Ecole Polytechnique

INF564 — Compilation

Jean-Christophe Filliatre

compilation des langages objets
et des langages fonctionnels

Jean-Christophe Filliatre INF564 — Compilation production de code (1/3)

aujourd’hui

1. langages objets

® représentation d'un objet
® appel dynamique

2. langages fonctionnels

® fonctions de premiére classe
® optimisation de |'appel terminal

Jean-Christophe Filliatre INF564 — Compilation production de code (1/3) 2

compilation des langages objets

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 3

compilation des langages objets

expliquons
® comment un objet est représenté

® comment est réalisé I'appel d’'une méthode

en prenant le cas de Java (pour I'instant)

Jean-Christophe Fillidtre INF564 — Compilation

compilation des langages objets

4

exemple

class Vehicle {
static int start = 10;
int position;
Vehicle() { position = start; }
void move(int d) { position +=d; } }

class Car extends Vehicle {
int passengers;
void await(Vehicle v) {
if (v.position < position)
v.move (position - v.position);
else
move(10); } }

class Truck extends Vehicle {
int load;
void move(int d) {
if (d <= Bb5) position += d; else position += 55; } }

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

5

représentation des objets

un objet est un bloc alloué sur le tas, contenant
® sa classe
® |es valeurs de ses champs

la valeur d'un objet est le pointeur vers le bloc

I'héritage simple permet de stocker la valeur d'un champ x a un
emplacement constant dans le bloc : les champs propres viennent apres les
champs hérités

Vehicle Car Truck
position position position
passengers load

noter |'absence du champ start, qui est statique donc alloué ailleurs
(par exemple dans le segment de données)

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

6

exemple

Truck t = new Truck();

Car ¢ = new Car(); t[E}//’Tiifk position
c.passengers = 2; 0 |load
c.move (60) ; c

Vehicle v = c;

v.move (70) ; ggg position
c.await(t); v 2 |passengers

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 7

acces a un champ

pour chaque champ, le compilateur connait la position ol ce champ est
rangé, c'est-a-dire le décalage a ajouter au pointeur sur |'objet

si par exemple le champ position est rangé a la position +16 alors
I'expression e.position est compilée comme

200 # on compile e dans %rcx
movl 16(%rcx), %eax # champ position

ceci est correct, alors que le compilateur ne connait que le type statique
de e, qui peut étre différent du type dynamique (la classe de I'objet)

il pourrait méme s'agir d'une sous-classe de Vehicule non encore définie!

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

8

terminologie

la redéfinition (en anglais overriding) est la possibilité de redéfinir une
méthode dans une sous-classe
(de maniére a ce que des objets différents se comportent différemment)

exemple : dans la classe Truck

class Truck extends Vehicle {

void move(int d) { ... }
}

la méthode move, héritée de la classe Vehicle, est redéfinie

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

appel de méthode

toute la subtilité de la compilation des langages a objets est dans I'appel
d’une méthode dynamique e.m(ey, ..., e,)

pour cela, on construit pour chaque classe un descripteur de classe qui
contient les adresses des codes de méthodes dynamiques de cette classe
(en anglais dispatch table, vtable, etc.)

comme pour les champs, I'héritage simple permet de ranger |'adresse du
code de la méthode m a un emplacement constant dans le descripteur

les descripteurs de classes peuvent étre alloués dans le segment de
données; chaque objet contient dans son premier champ un pointeur vers
le descripteur de sa classe

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

10

exemple

class Vehicule { void move(int 4) {...}
class Car extends Vehicule { void await(Vehicule v)
class Truck extends Vehicule { void move(int d) {...}

3
{...}}
3

descr. Vehicule descr. Car descr. Truck
Vehicule_move Vehicule_move Truck_move
Car_await

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 11

exemple

[
Truck t = new Truck(); t|e] ! Truck
Car ¢ = new Car(); n ! Truck move
c.passengers = 2; CB\ |
I
c.move (60) ; » ! Car
’ —T "
Vehicle v = c; E/ 1;; ! Vehicule_move
v.move (70) ; v 5 ! Car_await
c.await (t); :
I
I
dynamic : static

