
École Polytechnique

CSC 52064 : Compilation
examen 2025 (X2022)

Jean-Christophe Filliâtre

17 mars 2025 — 14h00–17h00

The test lasts 3 hours. Handwritten or printed course notes are the only documents allowed. Most
questions are independent, in the sense that it is not necessary to have answered the previous questions in
order to deal with a question. On the other hand, questions can call on definitions or results introduced in

previous questions. Unless explicitly stated otherwise, all answers must be justified.
Feel free to answer in French or English.

Figures 1–3 are grouped together at the end of the subject on page 12.
Suggestion: detach the last sheet.

Throughout this subject, we consider a small imperative language called while, whose abstract
syntax is given in figure 1. A program is limited to a single statement. A statement (noted s) is an
assignment, a display with print, a conditional, a while loop or a block (a sequence of statements,
possibly empty). A variable (noted x) contains an integer and assignments are limited to nonnegative
constants and subtractions of variables. Here is an example:

{ a=0 b=1

while n<>0 do { t=0 t=t-b b=a-t a=b-a t=1 n=n-t }

print a }

Semantics. We equip while with a small-step operational semantics, taking the form of a binary
relation noted → between two configurations. A configuration, noted ⟨E, s⟩, is an environment E
and a statement s. An environment is a partial function from variables to integers. Its domain, that
is the set of variables for which E is defined, is noted dom(E). The relation ⟨E, s⟩ → ⟨E ′, s′⟩ reads
as follows: In the environment E, the statement s successfully executes one step of computation and
reaches environment E ′ and statement s′.

Figure 2 defines the relation → with a set of inference rules. In these rules, notation E⊕{x 7→ n}
stands for the function E ′ defined by

E ′(x) = n,

E ′(y) = E(y) for y ∈ dom(E) and y ̸= x.

In particular, we have dom(E ′) = dom(E)∪{x}. Note carefully how the rules defining → manipulate
environments. If fib stands for the example program above, we have the following execution,

⟨{n 7→ 10}, fib⟩ →⋆ ⟨{a 7→ 55, n 7→ 0, b 7→ 89, t 7→ 1, }, { }⟩

(and the program printed 55).
A configuration C is said to be irreducible if there is no configuration C ′ such that C → C ′. We

say that the execution of a configuration blocks if it reaches, after some execution steps, an irreducible
configuration ⟨E, s⟩ with s ̸= { }. A trivial example of blocking configuration is ⟨∅, print x⟩ since
the variable x is not defined in the empty environment. An execution that does not block terminates
on the statement { } or never terminates.

1

Question 1 Give the execution steps of the program

{ x=1 if x=0 then y=1 else z=2 print y }

in an empty initial environment.

Correction :

{}, { x=1 if x=0 then y=1 else z=2 print y }

-> {x->1}, { { } if x=0 then y=1 else z=2 print y }

-> {x->1}, { if x=0 then y=1 else z=2 print y }

-> {x->1}, { z=2 print y }

-> {x->1, z->2}, { { } print y }

-> {x->1, z->2}, { print y }

and the program blocks.

Question 2 Propose a program that, in an environment E defining at least the variables a and b,
with E(b) ≥ 0, prints the value of E(a) × E(b) and terminates. How can you relax the hypothesis
E(b) ≥ 0? (Do not give the code this time, but only the idea.)

Correction : We loop over the value of b, adding a at each step to some accumulator c.

c = 0 // accumulator

a = c - a // -a rather than a

o = 1

while b <> 0 do {

c = c - a

b = b - o

}

print c

To relax the hypothesis b ≥ 0, one solution consists in, when b < 0, replacing a with −a
and b with −b. To determine the sign of b, we can make a loop that successively explores
all the natural integers and, for each one, compares it with b and −b (a subtraction then
a if). At the first equality, the loop is exited (by setting to 0 the variable tested by the
loop).

Parsing. We wish to implement a parser for the language while.

2

Question 3 Discuss the problem of the constant 0 which appears in the syntax of the constructions
if and while but also in an assignment of the form x = 0. Show precisely how this can be taken
into account in both lexical and syntactic analysis. Try to suggest two different solutions.

