
École Polytechnique

INF564 – Compilation

Jean-Christophe Filliâtre

compilation des langages objets
et des langages fonctionnels

Jean-Christophe Filliâtre INF564 – Compilation production de code (1/3) 1

aujourd’hui

1. langages objets
• représentation d’un objet
• appel dynamique

2. langages fonctionnels
• fonctions de première classe
• optimisation de l’appel terminal

Jean-Christophe Filliâtre INF564 – Compilation production de code (1/3) 2

compilation des langages objets

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 3

compilation des langages objets

expliquons

• comment un objet est représenté

• comment est réalisé l’appel d’une méthode

en prenant le cas de Java (pour l’instant)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 4

exemple

class Vehicle {

static int start = 10;

int position;

Vehicle() { position = start; }

void move(int d) { position += d; } }

class Car extends Vehicle {

int passengers;

void await(Vehicle v) {

if (v.position < position)

v.move(position - v.position);

else

move(10); } }

class Truck extends Vehicle {

int load;

void move(int d) {

if (d <= 55) position += d; else position += 55; } }

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 5

représentation des objets

un objet est un bloc alloué sur le tas, contenant

• sa classe

• les valeurs de ses champs

la valeur d’un objet est le pointeur vers le bloc

l’héritage simple permet de stocker la valeur d’un champ x à un
emplacement constant dans le bloc : les champs propres viennent après les
champs hérités

Vehicle

position

Car

position

passengers

Truck

position

load

noter l’absence du champ start, qui est statique donc alloué ailleurs
(par exemple dans le segment de données)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 6

exemple

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

Truck
55
0

Car
130
2

position

load

position
passengers

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 7

accès à un champ

pour chaque champ, le compilateur connâıt la position où ce champ est
rangé, c’est-à-dire le décalage à ajouter au pointeur sur l’objet

si par exemple le champ position est rangé à la position +16 alors
l’expression e.position est compilée comme

... # on compile e dans %rcx

movl 16(%rcx), %eax # champ position

ceci est correct, alors que le compilateur ne connâıt que le type statique
de e, qui peut être différent du type dynamique (la classe de l’objet)

il pourrait même s’agir d’une sous-classe de Vehicule non encore définie !

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 8

terminologie

la redéfinition (en anglais overriding) est la possibilité de redéfinir une
méthode dans une sous-classe
(de manière à ce que des objets différents se comportent différemment)

exemple : dans la classe Truck

class Truck extends Vehicle {

...

void move(int d) { ... }

}

la méthode move, héritée de la classe Vehicle, est redéfinie

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 9

appel de méthode

toute la subtilité de la compilation des langages à objets est dans l’appel
d’une méthode dynamique e.m(e1, . . . , en)

pour cela, on construit pour chaque classe un descripteur de classe qui
contient les adresses des codes de méthodes dynamiques de cette classe
(en anglais dispatch table, vtable, etc.)

comme pour les champs, l’héritage simple permet de ranger l’adresse du
code de la méthode m à un emplacement constant dans le descripteur

les descripteurs de classes peuvent être alloués dans le segment de
données ; chaque objet contient dans son premier champ un pointeur vers
le descripteur de sa classe

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 10

exemple

class Vehicule { void move(int d) {...} }

class Car extends Vehicule { void await(Vehicule v) {...}}

class Truck extends Vehicule { void move(int d) {...} }

descr. Vehicule

Vehicule move

descr. Car

Vehicule move

Car await

descr. Truck

Truck move

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 11

exemple

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

55
0

130
2

Truck
Truck move

Car
Vehicule move
Car await

dynamic static

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 12

appel de méthode

pour compiler un appel comme e.move(10)

1. on compile e ; sa valeur est un pointeur vers un objet

2. cet objet contient un pointeur vers le descripteur de sa classe

3. le code de la méthode move est situé à un emplacement connu (par
exemple +8) dans ce descripteur

... # compiler e dans %rdi

movq $10, %rsi # argument

movq (%rdi), %rcx # descripteur de class

call *8(%rcx) # méthode move

comme pour l’accès au champ, à aucun moment on n’a eu besoin de
connâıtre la classe effective de l’objet (son type dynamique)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 13

attention

si on écrit

Truck v = new Truck();

