
École Polytechnique

CSC 52064 – Compilation

Jean-Christophe Filliâtre
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reminder

code production is split into several phases:

1. instruction selection

2. RTL (Register Transfer Language)

3. ERTL (Explicit Register Transfer Language)

4. LTL (Location Transfer Language)

4.1 liveness analysis
4.2 interference graph
4.3 register allocation

5. linearization (assembly)
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reminder

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

phase 1: instruction selection

int fact(int x) {

if (Mjlei 1 x) return 1;

return Mmul x fact((Maddi -1) x);

}
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reminder

phase 2: RTL (Register Transfer Language)

#2 fact(#1)

entry : L10

exit : L1

locals:

L10: mov #1 #6 --> L9

L9 : jle $1 #6 --> L8, L7

L8 : mov $1 #2 --> L1

L7: mov #1 #5 --> L6

L6: add $-1 #5 --> L5

L5: #3 <- call fact(#5) --> L4

L4: mov #1 #4 --> L3

L3: mov #3 #2 --> L2

L2: imul #4 #2 --> L1
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reminder

phase 3: ERTL (Explicit Register Transfer Language)

fact(1)

entry : L17

locals: #7,#8

L17: alloc_frame --> L16

L16: mov %rbx #7 --> L15

L15: mov %r12 #8 --> L14

L14: mov %rdi #1 --> L10

L10: mov #1 #6 --> L9

L9 : jle $1 #6 --> L8, L7

L8 : mov $1 #2 --> L1

L1 : goto --> L22

L22: mov #2 %rax --> L21

L21: mov #7 %rbx --> L20

L20: mov #8 %r12 --> L19

L19: delete_frame --> L18

L18: return

L7 : mov #1 #5 --> L6

L6 : add $-1 #5 --> L5

L5 : goto --> L13

L13: mov #5 %rdi --> L12

L12: call fact(1) --> L11

L11: mov %rax #3 --> L4

L4 : mov #1 #4 --> L3

L3 : mov #3 #2 --> L2

L2 : imul #4 #2 --> L1
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phase 4: LTL

phase 4: LTL (Location Transfer Language)

we have already done the liveness analysis i.e. we have determined for
each variable (pseudo-register or physical register) at which moments its
value is likely to be used in the remaining of the computation
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liveness analysis

L17: alloc_frame --> L16 in = %r12,%rbx,%rdi out = %r12,%rbx,%rdi

L16: mov %rbx #7 --> L15 in = %r12,%rbx,%rdi out = #7,%r12,%rdi

L15: mov %r12 #8 --> L14 in = #7,%r12,%rdi out = #7,#8,%rdi

L14: mov %rdi #1 --> L10 in = #7,#8,%rdi out = #1,#7,#8

L10: mov #1 #6 --> L9 in = #1,#7,#8 out = #1,#6,#7,#8

L9 : jle $1 #6 -> L8, L7 in = #1,#6,#7,#8 out = #1,#7,#8

L8 : mov $1 #2 --> L1 in = #7,#8 out = #2,#7,#8

L1 : goto --> L22 in = #2,#7,#8 out = #2,#7,#8

L22: mov #2 %rax --> L21 in = #2,#7,#8 out = #7,#8,%rax

L21: mov #7 %rbx --> L20 in = #7,#8,%rax out = #8,%rax,%rbx

L20: mov #8 %r12 --> L19 in = #8,%rax,%rbx out = %r12,%rax,%rbx

L19: delete_frame--> L18 in = %r12,%rax,%rbx out = %r12,%rax,%rbx

L18: return in = %r12,%rax,%rbx out =

L7 : mov #1 #5 --> L6 in = #1,#7,#8 out = #1,#5,#7,#8

L6 : add $-1 #5 --> L5 in = #1,#5,#7,#8 out = #1,#5,#7,#8

L5 : goto --> L13 in = #1,#5,#7,#8 out = #1,#5,#7,#8

L13: mov #5 %rdi --> L12 in = #1,#5,#7,#8 out = #1,#7,#8,%rdi

L12: call fact(1)--> L11 in = #1,#7,#8,%rdi out = #1,#7,#8,%rax

L11: mov %rax #3 --> L4 in = #1,#7,#8,%rax out = #1,#3,#7,#8

L4 : mov #1 #4 --> L3 in = #1,#3,#7,#8 out = #3,#4,#7,#8

L3 : mov #3 #2 --> L2 in = #3,#4,#7,#8 out = #2,#4,#7,#8

L2 : imul #4 #2 --> L1 in = #2,#4,#7,#8 out = #2,#7,#8
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interference

we now build an interference graph that represents the constraints over
pseudo-registers