Correction : At least two solutions:

1. During lexical analysis, we construct two different tokens, one for 0 and another for
literal constants other than 0. (The priority rule in lex-like tools makes this easy,
by recognizing the first before the second.) Next, we write two grammar rules for
assignment in the parser:

stmt:

| IDENT EQUAL CONST { ... }

| IDENT EQUAL ZERO { ... }

...

2. During lexical analysis, we make no distinction, with a single token CONST for integer
literals. In the parser, we then introduce a non terminal

zero:

| n=CONST { if n <> 0 then raise Parsing.Parse_error }

;

whose purpose is to recognize only 0 and we use it in the grammar rules for if and
while.

Question 4 Give a grammar for the language while in the syntax of either CUP or Menhir (your
choice). It must be able to parse a file containing a single statement. Declare the tokens and the start
symbol. Declare associativity rules and priorities, if needed. Do not include the semantic actions.

Correction : We opt for the first solution in the previous question.

%token <string> IDENT

%token <int> CONST

%token IF THEN ELSE PRINT DO WHILE

%token ZERO EQUAL DIFF MINUS LBRA RBRA

%token EOF

%start file

%type <Ast.file> file

file:

| stmt EOF { ... }

;

stmt:

| IDENT EQUAL CONST { ... }

| IDENT EQUAL ZERO { ... }

3

| IDENT EQUAL IDENT MINUS IDENT { ... }

| PRINT IDENT { ... }

| IF IDENT EQUAL ZERO THEN stmt ELSE stmt { ... }

| WHILE IDENT DIFF ZERO DO stmt { ... }

| LBRA stmt* RBRA { ... }

;

No need for priority or associativity rule here.

Static Analysis of Definitions and Uses. For a program not to block, it is sufficient that any
variable used by a statement (to the right of an assignment or as an argument of a print, if or
while statement) must be present in the environment at the time of execution. This variable may
have been present in the environment since the start of execution, or it may have been introduced
into the environment by a previously executed assignment. For instance, the program

{ if x = 0 then y = 1 else y = 2

print y }

successfully executes in an initial environment that defines only x.
We propose to statically determine, for a statement s, a set of variables noted use(s) sufficient for

its correct execution, in the following sense: for any environment E such that use(s) ⊆ dom(E), the
execution of ⟨E, s⟩ does not block. Of course, it would be sufficient to take for use(s) all the variables
that appear in s, but this would be a very crude solution. For the program above, for example, the
set {x} is sufficient.

In order to perform a more detailed analysis of use(s), we are going to simultaneously compute a
second set of variables, noted def(s), corresponding to variables necessarily defined by the execution
of s, in the following sense: for any execution ⟨E, s⟩ →⋆ ⟨E ′, { }⟩, then we have def(s) ⊆ dom(E ′).
For the program above, for example, we have def(s) = {y} because every execution gives a value to
the variable y.

We propose to compute the sets def(s) and use(s) by induction on the structure of s. Here is how
to perform the calculation for the first three statements:

def(s) use(s)

x =n {x} ∅
x1 =x2-x3 {x1} {x2, x3}
print x ∅ {x}

Question 5 Complete the table above by proposing a computation of def(s) and use(s) for the
remaining three statements of while: conditional, loop, and block.

Correction :

def(s) use(s)

if x = 0 then s1 else s2 def(s1) ∩ def(s2) {x} ∪ use(s1) ∪ use(s2)
while x <> 0 do s ∅ {x} ∪ use(s)

{ } ∅ ∅
{ s1 s2 . . . } def(s1) ∪ def({ s2 . . . }) use(s1) ∪ (use({ s2 . . . })\def(s1))

4

Note that a while loop defines no variable, as we can’t know, in the general case, if its
body is going to be executed at least once.

Question 6 Show the correctness of your definition of use(s). Make sure you clearly state and
prove all the intermediate properties you need.