((Vehicule)v).move();

c’est toujours la méthode move de Truck qui est appelée
car l’appel de méthode reste compilé de la même façon

le transtypage n’a ici qu’une influence au moment du typage
(existence de la méthode + résolution de la surcharge ; cf cours 4)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 14

super classe

en pratique, le descripteur de la classe C contient également l’indication
de la classe dont C hérite, appelée super classe de C

la super classe est représentée par un pointeur vers son descripteur
(qu’on peut ranger dans le premier champ du descripteur, par exemple)

cela permet entre autres de compiler le test dynamique derrière un
downcast ou un instanceof

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 15

quelques mots sur C++

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 16

exemple

on reprend l’exemple des véhicules

class Vehicle {

static const int start = 10;

public:

int position;

Vehicle() { position = start; }

virtual void move(int d) { position += d; }

};

virtual signifie que la méthode move pourra être redéfinie

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 17

exemple

class Car : public Vehicle {

public:

int passengers;

Car() {}

void await(Vehicle &v) { // passage par référence

if (v.position < position)

v.move(position - v.position);

else

move(10);

}

};

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 18

exemple (suite)

class Truck : public Vehicle {

public:

int load;

Truck() {}

void move(int d) {

if (d <= 55) position += d; else position += 55;

}

};

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 19

exemple (suite)

#include <iostream>

using namespace std;

int main() {

Truck t; // objets alloués ici sur la pile

Car c;

c.passengers = 2;

c.move(60);

Vehicle *v = &c; // alias

v->move(70);

c.await(t);

}

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 20

représentation

sur cet exemple, la représentation d’un objet n’est pas différente de Java

descr. Vehicle

position

descr. Car

position

passengers

descr. Truck

position

load

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 21

héritage multiple

mais en C++, on trouve aussi de l’héritage multiple

conséquence : on ne peut plus (toujours) utiliser le principe selon lequel

• la représentation d’un objet d’une super classe de C est un préfixe de
la représentation d’un objet de la classe C

• de même pour les descripteurs de classes

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 22

héritage multiple

class Rocket {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

les représentations de Car et Rocket sont juxtaposées

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 23

héritage multiple

en particulier, un transtypage comme

RocketCar rc;

... (Rocket)rc ...

est traduit par une arithmétique de pointeur

... rc + 12 ...

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 24

héritage multiple

supposons maintenant que Rocket hérite également de Vehicle

class Rocket : public Vehicle {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

...

};

descr. RocketCar

position

passengers

descr. Rocket

position

thrust

name

on a maintenant deux champs position

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 25

héritage multiple

et donc une ambigüıté potentielle

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

vehicles.cc: In member function ‘virtual void RocketCar::move(int)’:

vehicles.cc:51:22: error: reference to ‘position’ is ambiguous

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 26

héritage multiple

il faut préciser de quel champ position il s’agit

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { Rocket::position += 2*d; }

};

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 27

héritage multiple

pour n’avoir qu’une seule instance de Vehicle, il faut modifier la façon
dont Car et Rocket héritent de Vehicle (héritage virtuel)

class Vehicle { ... };

class Car : public virtual Vehicle { ... };

class Rocket : public virtual Vehicle { ... };

class RocketCar : public Car, public Rocket {

il n’y a plus d’ambigüıté quant à position :

public:

char *name;

void move(int d) { position += 2*d; }

};

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 28

trois situations différentes

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket : Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : virtual Vehicle { ... };

class Rocket : virtual Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

(le diamant)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 29

si vous êtes curieux

l’option -fdump-lang-class de g++ produit un fichier texte contenant
une description des tables de méthodes et des représentations des objets

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 30

interfaces Java

les interfaces de Java compliquent la compilation d’un appel de méthode,
de façon analogue à l’héritage multiple

interface I {

void m();

}

class C {

void foo(I x) { x.m(); }

}

la compilation de x.m() ne peut préjuger de la classe qu’aura
effectivement cet objet x

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 31

multiméthode

plutôt que d’utiliser uniquement le type de l’objet pour l’appel dynamique,
on peut utiliser les types de tous les paramètres

on parle alors de multiméthode (multiple dispatch en anglais)

un exemple : Julia, un langage orienté mathématiques

function +(x::Int64 , y::Int64) ... end

function +(x::Float64, y::Float64) ... end

function +(x::Date , y::Time) ... end

un autre exemple : CLOS (Common Lisp Object System)

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 32

remarque

le filtrage, comme celui d’OCaml, par ex.