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 12

appel de méthode

pour compiler un appel comme e.move (10)
1. on compile e; sa valeur est un pointeur vers un objet
2. cet objet contient un pointeur vers le descripteur de sa classe

3. le code de la méthode move est situé a un emplacement connu (par
exemple +8) dans ce descripteur

compiler e dans %rdi
movq $10, %rsi # argument

movq (%rdi), %rcx # descripteur de class
call *8(%rcx) # méthode move

comme pour l'accés au champ, a aucun moment on n'a eu besoin de
connaitre la classe effective de I'objet (son type dynamique)

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 13

attention

si on écrit
Truck v = new Truck();

((Vehicule)v) .move();

c'est toujours la méthode move de Truck qui est appelée
car I'appel de méthode reste compilé de la méme fagon

le transtypage n'a ici qu'une influence au moment du typage
(existence de la méthode + résolution de la surcharge; cf cours 4)

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 14

super classe

en pratique, le descripteur de la classe C contient également I'indication
de la classe dont C hérite, appelée super classe de C

la super classe est représentée par un pointeur vers son descripteur
(qu'on peut ranger dans le premier champ du descripteur, par exemple)

cela permet entre autres de compiler le test dynamique derriere un
downcast ou un instanceof

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 15

quelques mots sur C++

Jean-Christophe Filliatre INF564 — Compilation compilation des langages objets 16

exemple

on reprend |'exemple des véhicules

class Vehicle {
static const int start = 10;
public:
int position;
Vehicle() { position = start; }
virtual void move(int d) { position += d; }

};

virtual signifie que la méthode move pourra étre redéfinie

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

17

exemple

class Car : public Vehicle {
public:
int passengers;
CarO {3}
void await(Vehicle &v) { // passage par référence
if (v.position < position)
v.move(position - v.position);
else
move (10) ;

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 18

exemple (suite)

class Truck : public Vehicle {
public:
int load;
Truck() {}
void move(int d) {
if (d <= 55) position += d; else position += b55;
}
};

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 19

exemple (suite)

#include <iostream>
using namespace std;

int main() {
Truck t; // objets alloués ici sur la pile
Car c;
c.passengers = 2;
c.move (60) ;
Vehicle *v = &c; // alias
v->move (70) ;
c.await (t);

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 20

représentation

sur cet exemple, la représentation d'un objet n'est pas différente de Java

descr. Vehicle descr. Car descr. Truck
position position position
passengers load

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 21

héritage multiple

mais en C++, on trouve aussi de I'héritage multiple

conséquence : on ne peut plus (toujours) utiliser le principe selon lequel

® |a représentation d'un objet d’'une super classe de C est un préfixe de
la représentation d'un objet de la classe C

® de méme pour les descripteurs de classes

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 22

héritage multiple

class Rocket {
public:

float thrust; descr. RocketCar

Rocket() { }

virtual void display() {} position
s passengers
descr. Rocket
class RocketCar : public Car, public Rocket { thrust
public:

name
char *name;

void move(int d) { position += 2xd; }

};

les représentations de Car et Rocket sont juxtaposées

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 23

en particulier, un transtypage comme

RocketCar rc;
(Rocket)rc

est traduit par une arithmétique de pointeur

rc + 12

Jean-Christophe Fillidtre INF564 — Compilation

héritage multiple

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

compilation des langages objets

24

héritage multiple

supposons maintenant que Rocket hérite également de Vehicle

class Rocket : public Vehicle {

public:
float thrust; descr. RocketCar
Rocket() { } position
virtual void display() {} passengers
b descr. Rocket
class RocketCar : public Car, public Rocket { position
public: thrust
char *name; ’ name
};

on a maintenant deux champs position

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 25

héritage multiple

et donc une ambiguité potentielle

class RocketCar : public Car, public Rocket {
public:

char *name;

void move(int d) { position += 2xd; }

};

vehicles.cc: In member function ‘virtual void RocketCar: :move(int)’
vehicles.cc:51:22: error: reference to ‘position’ is ambiguous