Correction : We start with a monotony lemma: if ⟨E, s⟩ →⋆ ⟨E ′, s′⟩ then dom(E) ⊆
dom(E ′). (The environment only grows.) Trivial induction over the number of steps.

We continue with a context lemma: we have ⟨E, s1⟩ →⋆ ⟨E ′, { }⟩ if and only if ⟨E, { s1 s2 . . . }⟩ →⋆

⟨E ′, { { } s2 . . . }⟩. Trivial induction over the number of steps.

Last, we show by structural induction over evaluation the following property: If use(s) ⊆
dom(E) then the execution of ⟨E, s⟩ does not block, and for each execution ⟨E, s⟩ →⋆

⟨E ′, { }⟩ we have def(s) ⊆ dom(E ′).

• x =n : immediate

• x1 =x2-x3 : immediate

• print x : immediate

• if x = 0 then s1 else s2 : We have x ∈ use(s) and thus we can make a step,
to ⟨E, s1⟩ or ⟨E, s2⟩. In both cases, the execution does not block by IH since
use(s1), use(s2) ⊆ use(s) ⊆ E. If E(x) = 0 and ⟨E, s1⟩ →⋆ ⟨E ′, { }⟩ then def(s1) ⊆
dom(E ′) by IH, and def(s) ⊆ def(s1). Similarly if E(x) ̸= 0.

• while x <> 0 do s1 : We have x ∈ use(s) and thus we can make a step. If E(x) = 0,
this is immediate. Otherwise, the execution does not block by IH since use(s1) ⊆
use(s) ⊆ E. Besides, def(s) = ∅ so there is nothing to prove for the second part.

• { }: immediate

• { s1 s2 . . . } : We have use(s1) ⊆ use(s) and thus the execution of ⟨E, s1⟩ does
not block by IH. If it does not terminate, then so does the execution of s and it
does not block. Otherwise, the context lemma tells us that ⟨E, { s1 s2 . . . }⟩ →⋆

⟨E1, { { } s2 . . . }⟩ → ⟨E1, { s2 . . . }⟩ for some E1. By IH we have def(s1) ⊆ dom(E1)
and thus use({ s2 . . . }) ⊆ dom(E1) using the definition of use and the monotony
lemma. Therefore, the execution of { s2 . . . } does not block. If it terminates, then
def({ s2 . . . }) ⊆ dom(E ′) but also def(s1) ⊆ dom(E ′) by monotony, hence the result.

Question 7 Is an algorithm (yours or any other) able to compute sets def(s) and use(s) that are
minimal for inclusion? If yes, justify. If no, explain why.

Correction : Computing minimal sets would be equivalent to determine when a variable
gets the value 0, which is not decidable in full generality. Our sets def(s) and use(s) are
thus doomed to be approximations, as in the following trivial example

{ if x = 0 then x = 1 else {}

while x <> 0 do { y = 2 x = 0 } }

5

where we do not determine that y is always defined. Of course, we could do a better job on
this example, by propagating the value of x (or rather its nullity), but any computation
ending on a non-null value for x can be used instead.

In a more formal way, computing a minimal use set for the program

{ ...p... print x }

where the program p does not use variable x amounts to solve the halting problem for p.

RTL Language. We are now considering an RTL-type language (for Register Transfer Language)
whose abstract syntax is given in figure 3. An RTL program is a finite set of basic blocks. A basic
block b is given by a label L, a sequence of instructions, and a jump. An instruction i is an assignment
or display, as in the while language. A jump j is either the termination of the program (halt), a
conditional jump (ifz x L1 L2) or an unconditional jump (goto L). An RTL program is well-formed
if

• any label mentioned by ifz or goto corresponds to a program block;

• there is no jump goto L to a block with only one predecessor (i.e. to a block other than the
first block, whose only reference is this goto L jump).