let rec eval = function

| Const n -> ...

| Call ("print", [e]) -> ...

| Call (f, el) -> ...

est une forme d’appel dynamique : la branche est sélectionnée à
l’exécution à partir d’une information dynamique

le polycopié (section 7.3) explique comment le compilateur transforme le
filtrage en opérations élémentaires

voir aussi la comparaison fonctionnel/objet du cours 2

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 33

compilation des langages fonctionnels

Jean-Christophe Filliâtre INF564 – Compilation compilation des langages objets 34

fonctions comme valeurs de première classe

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 35

langage fonctionnel

ce qui fait la particularité d’un langage fonctionnel, c’est de pouvoir
manipuler les fonctions comme des valeurs de première classe
c’est-à-dire exactement comme des valeurs d’un autre type

ainsi, on peut

• recevoir une fonction en argument

• renvoyer une fonction comme résultat

• stocker une fonction dans une structure de données

• construire de nouvelles fonctions dynamiquement

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 36

attention

la possibilité d’imbriquer des fonctions ou de passer des fonctions en
arguments existe depuis longtemps (Algol, Pascal, Ada, etc.)

de même, la notion de pointeur de fonction existe depuis longtemps
(Fortran, C, C++, etc.)

ce que les langages fonctionnels proposent est strictement plus puissant

illustrons-le avec OCaml

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 37

fragment d’OCaml

considérons un fragment minimal d’OCaml

e ::= c
| x
| fun x → e
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e

p ::= d . . . d

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 38

fonctions imbriquées

les fonctions peuvent être imbriquées

let sum n =

let f x = x * x in

let rec loop i =

if i = n then 0 else f i + loop (i+1)

in

loop 0

la portée statique est usuelle

(on écrit let f x = x * x pour let f = fun x -> x * x)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 39

ordre supérieur

il est également possible de prendre des fonctions en argument

let square f x =

f (f x)

et d’en renvoyer

let f x =

if x < 0 then fun y -> y - x else fun y -> y + x

dans ce dernier cas, la valeur renvoyée par f est une fonction qui utilise x
mais le tableau d’activation de f vient précisément de disparâıtre !

on ne peut donc pas compiler les fonctions de manière traditionnelle

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 40

fermeture

la solution consiste à utiliser une fermeture (en anglais closure)

c’est une structure de données allouée sur le tas (pour survivre aux appels
de fonctions) contenant

• un pointeur vers le code de la fonction à appeler

• les valeurs des variables susceptibles d’être utilisées par ce code ; cette
partie s’appelle l’environnement

P. J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, 1964

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 41

variables de l’environnement

quelles sont justement les variables qu’il faut mettre dans l’environnement
de la fermeture représentant fun x → e ?

ce sont les variables libres de fun x → e

l’ensemble des variables libres d’une expression se calcule ainsi

fv(c) = ∅
fv(x) = {x}

fv(fun x → e) = fv(e) \ {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(let x = e1 in e2) = fv(e1) ∪ (fv(e2) \ {x})
fv(let rec x = e1 in e2) = (fv(e1) ∪ fv(e2)) \ {x}
fv(if e1 then e2 else e3) = fv(e1) ∪ fv(e2) ∪ fv(e3)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 42

exemple

considérons le programme suivant qui approxime
∫ 1
0 xndx

let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x

let integrate_xn n =

let f = pow n in

let eps = 0.001 in

let rec sum x =

if x >= 1. then 0. else f x +. sum (x +. eps) in

sum 0. *. eps

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 43

exemple

faisons apparâıtre la construction fun explicitement et examinons les
différentes fermetures

let rec pow =

fun i ->

fun x -> if i = 0 then 1. else x *. pow (i-1) x

• dans la première fermeture, fun i ->, l’environnement est {pow}
• dans la seconde, fun x ->, il vaut {i, pow}

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 44

exemple

let integrate_xn = fun n ->

let f = pow n in

let eps = 0.001 in

let rec sum =

fun x -> if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. *. eps

• pour fun n ->, l’environnement vaut {pow}
• pour fun x ->, l’environnement vaut {eps, f, sum}