Definition (interference)

We say that two variables v1 and v2 interfere if they cannot be
implemented by the same location (physical register or memory slot).

since interference is not decidable, we look for sufficient conditions
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interference

let us consider an instruction that defines a variable v : then any other
variable w live out of this instruction may interfere with v

however, in the particular case of

mov w v

we wish instead not to declare that v and w interfere, since mapping v
and w to the same location will eliminate this instruction
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interference graph

so we adopt the following definition

Definition (interference graph)

The interference graph of a function is an undirected graph whose
vertices are the variables and whose edges are of two kinds: interference or
preference.
For each instruction that defines a variable v and whose out live variables,
other than v , are w1, . . . ,wn, we proceed as follows:

• if the instruction is not mov w v , we add the n interference edges
v − wi

• if this is an instruction mov w v , we add the interference edges v −wi

for the wi other than w and we add a preference edge v − w .

(if an edge v − w is both a preference and interference, we only keep the
interference edge)
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example: factorial

here is what we get
with function fact

10 physical registers
+
8 pseudo-registers

dashed = preference
edges

#1

#4

#6

#3

#5

#7

#8

%r10

%r8

%r9

%rax

%rcx

%rdi

%rdx

%rsi

%rbx

%r12

#2

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (2/2) 11



graph coloring

we can see register allocation as a graph coloring problem:

• the colors are the physical registers

• two vertices linked by some interference edge cannot receive the same
color

• two vertices linked by some preference edge should receive the same
color as much as possible

note: the graph contains vertices that are physical registers, i.e., that are
already colored

Gregory Chaitin, Register allocation and spilling via graph coloring, 1982
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factorial example

let us have a look at the available colors

available colors

#1 %r12, %rbx
#2 all of them
#3 all of them
#4 all of them
#5 all of them
#6 all of them
#7 %rbx

#8 %r12

#1

#4

#6

#3

#5

#7

#8

%r10

%r8

%r9

%rax

%rcx

%rdi

%rdx

%rsi

%rbx

%r12

#2
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difficulty

on this example, we immediately see that the graph coloring has no
solution

• only two colors for #1, #7, and #8

• the three of them interfere

if a vertex cannot be colored, it will be allocated on the stack; it is called a
spilled register (en français, un registre vidé en mémoire)
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another difficulty

even if the graph can be colored, figuring it out would be too costly (the
problem is NP-complete)

so we are going to use heuristics to color the graph, looking for

• a linear (or quasi-linear) complexity

• a good use of preference edges

one of the best algorithms is due to George and Appel
(Iterated Register Coalescing, 1996)

it uses the following ideas
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simplification

let K be the number of colors (i.e. the number of physical registers)

a first idea, due to Kempe (1879!), is the following: if a vertex has a
degree < K , then we can remove it from the graph, color the remaining
graph, and then assign it a color; this is called simplification

removing a vertex decreases the degree of other vertices and thus can
trigger other simplifications

removed vertices are put on a stack
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spilling

when there are only vertices with degree ≥ K , we pick up one vertex as
potential spill; it is removed from the graph and put on the stack, and
the simplification process restarts

we preferably choose a vertex

• that is seldom used (memory access is costly)

• has a strong degree (to favor new simplifications)
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selection

when the graph is empty, we start the coloring process, called selection

we pop vertices from the stack, and for each

• if it has a small degree, we are guaranteed to find a color
• if it has a high degree (a potential spill), then

• either it can be colored because its neighbors use less than K colors
(optimistic coloring)

• or it cannot be colored and it is spilled to memory (actual spill)
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coalescing

last, we must make good use of preference edges

for this, we use a technique called coalescing that merges two vertices of
the graph

since it may increase the degree (of the resulting vertex), we add a
conservative criterion not to damage K -colorability
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George’s criterion

Definition (George’s criterion)

A pseudo-register vertex v2 can be merged with a vertex v1, if any neighbor
of v1 that is a physical register or has degree ≥ K is also a neighbor of v2.