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 26

héritage multiple

il faut préciser de quel champ position il s'agit

class RocketCar : public Car, public Rocket {
public:

char *name;

void move(int d) { Rocket::position += 2xd; }

};

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 27

héritage multiple

pour n'avoir qu'une seule instance de Vehicle, il faut modifier la facon
dont Car et Rocket héritent de Vehicle (héritage virtuel)

class Vehicle { ... };

class Car : public virtual Vehicle { ... };
class Rocket : public virtual Vehicle { ... };
class RocketCar : public Car, public Rocket {

il n’y a plus d'ambiguité quant a position :

public:
char *name;
void move(int d) { position += 2xd; }

};

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 28

class
class
class
class

class
class
class
class

class
class
class
class

trois situations différentes

Vehicle { ... };

Car : Vehicle { ... };

Rocket { ... };

RocketCar : Car, Rocket { ... };
Vehicle { ... };

Car : Vehicle { ... };

Rocket : Vehicle { ... };
RocketCar : Car, Rocket { ... };
Vehicle { ... };

Car : virtual Vehicle { ... };
Rocket : virtual Vehicle { ... };
RocketCar : Car, Rocket { ... };

Jean-Christophe Fillidtre

INF564 — Compilation

Vehicle
Clr Rocket
N
RocketCar
Vehicle Vehicle
Clr Ro;Let
N
RocketCar
Vehicle

2N

Car Rocket

RocketCar
(le diamant)

compilation des langages objets 29

Si vous étes curieux

I'option ~fdump-lang-class de g++ produit un fichier texte contenant
une description des tables de méthodes et des représentations des objets

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 30

interfaces Java

les interfaces de Java compliquent la compilation d'un appel de méthode,
de facon analogue a I'héritage multiple

interface I {
void m();

}

class C {
void foo(I x) { x.m(Q; }
}
la compilation de x.m() ne peut préjuger de la classe qu'aura
effectivement cet objet x

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 31

multiméthode

plutét que d'utiliser uniquement le type de I'objet pour I'appel dynamique,

on peut utiliser les types de tous les paramétres
on parle alors de multiméthode (multiple dispatch en anglais)

un exemple : Julia, un langage orienté mathématiques

function +(x::Int64 , y::Int64) ... end
function +(x::Float64, y::Float64) ... end
function +(x::Date , y::Time) ... end

un autre exemple : CLOS (Common Lisp Object System)

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets

32

remarque

le filtrage, comme celui d’OCaml, par ex.

let rec eval = function
| Const n ->

| Call ("print", [e]) —>
| Call (f, el) —>

est une forme d'appel dynamique : la branche est sélectionnée a
I'exécution a partir d'une information dynamique

le polycopié (section 7.3) explique comment le compilateur transforme le
filtrage en opérations élémentaires

voir aussi la comparaison fonctionnel /objet du cours 2

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 33

compilation des langages fonctionnels

Jean-Christophe Fillidtre INF564 — Compilation compilation des langages objets 34

fonctions comme valeurs de premiére classe

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 35

langage fonctionnel

ce qui fait la particularité d'un langage fonctionnel, c'est de pouvoir
manipuler les fonctions comme des valeurs de premiére classe
c'est-a-dire exactement comme des valeurs d'un autre type

ainsi, on peut
® recevoir une fonction en argument
® renvoyer une fonction comme résultat
® stocker une fonction dans une structure de données

® construire de nouvelles fonctions dynamiquement

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

36

attention

la possibilité d'imbriquer des fonctions ou de passer des fonctions en

arguments existe depuis longtemps (Algol, Pascal, Ada, etc.)

de méme, la notion de pointeur de fonction existe depuis longtemps
(Fortran, C, C++, etc.)

ce que les langages fonctionnels proposent est strictement plus puissant

illustrons-le avec OCaml

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 37

fragment d’OCaml

considérons un fragment minimal d'OCaml

e c

X

fun x — e

ee

let [rec] x =e in e
if e then e else e

d = let [rec]x=c¢e

p = d...d

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

38

fonctions imbriquées

les fonctions peuvent étre imbriquées

let sum n =
let £ x
let rec loop i =
if i = n then 0 else f i + loop (i+1)
in
loop O