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 45

représentation de la fermeture

la fermeture est un bloc alloué sur le tas, dont

• le premier champ contient l’adresse du code

• les champs suivants contiennent les valeurs des variables libres
(l’environnement)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 46

exemple

let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x

let integrate_xn n =

let f = pow n in

let eps = 0.001 in

let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. *. eps

pendant l’exécution de integrate xn 100, on a quatre fermetures :

integrate xn

code

pow code

sum code
0.001

f

code
100pow

pow

i

pow

sum

eps

f

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 47

compilation

une façon relativement simple de compiler les fermetures consiste à
procéder en deux temps

1. on recherche dans le code toutes les constructions fun x → e et on
les remplace par une opération explicite de construction de fermeture

clos f [y1, . . . , yn]

où les yi sont les variables libres de fun x → e et f le nom donné à
une déclaration globale de fonction de la forme

letfun f [y1, . . . , yn] x = e ′

où e ′ est obtenu à partir de e en y supprimant récursivement les
constructions fun (closure conversion)

2. on compile le code obtenu, qui ne contient plus que des déclarations
de fonctions de la forme letfun

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 48

exemple

sur l’exemple, cela donne

letfun fun2 [i,pow] x =

if i = 0 then 1. else x *. pow (i-1) x

letfun fun1 [pow] i =

clos fun2 [i,pow]

let rec pow =

clos fun1 [pow]

letfun fun3 [eps,f,sum] x =

if x >= 1. then 0. else f x +. sum (x +. eps)

letfun fun4 [pow] n =

let f = pow n in

let eps = 0.001 in

let rec sum = clos fun3 [eps,f,sum] in

sum 0. *. eps

let integrate_xn =

clos fun4 [pow]

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 49

syntaxes abstraites

avant

e ::= c
| x
| fun x → e
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e

p ::= d . . . d

après

e ::= c
| x
| clos f [x , . . . , x]
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e
| letfun f [x , . . . , x] x = e

p ::= d . . . d

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 50

variables

en particulier, un identificateur x peut représenter

• une variable globale introduite par let
(allouée dans le segment de données)

• une variable locale introduite par let in

(allouée dans le tableau d’activation / un registre)

• une variable contenue dans une fermeture

• l’argument d’une fonction (le x de fun x -> e)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 51

schéma de compilation

chaque fonction a un unique argument, qu’on passera dans %rdi

la fermeture sera passée dans %rsi

le tableau d’activation ressemble à ceci,
où v1, . . . , vm sont les variables locales

il est intégralement construit par l’appelé

adresse retour
%rbp → %rbp sauvegardé

v1
...
vm
...
↓

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 52

compilation

expliquons maintenant comment compiler

• la construction d’une fermeture clos f [y1, . . . , yn]

• un appel de fonction e1 e2
• l’accès à une variable x

• une déclaration de fonction letfun f [y1, . . . , yn] x = e

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 53

construction d’une fermeture

pour compiler la construction

clos f [y1, . . . , yn]

on procède ainsi

1. on alloue un bloc de taille n + 1 sur le tas (avec un GC)

2. on stocke l’adresse de f dans le champ 0
(f est une étiquette dans le code et on obtient son adresse avec $f)

3. on stocke les valeurs des variables y1, . . . , yn dans les champs 1 à n

4. on renvoie le pointeur sur le bloc

note : on se repose sur un GC pour libérer ce bloc lorsque ce sera
possible (le fonctionnement d’un GC sera expliqué au cours 9)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 54

appel de fonction

pour compiler un appel de la forme

e1 e2

on procède ainsi

1. on compile e1 dans le registre %rsi
(sa valeur est un pointeur p1 vers une fermeture)

2. on compile e2 dans le registre %rdi

3. on appelle la fonction dont l’adresse est contenue dans le premier
champ de la fermeture, avec call *(%rsi)

c’est un saut à une adresse calculée

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 55

accès à une variable

pour compiler un accès à une variable x on distingue quatre cas

variable globale
la valeur se trouve à l’adresse donnée par l’étiquette x

variable locale
la valeur se trouve en n(%rbp) / dans un registre

variable capturée dans une fermeture
la valeur se trouve en n(%rsi)

argument de la fonction
la valeur se trouve dans %rdi

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 56

déclaration de fonction

enfin, pour compiler la déclaration

letfun f [y1, . . . , yn] x = e

adresse retour
%rbp → %rbp sauvegardé

v1
...
vm
...

on procède comme pour une déclaration usuelle de fonction

1. on y sauvegarde %rbp et on positionne %rbp

2. on alloue le tableau d’activation (pour les variables locales de e)

3. on évalue e dans %rax

4. on désalloue le tableau d’activation et on restaure %rbp

5. on exécute ret

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 57

autres langages

on trouve aujourd’hui des fermetures dans

• Java (depuis 2014 et Java 8)

• C++ (depuis 2011 et C++11)

dans ces langages, les fonctions anonymes sont appelées des lambdas

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 58

les fermetures de Java 8

une fonction est un objet comme un autre, avec une méthode apply

LinkedList map(LinkedList<A> l, Function<A, B> f) {

... f.apply(x) ...