Similarly, a physical vertex v2 can be merged with a vertex v1, if any
neighbor of v1 that is a pseudo-register or has degree ≥ K is also a
neighbor of v2.

the vertex v1 is removed and the graph is updated
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George-Appel algorithm

implemented with five mutually recursive functions

simplify(g) =

...

coalesce(g) =

...

freeze(g) =

...

spill(g) =

...

select(g, v) =

...

note: the stack of vertices is thus implicit
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George-Appel 1/5

simplify(g) =

if there exists a vertex v without any preference edge

with minimal degree < K

then

return select(g, v)

else

return coalesce(g)
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George-Appel 2/5

coalesce(g) =

if there exists a preference edge v1-v2

satisfying George’s criterion

then

g <- merge(g, v1, v2)

c <- simplify(g)

c[v1] <- c[v2]

return c

else

return freeze(g)
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George-Appel 3/5

freeze(g) =

if there exists a vertex v with minimal degree < K

then

g <- remove preference edges from v

return simplify(g)

else

return spill(g)
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George-Appel 4/5

spill(g) =

if g is empty

then

return the empty coloring

else

choose a vertex v with minimal spill cost

return select(g, v)

the spill cost function can be for instance

cost(v) =
number of uses of v

degree of v
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George-Appel 5/5

select(g, v) =

remove vertex v from g

c <- simplify(g)

if there exists a color r for v

then

c[v] <- r

else

c[v] <- spill

return c
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example

1.
simplify(g) →
coalesce(g) →
selects #2- - -#3

#1

#4

#6 #3

#5

#7

#8

%r10

%r8

%r9

%rax

%rcx

%rdi

%rdx

%rsi

%rbx

%r12

#2
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example

then we pop

8. coalesce #8- - -%r12 → c[#8] = %r12

7. select #1 → c[#1] = %rbx

6. select #7 → c[#7] = spill

5. coalesce #5- - -%rdi → c[#5] = %rdi

4. coalesce #3- - -%rax → c[#3] = %rax

3. coalesce #6- - -#1 → c[#6] = c[#1] = %rbx

2. coalesce #4- - -#1 → c[#4] = c[#1] = %rbx

1. coalesce #2- - -#3 → c[#2] = c[#3] = %rax
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what about spilled pseudo-registers?

what do we do with spilled pseudo-registers?

they are mapped to stack slots, in the
lower part of the stack frame

...
param. n

...
param. 7

return addr.
%rbp → saved %rbp

local 1
...

%rsp → local m
...

several pseudo-registers may use the same slot, if they do not interfere ⇒
how to minimize m?
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coloring, again

this is yet another graph coloring problem, but this time with an infinite
number of colors (stack slots)

algorithm:

1. merge all preference edges, since mov between two spilled registers is
really costly

2. then use the simplification algorithm
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fact example

we get the following register allocation

#1 -> %rbx

#2 -> %rax

#3 -> %rax

#4 -> %rbx

#5 -> %rdi

#6 -> %rbx

#7 -> stack -8

#8 -> %r12

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (2/2) 31



example

which we would give the following code

fact(1)

entry : L17

L17: alloc_frame --> L16

L16: mov %rbx -8(%rbp)-->L15

L15: mov %r12 %r12 --> L14

L14: mov %rdi %rbx --> L10

L10: mov %rbx %rbx --> L9

L9 : jle $1 %rbx --> L8, L7

L8 : mov $1 %rax --> L1

L1 : goto --> L22

L22: mov %rax %rax --> L21

L21: mov -8(%rbp) %rbx-->L20

L20: mov %r12 %r12 --> L19

L19: delete_frame --> L18

L18: return

L7 : mov %rbx %rdi --> L6

L6 : add $-1 %rdi --> L5

L5 : goto --> L13

L13: mov %rdi %rdi --> L12

L12: call fact(1) --> L11

L11: mov %rax %rax --> L4

L4 : mov %rbx %rbx --> L3

L3 : mov %rax %rax --> L2

L2 : imul %rbx %rax --> L1
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remark

as we notice, many instructions

mov v v

can now be eliminated; this was the purpose of preference edges

this will be done during the translation to LTL
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the LTL language

we still have a control-flow graph

most LTL instructions LTL are the same as in ERTL, but operands are
now physical registers or stack slots
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LTL instructions

call f → L identical to ERTL
goto → L
return

load n(r1) r2 → L identical to ERTL
store r1 n(r2) → L but with physical registers

mov n d → L identical to ERTL
unop op d → L but with operands
binop op d1 d2 → L (d = register or stack slot)
ubranch br d → L1, L2
bbranch br d1 d2 → L1, L2
push d → L

pop r new instruction
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LTL instructions

additionally, alloc frame, delete frame, and get param disappear,
being now replaced by explicit use of %rsp / %rbp
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ERTL to LTL