X * X in

la portée statique est usuelle

(on écrit let £ x = x * x pour let £ = fun x -> x * X)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 39

ordre supérieur

il est également possible de prendre des fonctions en argument

let square f x =
f (f x)

et d’en renvoyer

let £ x =
if x < O then fun y -> y - x else fun y > y + x

dans ce dernier cas, la valeur renvoyée par £ est une fonction qui utilise x
mais le tableau d’activation de £ vient précisément de disparaitre !

on ne peut donc pas compiler les fonctions de maniére traditionnelle

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 40

fermeture

la solution consiste a utiliser une fermeture (en anglais closure)

c'est une structure de données allouée sur le tas (pour survivre aux appels
de fonctions) contenant

® un pointeur vers le code de la fonction a appeler

® |es valeurs des variables susceptibles d'étre utilisées par ce code; cette
partie s'appelle I'environnement

P. J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, 1964

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

41

variables de |'environnement

quelles sont justement les variables qu'il faut mettre dans |'environnement
de la fermeture représentant fun x — e?

ce sont les variables libres de fun x — e

I'ensemble des variables libres d'une expression se calcule ainsi

fv(c) = 0
fv(x) {x}
fv(fun x — e) fv(e)\ {x}
fv(er e) fv(e1) U fv(e)
)
)
)

fv(let x =€ in & fv(er) U (fv(e2) \ {x})
fv(let rec x =€ in &) = (fv(e1)U fv(e))\ {x}
fv(if e; then e else e3) = fv(er) U fv(ex) U fv(es)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 42

exemple

considérons le programme suivant qui approxime fol x"dx
let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x

let integrate_xn n =
let £ = pow n in
let eps = 0.001 in
let rec sum x =
if x >= 1. then 0. else f x +. sum (x +. eps) in
sum 0. *. eps

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 43

exemple

faisons apparaftre la construction fun explicitement et examinons les
différentes fermetures

let rec pow =

fun 1 >
fun x -> if i = 0 then 1. else x *. pow (i-1) x

® dans la premiere fermeture, fun i ->, I'environnement est {pow}

® dans la seconde, fun x ->, il vaut {i, pow}

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 44

exemple

let integrate_xn = fun n ->
let £ = pow n in
let eps = 0.001 in
let rec sum =

fun x -> if x >= 1. then 0. else f x +. sum (x+.eps) in
sum 0. *. eps

® pour fun n ->, I'environnement vaut {pow}

® pour fun x ->, I'environnement vaut {eps, f, sum}

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 45

représentation de la fermeture

la fermeture est un bloc alloué sur le tas, dont
® |e premier champ contient I'adresse du code

® |es champs suivants contiennent les valeurs des variables libres
(I'environnement)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 46

exemple

let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x
let integrate_xn n =
let £ = pow n in
let eps = 0.001 in
let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. *.

eps

pendant |'exécution de integrate xn 100, on a quatre fermetures :

—
integrate _xn pow codely f
l pov| @ l
code code
pov | e—1 i1 100
; pov [~—e
Sull—- code
ers 10,001
£ 0///

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 47

compilation

une facon relativement simple de compiler les fermetures consiste a
procéder en deux temps

1. on recherche dans le code toutes les constructions fun x — e et on
les remplace par une opération explicite de construction de fermeture

clos f [y1,.--, Ynl

ou les y; sont les variables libres de fun x — e et f le nom donné a
une déclaration globale de fonction de la forme

letfun f [y1,...,yn] x =€

ol €’ est obtenu a partir de e en y supprimant récursivement les
constructions fun (closure conversion)

2. on compile le code obtenu, qui ne contient plus que des déclarations
de fonctions de la forme letfun

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 48

exemple

sur I'exemple, cela donne

letfun fun2 [i,pow] x =
if i = 0 then 1. else x *. pow (i-1) x
letfun funl [pow] i =
clos fun2 [i,pow]
let rec pow =
clos funl [pow]
letfun fun3 [eps,f,sum] x
if x >= 1. then 0. else f x +. sum (x +. eps)

letfun fun4 [pow] n =
let £ = pow n in
let eps = 0.001 in
let rec sum = clos fun3 [eps,f,sum] in
sum 0. *. eps
let integrate_xn =
clos fund [pow]