}

une fonction anonyme est introduite avec ->

map(l, x -> { System.out.print(x); return x+y; })

le compilateur construit un objet fermeture (qui capture ici y) avec une
méthode apply

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 59

les fermetures de C++

une fonction anonyme est introduite avec []

for each(v.begin(), v.end(), [y](int &x){ x += y; });

on spécifie les variables capturées dans la fermeture (ici y)

on peut spécifier une capture par référence (ici de s)

for each(v.begin(), v.end(), [y,&s](int x){ s += y*x; });

là encore, le compilateur construit une fermeture
(d’un type qui ne nous est pas accessible)

Jean-Christophe Filliâtre INF564 – Compilation fonctions de première classe 60

optimisation des appels terminaux

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 61

appel terminal

Définition

On dit qu’un appel f (e1, . . . , en) qui apparâıt dans le corps d’une
fonction g est terminal (tail call) si c’est la dernière chose que g calcule
avant de renvoyer son résultat.

par extension, on peut dire qu’une fonction est récursive terminale (tail
recursive function) s’il s’agit d’une fonction récursive dont tous les appels
récursifs sont des appels terminaux

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 62

appels terminaux et fonctions récursives

l’appel terminal n’est pas nécessairement un appel récursif

int g(int x) {

int y = x * x;

return f(y);

}

dans une fonction récursive, on peut avoir des appels récursifs terminaux
et d’autres qui ne le sont pas

int f91(int n) {

if (n > 100) return n - 10;

return f91(f91(n + 11));

}

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 63

compilation

quel intérêt du point de vue de la compilation ?

on peut détruire le tableau d’activation de la fonction où se trouve l’appel
avant de faire l’appel, puisqu’il ne servira plus ensuite

mieux, on peut le réutiliser pour l’appel terminal que l’on doit faire
(en particulier, l’adresse de retour sauvegardée y est la bonne)

dit autrement, on peut faire un saut (jump) plutôt qu’un appel (call)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 64

exemple

considérons

int fact(int acc, int n) {

if (n <= 1) return acc;

return fact(acc * n, n - 1);

}

compilation classique

fact: cmpq $1, %rsi

jle L0

imulq %rsi, %rdi

decq %rsi

call fact

ret

L0: movq %rdi, %rax

ret

optimisation

fact: cmpq $1, %rsi

jle L0

imulq %rsi, %rdi

decq %rsi

jmp fact # <--

L0: movq %rdi, %rax

ret

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 65

exemple

le résultat est une boucle

le code est en effet identique à ce qu’aurait donné la compilation de

int fact(int acc, int n) {

while (n > 1) {

acc *= n;

n--;

}

return acc;

}

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 66

expérience avec gcc

le compilateur gcc optimise les appels terminaux si on lui passe l’option
-foptimize-sibling-calls (inclus dans l’option -O2)

observons le code produit par gcc -O2 sur des programmes comme fact
ou comme ceux du transparent ??

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 67

expérience avec gcc

en particulier, on remarque que le programme

int f91(int n) {

if (n > 100) return n - 10;

return f91(f91(n + 11));

}

est compilé exactement comme si on avait écrit

int f91(int n) {

while (n <= 100)

n = f91(n + 11);

return n - 10;

}

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 68

expérience avec ocamlopt

le compilateur OCaml optimise les appels terminaux par défaut

la compilation de

let rec fact acc n =

if n <= 1 then acc else fact (acc * n) (n - 1)

donne une boucle, comme en C

alors même qu’on n’a pas de traits impératifs dans le langage considéré ici
(les variables acc et n sont immuables)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 69

conséquence

le programme obtenu est plus efficace

en particulier car on accède moins à la mémoire
(on n’utilise plus call et ret qui manipulent la pile)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 70

autre conséquence

sur l’exemple de fact, l’espace de pile utilisé devient constant

en particulier, on évite ainsi tout débordement de pile qui serait dû à un
trop grand nombre d’appels imbriqués

Stack overflow during evaluation (looping recursion?).