Here is an example of a well-formed RTL program with four basic blocks:

L0: n=10 r=0 one=1 one=r-one goto L1

L1: t=r-n ifz t L2 L3

L2: halt

L3: r=r-one print r goto L1

(R0)

Note that block L1 has two predecessors.
An RTL program runs in an E environment (of the same type as for while) and starts at its

first block (L0 in the example above). The execution of a block is the execution of its instructions, in
sequence, with the same semantics as for while. If the execution of an instruction blocks, the RTL
program also blocks. Otherwise, we get a new environment E ′ and we make the jump. The halt

jump terminates the RTL program. The conditional jump ifz x L1 L2 continues execution on block
L1 if E ′(x) = 0 and on block L2 otherwise. The unconditional jump goto L continues execution
on block L. In the case of a jump, execution continues with the environment E ′. For instance, the
above program prints the integers from 1 to 10 and then terminates.

Question 8 What is the effect of the following program

L0: zero=0 one=1 one=zero-one u=1 r=0 goto L1

L1: t=r-n ifz t L6 L2

L2: v=u-zero s=0 goto L3

L3: t=s-r ifz t L5 L4

L4: t=zero-v u=u-t s=s-one goto L3

L5: r=r-one goto L1

L6: print u halt

in an environment that defines a variable n with a nonnegative value? Provide a detailed justification.

6

Correction : This program computes and prints the factorial of n. Indeed, it corresponds
to the following nested loops:

u=1

for r=0 to n-1 do // invariant u = fact(r)

v = u

for s=0 to r-1 do // invariant u = (s+1) * fact(r)

u = u+v

print u // thus with u = fact(n)

Note: this is the program from Checking a Large Routine (Turing, 1949).

Question 9 Propose an abstract syntax (in Java or OCaml) for RTL programs. Propose data
structures and methods/functions (in Java or OCaml) to execute an RTL program from an empty
environment. You do not have to implement these methods/functions.

Correction : Solution in OCaml. Here are types for the abstract syntax:

type var = string

type label = string

module M = Map.Make(String)

type instr =

| Iprint of var

| Icst of var * int

| Isub of var * var * var

type branch =

| Halt

| Ifz of var * label * label

| Goto of label

type block = { code: instr list; branch: branch; }

type rlt = { entry: label; blocks: block M.t; }

We have chosen to represent all the blocks by a dictionary, to facilitate execution. (An-
other solution would be to use integers 0, . . . , n − 1 for the labels and an array directly
for the array for all blocks).

For execution, the simplest solution is to use a hash table (module H below) to represent
the environment:

let exec {entry; blocks} =

let vars = H.create 16 in

let var x = try H.find vars x

7

with Not_found -> eprintf "unbound variable %s@." x; exit 1 in

let rec instr = function

| Iprint x -> printf " %d@." (var x)

| Icst (x, n) -> H.replace vars x n

| Isub (x1, x2, x3) -> H.replace vars x1 (var x2 - var x3) in

let rec exec l =

let b = M.find l blocks in

List.iter instr b.code;

match b.branch with

| Halt -> ()

| Goto l -> exec l

| Ifz (x, l1, l2) -> exec (if var x = 0 then l1 else l2) in

exec entry

Question 10 We wish to compute the set use of an RTL program, with the same meaning as for a
while program (i.e., execution does not block on an environment that defines at least the variables
of the set use). Propose an algorithm to compute this set.

Correction : We note that we can compute the sets def and use of a basic block once
and for all, independently of the other blocks. This is done in exactly the same way as
for the while language.

Next, we can compute the live input and output variables of each block with a fixed point
calculation, just as we did in class, with the equations in(ℓ) = use(ℓ) ∪ (out(ℓ)\def(ℓ))

out(ℓ) =
⋃

s∈succ(ℓ) in(s)

and for instance Kildall’s algorithm. The set we look for is thus in for the first block.

Question 11 Propose an algorithm to compile the while language to the RTL language. Make
sure that the resulting RTL program is well-formed.

Correction : Let’s write the compilation in the form of a function C(s, j) which takes as
parameters an instruction s from the while language and a branch (to be performed at
the end), and returns the label of the block corresponding to this calculation. To answer
the question, we simply compute C(s, halt) and we consider the output as the first block.

