n}
stands for the function E ′ defined by

E ′(x) = n,

E ′(y) = E(y) for y ∈ dom(E) and y ̸= x.

In particular, we have dom(E ′) = dom(E)∪{x}. Note carefully how the rules defining → manipulate
environments. If fib stands for the example program above, we have the following execution,

⟨{n 7→ 10}, fib⟩ →⋆ ⟨{a 7→ 55, n 7→ 0, b 7→ 89, t 7→ 1, }, { }⟩

(and the program printed 55).
A configuration C is said to be irreducible if there is no configuration C ′ such that C → C ′. We

say that the execution of a configuration blocks if it reaches, after some execution steps, an irreducible
configuration ⟨E, s⟩ with s ̸= { }. A trivial example of blocking configuration is ⟨∅, print x⟩ since
the variable x is not defined in the empty environment. An execution that does not block terminates
on the statement { } or never terminates.

1

Question 1 Give the execution steps of the program

{ x=1 if x=0 then y=1 else z=2 print y }

in an empty initial environment.

Question 2 Propose a program that, in an environment E defining at least the variables a and b,
with E(b) ≥ 0, prints the value of E(a) × E(b) and terminates. How can you relax the hypothesis
E(b) ≥ 0? (Do not give the code this time, but only the idea.)

Parsing. We wish to implement a parser for the language while.

Question 3 Discuss the problem of the constant 0 which appears in the syntax of the constructions
if and while but also in an assignment of the form x = 0. Show precisely how this can be taken
into account in both lexical and syntactic analysis. Try to suggest two different solutions.

Question 4 Give a grammar for the language while in the syntax of either CUP or Menhir (your
choice). It must be able to parse a file containing a single statement. Declare the tokens and the start
symbol. Declare associativity rules and priorities, if needed. Do not include the semantic actions.

Static Analysis of Definitions and Uses. For a program not to block, it is sufficient that any
variable used by a statement (to the right of an assignment or as an argument of a print, if or
while statement) must be present in the environment at the time of execution. This variable may
have been present in the environment since the start of execution, or it may have been introduced
into the environment by a previously executed assignment. For instance, the program

{ if x = 0 then y = 1 else y = 2

print y }

successfully executes in an initial environment that defines only x.
We propose to statically determine, for a statement s, a set of variables noted use(s) sufficient for

its correct execution, in the following sense: for any environment E such that use(s) ⊆ dom(E), the
execution of ⟨E, s⟩ does not block. Of course, it would be sufficient to take for use(s) all the variables
that appear in s, but this would be a very crude solution. For the program above, for example, the
set {x} is sufficient.

In order to perform a more detailed analysis of use(s), we are going to simultaneously compute a
second set of variables, noted def(s), corresponding to variables necessarily defined by the execution
of s, in the following sense: for any execution ⟨E, s⟩ →⋆ ⟨E ′, { }⟩, then we have def(s) ⊆ dom(E ′).
For the program above, for example, we have def(s) = {y} because every execution gives a value to
the variable y.

We propose to compute the sets def(s) and use(s) by induction on the structure of s. Here is how
to perform the calculation for the first three statements:

def(s) use(s)

x =n {x} ∅
x1 =x2-x3 {x1} {x2, x3}
print x ∅ {x}

Question 5 Complete the table above by proposing a computation of def(s) and use(s) for the
remaining three statements of while: conditional, loop, and block.

2

Question 6 Show the correctness of your definition of use(s). Make sure you clearly state and
prove all the intermediate properties you need.

Question 7 Is an algorithm (yours or any other) able to compute sets def(s) and use(s) that are
minimal for inclusion? If yes, justify. If no, explain why.

RTL Language. We are now considering an RTL-type language (for Register Transfer Language)
whose abstract syntax is given in figure 3. An RTL program is a finite set of basic blocks. A basic
block b is given by a label L, a sequence of instructions, and a jump. An instruction i is an assignment
or display, as in the while language. A jump j is either the termination of the program (halt), a
conditional jump (ifz x L1 L2) or an unconditional jump (goto L). An RTL program is well-formed
if

• any label mentioned by ifz or goto corresponds to a program block;

• there is no jump goto L to a block with only one predecessor (i.e. to a block other than the
first block, whose only reference is this goto L jump).

Here is an example of a well-formed RTL program with four basic blocks:

L0: n=10 r=0 one=1 one=r-one goto L1

L1: t=r-n ifz t L2 L3

L2: halt

L3: r=r-one print r goto L1

(R0)

Note that block L1 has two predecessors.
An RTL program runs in an E environment (of the same type as for while) and starts at its

first block (L0 in the example above). The execution of a block is the execution of its instructions, in
sequence, with the same semantics as for while. If the execution of an instruction blocks, the RTL
program also blocks. Otherwise, we get a new environment E ′ and we make the jump. The halt

jump terminates the RTL program. The conditional jump ifz x L1 L2 continues execution on block
L1 if E ′(x) = 0 and on block L2 otherwise. The unconditional jump goto L continues execution
on block L. In the case of a jump, execution continues with the environment E ′. For instance, the
above program prints the integers from 1 to 10 and then terminates.