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 49

syntaxes abstraites

let [rec] x =eine
if e then e else e

let [rec] x =e ine
if e then e else e

avant apres
e = cC e = ¢
| x | x
| funx —e | clos f [x,...,x]
| ee | ee
| |
| |

d = let [rec] X =€ d = 1let [rec] X=e
| letfunf [x,...,x] x=e
p = d...d p = d...d

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 50

variables

en particulier, un identificateur x peut représenter

® une variable globale introduite par let
(allouée dans le segment de données)

® une variable locale introduite par 1let in
(allouée dans le tableau d’activation / un registre)

® une variable contenue dans une fermeture

¢ |'argument d'une fonction (le x de fun x -> e)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

51

schéma de compilation

chaque fonction a un unique argument, qu'on passera dans %rdi

la fermeture sera passée dans %rsi

adresse retour

le tableau d'activation ressemble a ceci, %rbp — | %rbp sauvegardé

ol vy, ..., Vny sont les variables locales v
il est intégralement construit par I'appelé Vi

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 52

compilation

expliquons maintenant comment compiler
® la construction d'une fermeture clos f [yi,...,yn]
® un appel de fonction e; e
® |'acceés a une variable x

e une déclaration de fonction letfun f [y1,...,ys] x =€

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 53

construction d'une fermeture

pour compiler la construction

clos f [y1,...,¥n]

on procede ainsi
1. on alloue un bloc de taille n+ 1 sur le tas (avec un GC)

2. on stocke |'adresse de f dans le champ 0
(f est une étiquette dans le code et on obtient son adresse avec $f)

3. on stocke les valeurs des variables y1,...,y, dans les champs 1 a n

4. on renvoie le pointeur sur le bloc

note : on se repose sur un GC pour libérer ce bloc lorsque ce sera
possible (le fonctionnement d'un GC sera expliqué au cours 9)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 54

appel de fonction

pour compiler un appel de la forme

on

1.

€1 €

procede ainsi

on compile e; dans le registre %rsi
(sa valeur est un pointeur p; vers une fermeture)

on compile e; dans le registre %rdi

on appelle la fonction dont I'adresse est contenue dans le premier
champ de la fermeture, avec call *(%rsi)

c'est un saut a une adresse calculée

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

55

acces a une variable

pour compiler un acces a une variable x on distingue quatre cas

variable globale
la valeur se trouve a I'adresse donnée par |'étiquette x

variable locale
la valeur se trouve en n(%rbp) / dans un registre

variable capturée dans une fermeture
la valeur se trouve en n(%rsi)

argument de la fonction
la valeur se trouve dans %rdi

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

56

enfin, pour compiler la déclaration

on

1.

AN

déclaration de fonction

adresse retour
%rbp — | Jrbp sauvegardé
Vi

letfun f [y1,...,ys] x =€

Vm

procede comme pour une déclaration usuelle de fonction
on y sauvegarde %rbp et on positionne %rbp
on alloue le tableau d’activation (pour les variables locales de e)
on évalue e dans %rax
on désalloue le tableau d'activation et on restaure %rbp

on exécute ret

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

57

autres langages

on trouve aujourd’hui des fermetures dans
® Java (depuis 2014 et Java 8)
¢ C++ (depuis 2011 et C++11)

dans ces langages, les fonctions anonymes sont appelées des lambdas

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe

58

les fermetures de Java 8

une fonction est un objet comme un autre, avec une méthode apply

LinkedList map(LinkedList<A> 1, Function<A, B> f) {
. f.apply(x)
}

une fonction anonyme est introduite avec ->

map(l, x -> { System.out.print(x); return x+y; })

le compilateur construit un objet fermeture (qui capture ici y) avec une
méthode apply

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 59

les fermetures de C+-+

une fonction anonyme est introduite avec []
for_each(v.begin(), v.end(), [y]l(int &x){ x += y; });

on spécifie les variables capturées dans la fermeture (ici y)

on peut spécifier une capture par référence (ici de s)

for_each(v.begin(), v.end(), [y,&s](int x){ s += y*x; });

