Ecole Polytechnique

CSC_52064 — Compilation

Jean-Christophe Filliatre

stratégies d'évaluation
passage des paramétres

Jean-Christophe Fillidtre CSC-52064 — Compilation

aujourd’hui

1. stratégie d'évaluation et passage des parametres
® Java

OCaml

Python

C

C++

2. compiler I'appel par valeur et I'appel par référence
® jllustration avec C++

Jean-Christophe Fillidtre CSC-52064 — Compilation

stratégie d’évaluation et passage des parametres

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 3

un peu de vocabulaire

dans la déclaration d’une fonction

function f(x1, ..., xn) =

les variables x1, ... ,xn sont appelées parametres formels de £

et dans I'appel de cette fonction

f(el, ..., en)

les expressions el, . ..,en sont appelées parameétres effectifs de f

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

4

un peu de vocabulaire

dans un langage comprenant des modifications en place, une affectation
el := e2

modifie un emplacement mémoire désigné par |'expression el

I'expression el est limitée a certaines constructions,
car des affectations comme

42 = 17
true := false

n'ont en général pas de sens

on parle de valeur gauche pour désigner les expressions légales a gauche
d'une affectation

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

5

stratégie d'évaluation

la stratégie d'évaluation d'un langage spécifie I'ordre dans lequel les calculs
sont effectués

on peut la définir a I'aide d'une sémantique formelle (cf cours 2)

le compilateur se doit de respecter la stratégie d'évaluation

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

6

stratégie d'évaluation

en particulier, la stratégie d'évaluation peut spécifier
® 3 quel moment les parametres effectifs d'un appel sont évalués

® |'ordre d'évaluation des opérandes et des parametres effectifs

certains aspects de I'évaluation peuvent cependant rester non spécifiés

cela laisse alors de la latitude au compilateur, notamment pour effectuer
des optimisations (par exemple en ordonnant les calculs comme il le
souhaite)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

stratégie d'évaluation

on distingue notamment

e |'évaluation stricte : les opérandes / paramétres effectifs sont
évalués avant |'opération / I'appel

exemples : C, C++, Java, OCaml, Python

e |'évaluation paresseuse : les opérandes / paramétres effectifs ne
sont évalués que si nécessaire

exemples : Haskell, Clojure
mais aussi les connectives logiques && et | | de la plupart des langages

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

8

évaluation et effets

un langage impératif adopte systématiquement une évaluation stricte, pour
garantir une séquentialité des effets de bord qui coincide avec le texte
source

par exemple, le code Java

int r = 0;
int id(int x) { r += x; return x; }
int f(int x, int y) { return r; }

{ System.out.println(£f(id(40), id(2)));

affiche 42 car les deux arguments de f ont été évalués

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

9

exception

une exception est faite pour les connectives logiques && et | | de la plupart
des langages, ce qui est bien pratique

void insertionSort(int[] a) {
for (int i1 = 1; i < a.length; i++) {
int v = alil, j = i;
for (; 0 < j && v < alj-11; j--)
aljl = alj-11;
aljl = v;
+

}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 10

remarque

la non-terminaison est également un effet

ainsi, le code Java

int loop() { while (true); return O; }
int f£(int x, int y) { return x+1; }

{ System.out.println(f(41, loop())); }

ne termine pas, bien que I'argument y n'est pas utilisé

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 11

programmation purement applicative

un langage purement applicatif (= sans traits impératifs) peut en revanche
adopter la stratégie d'évaluation de son choix, car une expression aura
toujours la méme valeur (on parle de transparence référentielle)

en particulier, il peut faire le choix d’une évaluation paresseuse

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

12

le programme Haskell

loop () = loop O
fxy=x
main = putChar (f ’a’ (loop ()))

termine (apres avoir affiché a)

Jean-Christophe Fillidtre CSC-52064 — Compilation

exemple

évaluation et passage des parametres

13

passage des parametres

la sémantique précise également le mode de passage des paramétres lors
d'un appel

on distingue notamment
¢ |'appel par valeur (call by value)
® |'appel par référence (call by reference)
¢ |'appel par nom (call by name)