We give ourselves an auxiliary function B(i1 . . . in j) which constructs the block L :
i1 . . . in j for a fresh label L and returns it, when n > 0 or j ̸= goto, and returns L
directly when n = 0 and j = goto L.

To compute C(s, j), we start by collecting the sequence i1 . . . in of all elementary instruc-
tions at the beginning of s, up to the first if or while. If there are none, then s is of the
form

{ i1 . . . in }

8

and we simply return the block B(i1 . . . in j).

If s is of the form
{ i1 . . . in if x = 0 then s1 else s2 s3 . . . }

we set L = C({ s3 . . . }, j), then L1 = C(s1, goto L) and L2 = C(s2, goto L), and we
return B(i1 . . . in, ifz x L1 L2). (We have two gotos to L.)

Last, if s is of the form

{ i1 . . . in while x <> 0 do s1 s2 . . . }

we set L = C({ s2 . . . }, j), then we choose a fresh label Lt and we set Lb = C(s1, goto Lt),
we declare the block Lt : ifz x L Lb, and finally we return B(i1 . . . in, goto Lt). (We
have two gotos to Lt.)

Compiling to x86-64 Assembly. We propose to compile the RTL language to x86-64 assembly.
(A cheat sheet is given in the appendix). We assume that the integers in our language are limited
to signed 64-bit integers. We assume that an assembly function print is given, obeying the calling
conventions (its argument is in %rdi and it potentially overwrites any caller-saved register) but not
requiring stack alignment when called.

As our RTL language is very simple, we can perform register allocation by graph coloring on
an interference graph built directly from the RTL code. For the next two questions, we take the
following RTL program as an example:

A: zero=0 s=0 one=1 n=10 goto B

B: t=zero-n s=s-t n=n-one ifz n H B

H: print s halt
(R1)

Question 12 Give the interference graph for program (R1). Try to suggest one or more preference
edges (with justification).

Correction : We have five variables (n, s, zero, one and t) that all interfere in pairs
and therefore form a clique. It’s a good idea to add a preference edge between s and
%rdi (print’s parameter).

Question 13 Propose an assembly code for program (R1).

Correction : The simplest solution is to use caller-saved registers, since instruction
print is used only at the very end of the program.

s %rdi (because we print it)

one %rsi

zero %rdx

n %rcx

t %r8

9

main: mov $10, %rcx

mov $0, %rdi

mov $1, %rsi

mov $0, %rdx

B: mov %rdx, %r8

subq %rcx, %r8

subq %r8, %rdi

subq %rsi, %rcx

jnz B

H: call print

xorq %rax, %rax

ret

Question 14 Propose an assembly code for program (R0) on page 6.

Correction : This time, on the contrary, it’s better to use callee-saved registers for the
variables n, r and one. The variable t, on the other hand, can remain in a caller-saved
register.

n %rbx

r %r12

one %r13

t %rcx

main: pushq %rbx

pushq %r12

pushq %r13

mov $10, %rbx

mov $0, %r12

mov $1, %r13

subq %r12, %r13 # one = r - one

negq %r13 # see later

L1: mov %r12, %r8

subq %rbx, %r8

jz L2

L3: subq %r13, %r12

movq %r12, %rdi

call print

jmp L1

L2: popq %r13

popq %r12

popq %rbx

xorq %rax, %rax

ret

(Of course, this could be simplified a bit, but we compile this program in a mechanical
way, following the answer of question 16 below.)

10

Question 15 Generally speaking, what are the preference edges we can derive from an RTL pro-
gram?

Correction : There are two places where a preference can be expressed:

• in an x = y-z instruction, between the variables x and y. Indeed, the subtraction
x =x-z can then be compiled directly by an assembly instruction sub.

• in an print x instruction, between the variable x and the register %rdi (as we did
above).

Question 16 Propose a general compilation scheme for the RTL language, i.e., explain how each
of its constructs (instruction or jump) can be compiled to x86-64 assembly.