we translate each ERTL instruction into one or several LTL instructions,
using

• the graph coloring

• the stack frame structure (which is now known for each function)

a variable r can be

• already a physical register

• a pseudo-register mapped to a physical register

• a pseudo-register mapped to a stack slot
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ERTL to LTL

in some cases, the translation is easy because the assembly language
allows all combinations

example: the ERTL instruction

L1 : mov n r → L

is mapped to a single LTL instruction

L1 : mov n color(r) → L

color(r) being a physical register (e.g. movq $42, %rax) or a stack slot
(e.g. movq $42, -8(%rbp))
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difficulty

in other cases, however, this is more difficult as not all operand
combinations are allowed

memory access is one such example:

L1 : load n(r1) r2 → L

raises an issue when r2 is on the stack, as we can’t write

movq n(r1), m(%rbp)

(too many memory references for ‘movq’)

similarly when r1 is on the stack

we have to use some intermediate register
problem: which register to use?
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temporary registers

we go for a simple solution: two registers are used as temporary registers
from transfers to/from memory, and are not used anywhere else (we
choose %r10 and %r11)

in practice, we can’t always waste two registers like this; we have to patch
the interference graph and rerun the register allocation to free a register
for the transfer

fortunately, it quickly converges (2 or 3 steps)
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temporary registers

with two temporary registers, it is now easy to translate ERTL to LTL

example: with ERTL instruction

L1 : load n(r1) r2 → L

r2 physical r2 on
register stack

r1 physical L1 : load n(r1) r2 → L L1 : load n(r1) %r10 → L2
register L2 : mov %r10 n2(%rbp) → L

r1 on stack L1 : mov n1(%rbp) %r10 → L2 L1 : mov n1(%rbp) %r10 → L2
L2 : load n(%r10) r2 → L L2 : load n(%r10) %r11 → L3

L3 : mov %r11 n2(%rbp) → L2

(here one temporary register is enough but two are needed for store)
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binary operations

we make some special treatment during the translation

• an instruction mov r1 r2 → L is translated to goto → L when r1 and
r2 have the same color

this is where we get the benefits of a good register allocation

• the x86-64 instruction imul requires its second operand to be a
register ⇒ one has to use a temporary if this is not the case

• a binary operation cannot have two memory operands ⇒ use a
temporary if needed
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stack frame

we can now translate alloc frame and
delete frame into explicit use of %rsp / %rbp

ERTL LTL

alloc frame → L push %rbp

mov %rsp %rbp

add −8m %rsp

delete frame → L mov %rbp %rsp

pop %rbp

(which simplifies when m = 0)

...
param. n

...
param. 7

return addr.
%rbp → old %rbp

local 1
...

%rsp → local m
...
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translating ERTL to LTL

to translate a function f

1. make the liveness analysis

2. build the interference graph

3. color it

4. deduce the value of m

5. translate ERTL instructions to LTL
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example

for the factorial, we get the following LTL code

fact()

entry : L17

L17: add $-8 %rsp --> L16

L16: mov %rbx -8(%rbp) --> L15

L15: goto --> L14

L14: mov %rdi %rbx --> L10

L10: goto --> L9

L9 : jle $1 %rbx --> L8, L7

L8 : mov $1 %rax --> L1

L1 : goto --> L22

L22: goto --> L21

L21: mov -8(%rbp) %rbx --> L20

L20: goto --> L19

L19: add $8 %rsp --> L18

L18: return

L7 : mov %rbx %rdi --> L6

L6 : add $-1 %rdi --> L5

L5 : goto --> L13

L13: goto --> L12

L12: call fact --> L11

L11: goto --> L4

L4 : goto --> L3

L3 : goto --> L2

L2 : imul %rbx %rax --> L1
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phase 5: linearization

one last step is needed: the code is still a control-flow graph and we
have to produce linear assembly code

to be precise: LTL branching instructions contain

• a label for a positive test

• another label for a negative test

while assemble branching instructions

• contain a single label for a positive test

• move to the next instruction for a negative test

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (2/2) 46



linearization

the linearization consists in traversing the control-flow graph and
outputting assembly code, while keeping track of visited labels

for a branching instruction, we try to produce idiomatic assembly code
when the negative part of the code is not yet visited

in the worst case, we use some unconditional jump (jmp)