Question 8 What is the effect of the following program

L0: zero=0 one=1 one=zero-one u=1 r=0 goto L1

L1: t=r-n ifz t L6 L2

L2: v=u-zero s=0 goto L3

L3: t=s-r ifz t L5 L4

L4: t=zero-v u=u-t s=s-one goto L3

L5: r=r-one goto L1

L6: print u halt

in an environment that defines a variable n with a nonnegative value? Provide a detailed justification.

Question 9 Propose an abstract syntax (in Java or OCaml) for RTL programs. Propose data
structures and methods/functions (in Java or OCaml) to execute an RTL program from an empty
environment. You do not have to implement these methods/functions.

3

Question 10 We wish to compute the set use of an RTL program, with the same meaning as for a
while program (i.e., execution does not block on an environment that defines at least the variables
of the set use). Propose an algorithm to compute this set.

Question 11 Propose an algorithm to compile the while language to the RTL language. Make
sure that the resulting RTL program is well-formed.

Compiling to x86-64 Assembly. We propose to compile the RTL language to x86-64 assembly.
(A cheat sheet is given in the appendix). We assume that the integers in our language are limited
to signed 64-bit integers. We assume that an assembly function print is given, obeying the calling
conventions (its argument is in %rdi and it potentially overwrites any caller-saved register) but not
requiring stack alignment when called.

As our RTL language is very simple, we can perform register allocation by graph coloring on
an interference graph built directly from the RTL code. For the next two questions, we take the
following RTL program as an example:

A: zero=0 s=0 one=1 n=10 goto B

B: t=zero-n s=s-t n=n-one ifz n H B

H: print s halt
(R1)

Question 12 Give the interference graph for program (R1). Try to suggest one or more preference
edges (with justification).

Question 13 Propose an assembly code for program (R1).

Question 14 Propose an assembly code for program (R0) on page 3.

Question 15 Generally speaking, what are the preference edges we can derive from an RTL pro-
gram?

Question 16 Propose a general compilation scheme for the RTL language, i.e., explain how each
of its constructs (instruction or jump) can be compiled to x86-64 assembly.

4

s ::= x =n constant n ∈ N
| x =x-x subtraction
| print x display
| if x = 0 then s else s conditional
| while x <> 0 do s loop
| { s . . . s } block

Figure 1: Abstract Syntax of while.

⟨E, x =n⟩ → ⟨E⊕{x 7→ n}, { }⟩
x2 ∈ dom(E) x3 ∈ dom(E)

⟨E, x1 =x2-x3⟩ → ⟨E⊕{x1 7→ E(x2)− E(x3)}, { }⟩

x ∈ dom(E)

⟨E, print x⟩ → ⟨E, { }⟩
x ∈ dom(E) E(x) = 0

⟨E, if x = 0 then s1 else s2⟩ → ⟨E, s1⟩
x ∈ dom(E) E(x) ̸= 0

⟨E, if x = 0 then s1 else s2⟩ → ⟨E, s2⟩
x ∈ dom(E) E(x) = 0

⟨E, while x <> 0 do s⟩ → ⟨E, { }⟩
x ∈ dom(E) E(x) ̸= 0

⟨E, while x <> 0 do s⟩ → ⟨E, { s while x <> 0 do s }⟩

⟨E, { { } s . . . }⟩ → ⟨E, { s . . . }⟩
⟨E, s1⟩ → ⟨E1, s

′
1⟩

⟨E, { s1 s2 . . . }⟩ → ⟨E1, { s′1 s2 . . . }⟩

Figure 2: Operational Semantics of while.

p ::= b . . . b RTL program
b ::= L : i . . . i j basic block
i ::= x =n constant n ∈ N

| x =x-x subtraction
| print x display

j ::= halt end of program
| ifz x L L conditional jump
| goto L unconditional jump

Figure 3: RTL Language.

5

Appendix: x86-64 cheat sheet

A fragment of the x86-64 instruction set is given here. You are free to use any other part of the
x86-64 assembler. In the following, ri designates a register, n an integer constant and L a label.

mov r2, r1 copies register r2 into register r1
mov $n, r1 loads constant n into register r1
mov $L, r1 loads the address of label L into register r1
sub r2, r1 computes r1 − r2 and stores it into r1
neg r1 computes −r1 and stores it into r1
mov n(r2), r1 loads r1 with the value contained in memory at address r2 + n
mov r1, n(r2) writes in memory at address r2 + n the value of r1
push r1 pushes the value of r1 on the stack
pop r1 pops a value from the stack and stores it into register r1
test r2, r1 sets the flags according to the value of r1 AND r2
jz L jumps to address L if flags signal a zero value
jmp L jumps to address L
call L pushes the return address to the stack and jumps to address L
ret pops an address from the stack and jumps there

Calling conventions:

• up to six arguments are passed via registers %rdi, %rsi, %rdx, %rcx, %r8, %r9;

• other arguments are passed on the stack, if any;

• the returned value is put in %rax;

• registers %rsp, %rbp, %rbx, %r12, %r13, %14 and %r15 are callee-saved : they won’t be clobbered
by a call;

• the other registers are caller-saved : they may be clobbered by a call;

• %rsp is the stack pointer, %rbp the frame pointer.

6