Correction : We perform a linearization as seen in class. A register is reserved as
temporary (e.g. %r10). At the start of the program, we save the callee-saved registers to
be used.

x =n : This is a mov.

x = y-z : Since x86-64 subtraction has two operands, we make three cases:

x =x-z : This is the best case, which translates to a single sub.

x = y-z with y ̸= x and z ̸= x: We copy y to x then we subtract z.

x = y-x : We subtract y from x, then we do a neg on x. (This is the one = r - one

in the answer to the question 14.)

Of course, in all cases, you have to take into account the possibility that several
variables are spilled into memory. In this case, a temporary must be used.

print x : Copy x into %rdi, if necessary, and then do call print.

ifz x L1 L2 : If the jump is immediately preceded by (in the same basic block) a sub-
traction x = y-z, then we can directly make a conditional jump (jz or jnz as desired).
Otherwise, you must test x explicitly (with test x, x) before the jump.

goto L: This is a direct jmp instruction.

halt: Restore the callee-saved, if necessary, set %rax to zero then end the program with
ret.

11

s ::= x =n constant n ∈ N
| x =x-x subtraction
| print x display
| if x = 0 then s else s conditional
| while x <> 0 do s loop
| { s . . . s } block

Figure 1: Abstract Syntax of while.

⟨E, x =n⟩ → ⟨E⊕{x 7→ n}, { }⟩
x2 ∈ dom(E) x3 ∈ dom(E)

⟨E, x1 =x2-x3⟩ → ⟨E⊕{x1 7→ E(x2)− E(x3)}, { }⟩

x ∈ dom(E)

⟨E, print x⟩ → ⟨E, { }⟩
x ∈ dom(E) E(x) = 0

⟨E, if x = 0 then s1 else s2⟩ → ⟨E, s1⟩
x ∈ dom(E) E(x) ̸= 0

⟨E, if x = 0 then s1 else s2⟩ → ⟨E, s2⟩
x ∈ dom(E) E(x) = 0

⟨E, while x <> 0 do s⟩ → ⟨E, { }⟩
x ∈ dom(E) E(x) ̸= 0

⟨E, while x <> 0 do s⟩ → ⟨E, { s while x <> 0 do s }⟩

⟨E, { { } s . . . }⟩ → ⟨E, { s . . . }⟩
⟨E, s1⟩ → ⟨E1, s

′
1⟩

⟨E, { s1 s2 . . . }⟩ → ⟨E1, { s′1 s2 . . . }⟩

Figure 2: Operational Semantics of while.

p ::= b . . . b RTL program
b ::= L : i . . . i j basic block
i ::= x =n constant n ∈ N

| x =x-x subtraction
| print x display

j ::= halt end of program
| ifz x L L conditional jump
| goto L unconditional jump

Figure 3: RTL Language.

12

Appendix: x86-64 cheat sheet

A fragment of the x86-64 instruction set is given here. You are free to use any other part of the
x86-64 assembler. In the following, ri designates a register, n an integer constant and L a label.

mov r2, r1 copies register r2 into register r1
mov $n, r1 loads constant n into register r1
mov $L, r1 loads the address of label L into register r1
sub r2, r1 computes r1 − r2 and stores it into r1
neg r1 computes −r1 and stores it into r1
mov n(r2), r1 loads r1 with the value contained in memory at address r2 + n
mov r1, n(r2) writes in memory at address r2 + n the value of r1
push r1 pushes the value of r1 on the stack
pop r1 pops a value from the stack and stores it into register r1
test r2, r1 sets the flags according to the value of r1 AND r2
jz L jumps to address L if flags signal a zero value
jmp L jumps to address L
call L pushes the return address to the stack and jumps to address L
ret pops an address from the stack and jumps there

Calling conventions:

• up to six arguments are passed via registers %rdi, %rsi, %rdx, %rcx, %r8, %r9;

• other arguments are passed on the stack, if any;

• the returned value is put in %rax;

• registers %rsp, %rbp, %rbx, %r12, %r13, %14 and %r15 are callee-saved : they won’t be clobbered
by a call;

• the other registers are caller-saved : they may be clobbered by a call;

• %rsp is the stack pointer, %rbp the frame pointer.

13