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (2/2) 47



linearization

we use two tables

• one to store visited labels

• one to store labels that are targets of jumps (we don’t know that yet
when the instruction is visited)
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linearization

the linearization is implemented by two mutually recursive functions

• a function lin outputs code from a given label, if not yet visited, and
emits a jump to that label otherwise

• a function instr outputs code for a given label and a given
instruction, unconditionally
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linearization

the function lin is a mere graph traversal

• if the instruction is not yet visited, we mark it as visited and we call
function instr

• otherwise we mark the label as a target and we output some
unconditional jump to that label
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linearization

the function instr outputs x86-64 code and calls lin recursively on the
next label

instr(L1 : mov n d → L) = output L1 : movq n, d
call lin(L)

instr(L1 : load n(r1) r2 → L) = output L1 : movq n(r1), r2
call lin(L)

etc .
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branching

the interesting case is that of a branching instruction

we first consider the case where the negative label (L3) is not yet visited

instr(L1 : branch cc → L2, L3) = output L1 : jcc L2
call lin(L3)
call lin(L2)
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branching

otherwise, it may be the case that the positive label (L2) is not yet visited
and we can switch the condition

instr(L1 : branch cc → L2, L3) = output L1 : jcc L3
call lin(L2)
call lin(L3)

where condition cc is the opposite of condition cc
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branching

last, in the case where both branches has already been visited, we have no
other choice than emitting some unconditional jump

instr(L1 : branch cc → L2, L3) = output L1 : jcc L2
output jmp L3

note: we can try to estimate which case will be true more often
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goto

the code contains many goto (C while loops in the RTL phase, calling
conventions in the ERTL phase, removal of mov in the LTL phase)

we now eliminate unnecessary gotos when possible

instr(L1 : goto → L2) = output jmp L2 if L2 is already visited

= output label L1
call lin(L2) otherwise

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (2/2) 55



et voilà !
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factorial

fact: pushq %rbp

movq %rsp, %rbp

addq $-8, %rsp

movq %rbx, -8(%rbp)

movq %rdi, %rbx

cmpq $1, %rbx

jle L8

movq %rbx, %rdi ## useless, too bad!

addq $-1, %rdi

call fact

imulq %rbx, %rax

L1:

movq -8(%rbp), %rbx

movq %rbp, %rsp

popq %rbp

ret

L8:

movq $1, %rax

jmp L1
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factorial

we could do better manually

fact: cmpq $1, %rdi # x <= 1 ?

jle L3

pushq %rdi # saves x on the stack

decq %rdi

call fact # fact(x-1)

popq %rcx

imulq %rcx, %rax # x * fact(x-1)

ret

L3:

movq $1, %rax

ret

but it is always easier to optimize one program
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another example

int fib(int n) {

if (n <= 1) return n;

return fib(n-2) + fib(n-1);

}

fib: pushq %rbp

movq %rsp, %rbp

addq $-16, %rsp

movq %rbx, -16(%rbp)

movq %r12, -8(%rbp)

movq %rdi, %rbx

cmpq $1, %rbx

jle L14

movq %rbx, %rdi

addq $-2, %rdi

call fib

movq %rax, %r12

addq $-1, %rbx

movq %rbx, %rdi

call fib

addq %rax, %r12

L6: movq %r12, %rax

movq -16(%rbp), %rbx

movq -8(%rbp), %r12

movq %rbp, %rsp

popq %rbp

ret

L14: movq %rbx, %r12

jmp L6
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a third example

int loop(int x) {

int r;

r = 1;

while (x > 1) {

r = r * x;

x = x - 1;

}

return r;

}

loop: pushq %rbp

movq $1, %rax

T: cmpq $1, %rdi

jg B

popq %rbp

ret

B: imulq %rdi, %rax

addq $-1, %rdi

jmp T
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a third example

pushq %rbp

mov $1 %rax

cmpq $1, %rdi

jg

imulq %rdi, %rax

addq $-1, %rdi

jump

popq %rbp
ret

T

B

loop: pushq %rbp

movq $1, %rax

T: cmpq $1, %rdi

jg B

popq %rbp

ret

B: imulq %rdi, %rax

addq $-1, %rdi

jmp T
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a third example, improved

a better linearization, with only one branching per iteration

pushq %rbp

mov $1 %rax

cmpq $1, %rdi

jg

imulq %rdi, %rax

addq $-1, %rdi

jump

popq %rbp
ret

T

B

loop: pushq %rbp

movq $1, %rax

jmp T

B: imulq %rdi, %rax

addq $-1, %rdi

T: cmpq $1, %rdi

jg B

popq %rbp

ret

gcc and clang typically do that (though via loop unrolling instead)
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efficiency

our compiler roughly matches gcc -O1

gcc -O1 mini-C

fib(42) 3,43 3,67
factorial 109 with a loop 0,86 0,86

10 000 times tak(18,12,6) 1,40 1,75

int tak(int x, int y, int z) { // Ikuo Takeuchi

if (y < x)

return tak(tak(x-1, y, z), tak(y-1, z, x), tak(z-1, x, y));

return z; }
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other compiler architectures
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architectures of C compilers