I3 encore, le compilateur construit une fermeture
(d'un type qui ne nous est pas accessible)

Jean-Christophe Fillidtre INF564 — Compilation fonctions de premiere classe 60

optimisation des appels terminaux

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 61

appel terminal

Définition

On dit qu'un appel f(e1,...,e,) qui apparait dans le corps d’'une
fonction g est terminal (tail call) si c’est la derniére chose que g calcule
avant de renvoyer son résultat.

par extension, on peut dire qu'une fonction est récursive terminale (tai/
recursive function) s'il s'agit d'une fonction récursive dont tous les appels
récursifs sont des appels terminaux

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 62

appels terminaux et fonctions récursives

I'appel terminal n'est pas nécessairement un appel récursif

int g(int x) {
int y = x * Xx;
return f(y);

b

dans une fonction récursive, on peut avoir des appels récursifs terminaux
et d'autres qui ne le sont pas

int £91(int n) {
if (n > 100) return n - 10;
return £f91(f91(n + 11));

}

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 63

compilation

quel intérét du point de vue de la compilation?

on peut détruire le tableau d’activation de la fonction ou se trouve I'appel
avant de faire I'appel, puisqu’il ne servira plus ensuite

mieux, on peut le réutiliser pour I'appel terminal que I'on doit faire
(en particulier, I'adresse de retour sauvegardée y est la bonne)

dit autrement, on peut faire un saut (jump) plutdt qu'un appel (call)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 64

exemple

considérons

int fact(int acc, int n) {
if (n <= 1) return acc;
return fact(acc * n, n - 1);

}
compilation classique optimisation

fact: cmpq $1, %rsi fact: cmpq $1, %rsi
jle LO jle LO
imulq %rsi, %rdi imulq %rsi, %rdi
decq Y%rsi decq Y%rsi
call fact jmp fact # <--
ret

LO: movq %rdi, %rax LO: movq %rdi, %rax
ret ret

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 65

exemple

le résultat est une boucle

le code est en effet identique a ce qu'aurait donné la compilation de

int fact(int acc, int n) {
while (n > 1) {
acc *= n;
g
}

return acc;

}

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 66

expérience avec gcc

le compilateur gcc optimise les appels terminaux si on lui passe I'option
-foptimize-sibling-calls (inclus dans |'option -02)

observons le code produit par gcc -02 sur des programmes comme fact
ou comme ceux du transparent ?7?

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 67

en particulier, on remarque que le programme

int £91(int n) {
if (n > 100) return n - 10;
return £f91(f91(n + 11));

}

est compilé exactement comme si on avait écrit

int £91(int n) {
while (n <= 100)
n=f91(@m + 11);
return n - 10;

}

Jean-Christophe Fillidtre INF564 — Compilation

expérience avec gcc

appels terminaux

68

expérience avec ocamlopt

le compilateur OCaml optimise les appels terminaux par défaut

la compilation de

let rec fact acc n =
if n <= 1 then acc else fact (acc * n) (n - 1)

donne une boucle, comme en C

alors méme qu'on n’a pas de traits impératifs dans le langage considéré ici
(les variables acc et n sont immuables)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 69

le programme obtenu est plus efficace

en particulier car on accede moins a la mémoire
(on n'utilise plus call et ret qui manipulent la pile)

Jean-Christophe Fillidtre INF564 — Compilation

conséquence

appels terminaux 70

autre conséquence

sur I'exemple de fact, I'espace de pile utilisé devient constant

en particulier, on évite ainsi tout débordement de pile qui serait dii a un
trop grand nombre d’appels imbriqués

Stack overflow during evaluation (looping recursion?).
Fatal error: exception Stack_overflow

Exception in thread "main" java.lang.StackOverflowError

Segmentation fault

etc.