Fatal error: exception Stack_overflow

Exception in thread "main" java.lang.StackOverflowError

Segmentation fault

etc.

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 71

application : quicksort

un tri rapide en C

void quicksort(int a[], int l, int r) {

if (r - l <= 1) return;

// on partitionne a[l..r[en trois

// l lo hi r

// +--------+--------+--------+

// a|...<p...|...=p...|...>p...|

// +--------+--------+--------+

...

quicksort(a, l, lo);

quicksort(a, hi, r);

}

mais un tel code pourrait faire déborder la pile

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 72

application : quicksort

sur la plus petite des deux moitiés d’abord

void quicksort(int a[], int l, int r) {

...

if (lo - l < r - hi) {

quicksort(a, l, lo);

quicksort(a, hi, r);

} else {

quicksort(a, hi, r);

quicksort(a, l, lo);

}

}

le second appel est terminal
et une taille de pile logarithmique est maintenant garantie

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 73

application : quicksort

et si mon compilateur n’optimise pas les appels terminaux (ex. Java) ?

pas grave, on le fait soi-même !

void quicksort(int a[], int l, int r) {

while (r - l > 1) {

...

if (lo - l < r - hi) {

quicksort(a, l, lo);

l = hi;

} else {

quicksort(a, hi, r);

r = lo;

}

}

}

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 74

remarque

il est important de noter que la notion d’appel terminal

• peut être optimisée dans tous les langages a priori
(mais Java et Python ne le font pas, par exemple)

• n’est pas liée à la récursivité
(même si c’est le plus souvent une fonction récursive qui fera
déborder la pile)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 75

remarque

il n’est pas toujours facile de remplacer les appels par des appels terminaux

exemple : étant donné un type d’arbres binaires immuables tel que

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree

écrire une fonction qui calcule la hauteur d’un arbre

val height: ’a tree -> int

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 76

difficulté

le code naturel

let rec height = function

| Empty -> 0

| Node (l, _, r) -> 1 + max (height l) (height r)

va provoquer un débordement de pile sur un arbre de grande
hauteur

. . .

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 77

une solution

au lieu de calculer la hauteur h de l’arbre, calculons k(h) pour une
fonction k quelconque, appelée continuation

val height: ’a tree -> (int -> ’b) -> ’b

on appelle cela la programmation par continuations
(en anglais continuation-passing style, ou CPS)

le programme voulu s’en déduira avec la continuation identité,

height t (fun h -> h)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 78

quel intérêt ?

le code prend alors la forme suivante

let rec height t k = match t with

| Empty ->

k 0

| Node (l, _, r) ->

height l (fun hl ->

height r (fun hr ->

k (1 + max hl hr)))

on constate que tous les appels à height et k sont terminaux

le calcul de height se fait donc en espace de pile constant

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 79

explication

on a remplacé l’espace sur la pile par de l’espace sur le tas

il est occupé par les fermetures

la première fermeture capture r et k, la seconde hl et k

0 id

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 80

note

bien sûr, il y a d’autres solutions, ad hoc, pour calculer la hauteur d’un
arbre sans faire déborder la pile (par exemple un parcours en largeur)

de même qu’il y a d’autres solutions si le type d’arbres est plus complexe
(arbres mutables, pointeurs parents, etc.)

mais la solution à base de CPS a le mérite d’être mécanique

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 81

une dernière question

et si le langage optimise l’appel terminal
mais ne propose pas de fonctions anonymes (par exemple C) ?

il suffit de construire des fermetures soi-même, à la main
(une structure contenant un pointeur de fonction et l’environnement)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 82

fermeture sur mesure

on peut même le faire avec un type ad hoc

enum kind { Kid, Kleft, Kright };

struct Kont {

enum kind kind;

union { struct Node *r; int hl; };

struct Kont *kont;

};

et une fonction pour l’appliquer

int apply(struct Kont *k, int v) { ... }

cela s’appelle la défonctionnalisation (Reynolds 1972)

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 83

la suite

• TD 6
• projet Mini Go

• cours 7
• compilateur optimisant= 1/2

Jean-Christophe Filliâtre INF564 – Compilation appels terminaux 84