• the architecture we used here is that of CompCert
• optimizations are implemented at the RTL level

• the gcc compiler inserts some SSA language (explained later)

frontend → SSA → RTL → · · ·

and optimizations are implemented at both SSA and RTL levels

• the clang compiler is built on LLVM
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LLVM

this is a platform to help building optimizing compilers

LLVM offers an intermediate language, IR, and tools to optimize and
compile this language

source IR assembly

optimizations
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example: clang

the C compiler clang is built on LLVM

one can get the IR code with

> clang -O1 -c -emit-llvm fact.c -o fact.bc

and make it readable with

> llvm-dis fact.bc -o fact.ll
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IR code for fact

define i32 @fact(i32) {

%2 = icmp slt i32 %0, 2

br i1 %2, label %10, label %3

; <label>:3: ; preds = %1

br label %4

; <label>:4: ; preds = %3, %4

%5 = phi i32 [ %7, %4 ], [ %0, %3 ]

%6 = phi i32 [ %8, %4 ], [ 1, %3 ]

%7 = add nsw i32 %5, -1

%8 = mul nsw i32 %5, %6

%9 = icmp slt i32 %5, 3

br i1 %9, label %10, label %4

; <label>:10: ; preds = %4, %1

%11 = phi i32 [ 1, %1 ], [ %8, %4 ]

ret i32 %11

}
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IR code for fact

define i32 @fact(i32 %x0) {

L1:

%x2 = icmp slt i32 %x0, 2

br i1 %x2, label %L10, label %L3

L3:

br label %L4

L4:

%x5 = phi i32 [ %x7, %L4 ], [ %x0, %L3 ]

%x6 = phi i32 [ %x8, %L4 ], [ 1, %L3 ]

%x7 = add nsw i32 %x5, -1

%x8 = mul nsw i32 %x5, %x6

%x9 = icmp slt i32 %x5, 3

br i1 %x9, label %L10, label %L4

L10:

%x11 = phi i32 [ 1, %L1 ], [ %x8, %L4 ]

ret i32 %x11

}
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explanation

the IR language is much like our RTL language

• pseudo-registers (%2, %5, %6, etc.)

• a control-flow graph

• high-level calls

but there are also differences

• it is a typed language

• the code is in SSA form (Single Static Assignement): each variable
is only assigned once
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SSA form

of course, the code we compile is likely to assign a variable multiple times

we make use of a Φ operator to reconcile several branches of the
control-flow graph

for instance,

%x5 = phi i32 [ %x7, %L4 ], [ %x0, %L3 ]

means that %x5 receives the value of %x7 if we come from block %L4 and
the value of %x0 if we come from block %L3
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SSA form

the benefits of SSA form are that we can now

• attach a property to each variable
(e.g. to be equal to 42, to be positive, to be in [34,55], etc.)

• exploit it everywhere this variable is used

the SSA form eases many optimizations
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assembly

we get assembly code with the LLVM compiler

> llc fact.bc -o fact.s

this phase includes

• making calling conventions explicit (≈ ERTL)

• register allocation (≈ LTL)

• linearization

this is register allocation that gets rid of Φ operators (a few mov may be
necessary)
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example

> llc fact.bc -o fact.s

fact: movl $1, %eax

cmpl $2, %edi

jl L3

L2: imull %edi, %eax

leal -1(%rdi), %ecx

cmpl $2, %edi

movl %ecx, %edi # <- was phi

jg 2

L3: ret

register allocation

%x11 %x6 %x8 %eax

%x0 %x5 %edi

%x7 %ecx
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benefits of LLVM

one can make use of LLVM to

• implement a new compiler for a language S with only a frontend and
a translation to IR

and/or

• design and implement new optimizations, over IR

source 1

source 2

. . .

IR

assembly 1

assembly 2

. . .
optimizations
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next

• lab 8
• mini Java continued

• lecture 9
• garbage collection
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