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 71

application : quicksort

un tri rapide en C

void quicksort(int a[], int 1, int r) {
if (r - 1 <= 1) return;
// on partitionne al[l..r[en trois

// 1 lo hi T
// Fom——— +om——— +o———— +
// al...<p...l...=p...l...>p...|
// o to—m tomm +

quicksort(a, 1, lo);
quicksort(a, hi, r);

¥

mais un tel code pourrait faire déborder la pile

Jean-Christophe Fillidtre INF564 — Compilation

appels terminaux

72

application : quicksort

sur la plus petite des deux moitiés d'abord

void quicksort(int a[], int 1, int r) {

if (1o - 1 <r - hi) {
quicksort(a, 1, lo);
quicksort(a, hi, r);

} else {
quicksort(a, hi, r);
quicksort(a, 1, 1lo);

X

b

le second appel est termina
et une taille de pile logarithmique est maintenant garantie

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 73

application : quicksort

et si mon compilateur n'optimise pas les appels terminaux (ex. Java)?

pas grave, on le fait soi-méme!

void quicksort(int a[l, int 1, int r) {
while (r - 1 > 1) {

if (o - 1<r -hi){
quicksort(a, 1, lo);
1 = hi;

} else {
quicksort(a, hi, r);
r = lo;

b

b
b

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux

74

remarque

il est important de noter que la notion d'appel terminal

® peut étre optimisée dans tous les langages a priori
(mais Java et Python ne le font pas, par exemple)

® n'est pas liée a la récursivité

(méme si c'est le plus souvent une fonction récursive qui fera
déborder la pile)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux

75

remarque

il n'est pas toujours facile de remplacer les appels par des appels terminaux

exemple : étant donné un type d'arbres binaires immuables tel que
type ’a tree = Empty | Node of ’a tree * ’a * ’a tree
écrire une fonction qui calcule la hauteur d'un arbre

val height: ’a tree -> int

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 76

difficulté

le code naturel \
let rec height = function \
| Empty -> 0 \
| Node (1, _, r) -> 1 + max (height 1) (height r) \

va provoquer un débordement de pile sur un arbre de grande
hauteur

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 7

une solution

au lieu de calculer la hauteur h de I'arbre, calculons k(h) pour une
fonction k quelconque, appelée continuation

val height: ’a tree -> (int -> ’b) -> ’b

on appelle cela la programmation par continuations
(en anglais continuation-passing style, ou CPS)

le programme voulu s'en déduira avec la continuation identité,

height t (fun h -> h)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 78

quel intérét ?

le code prend alors la forme suivante

let rec height t k = match t with
| Empty ->
kO
| Node (1, _, r) —>
height 1 (fun hl ->
height r (fun hr ->
k (1 + max hl hr)))

on constate que tous les appels a height et k sont terminaux

le calcul de height se fait donc en espace de pile constant

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 79

explication

on a remplacé I'espace sur la pile par de I'espace sur le tas
il est occupé par les fermetures

la premiere fermeture capture r et k, la seconde hl et k

/\ \ |pleF—{0] et—> [ef—fid]
O

A

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 80

note

bien sir, il y a d'autres solutions, ad hoc, pour calculer la hauteur d'un
arbre sans faire déborder la pile (par exemple un parcours en largeur)

de méme qu'il y a d'autres solutions si le type d'arbres est plus complexe

(arbres mutables, pointeurs parents, etc.)

mais la solution a base de CPS a le mérite d'étre mécanique

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 81

une derniere question

et si le langage optimise I'appel terminal
mais ne propose pas de fonctions anonymes (par exemple C)?

il suffit de construire des fermetures soi-méme, a la main
(une structure contenant un pointeur de fonction et I'environnement)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 82

fermeture sur mesure

on peut méme le faire avec un type ad hoc

enum kind { Kid, Kleft, Kright };

struct Kont {
enum kind kind;
union { struct Node *r; int hl; I};
struct Kont *kont;

175

et une fonction pour |'appliquer

int apply(struct Kont *k, int v) { ... }

cela s'appelle la défonctionnalisation (Reynolds 1972)

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 83

la suite

e TD6
® projet Mini Go

® cours 7
® compilateur optimisant= 1/2

Jean-Christophe Fillidtre INF564 — Compilation appels terminaux 84