® |'appel par nécessité (call by need)

(on parle aussi parfois de passage par valeur, par référence, etc.)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

14

appel par valeur

de nouvelles variables représentant les parameétres formels recoivent les

valeurs des parametres effectifs

function f(x) =

X :=x + 1
main() =

int v := 41

£ (v)

print(v) // affiche 41

Jean-Christophe Fillidtre CSC-52064 — Compilation

évaluation et passage des parametres

15

appel par référence

les parameétres formels désignent les mémes valeurs gauches que les

parametres effectifs

function f(x) =

X :=x + 1
main() =

int v := 41

£ (v)

print (v) // affiche 42

Jean-Christophe Fillidtre CSC-52064 — Compilation

évaluation et passage des parametres

16

appel par nom

les parameétres effectifs sont substitués aux paramétres formels,
textuellement, et donc évalués seulement si nécessaire

function f(x, y, z) =
return xX*x + y*xy

main() =
print (£ (1+2, 2+2, 1/0)) // affiche 25
// 1+2 est évalué deux fois
// 2+2 est évalué deux fois
// 1/0 n’est jamais évalué

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

17

appel par nécessité

les parameétres effectifs ne sont évalués que si nécessaire,
mais au plus une fois

function f(x, y, z) =
return x*x + y*xy

main() =
print (£ (1+2, 2+2, 1/0)) // affiche 25
// 1+2 est évalué une fois
// 2+2 est évalué une fois
// 1/0 n’est jamais évalué

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 18

quelques mots sur le langage Java

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 19

le langage Java

Java est muni d'une stratégie d'évaluation stricte, avec appel par valeur

I'ordre d'évaluation est spécifié gauche-droite

une valeur est
e soit d'un type primitif (booléen, caractere, entier machine, etc.)

® soit un pointeur vers un objet alloué sur le tas

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 20

void f(int x) {

Xx =x+1;

int main() {

}

int v = 41;
f(v);
// v vaut toujours 41

Jean-Christophe Fillidtre

41

41

CSC-52064 — Compilation

appel par valeur

évaluation et passage des parameétres

21

passage d'un objet

un objet est alloué sur le tas

class C { int f; }

void incr(C x) {
x.f += 1;
} r e r[o]
void main () {] .
Cr = new CO; : :
r.f = 41;
incr(x) ;
// r.f vaut maintenant 42

3

c'est toujours un passage par valeur,
d'une valeur qui est un pointeur (implicite) vers un objet

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 22

un tableau est un objet comme un autre

void incr(int[] x) {
x[1] += 1;
}
void main () {
int[] a = new int[17];
al1] = 41;
incr(a);
// al[l] vaut maintenant 42

}

Jean-Christophe Fillidtre CSC-52064 — Compilation

passage d'un tableau

pa—
| [
*—

—
.| [
*—

évaluation et passage des parametres 23

appel par nom en Java

on peut simuler I'appel par nom en Java, en remplacant les arguments
par des fonctions; ainsi, la fonction

int f(int x, int y) {
if (x == 0) return 42; else return y + y;

}

peut étre réécrite en

int f(Supplier<Integer> x, Supplier<Integer> y) {
if (x.get() == 0)
return 42;
else
return y.get() + y.get();
}

et appelée comme ceci

int v = £(0) -> 0, O -> { throw new Error(); });

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

appel par nécessité en Java

plus subtilement, on peut aussi simuler I'appel par nécessité en Java

class Lazy<T> implements Supplier<T> {
private T cache = null;
private Supplier<T> f;

Lazy(Supplier<T> f) { this.f = f; }

public T get() {
if (this.cache == null) {
this.cache = this.f.get();
this.f = null; // permet au GC de récupérer f
b
return this.cache;
X
}

(c’est de la mémoisation)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 25

appel par nécessité en Java

et on 'utilise ainsi

int w = f(new Lazy<Integer>(() -> 1),
new Lazy<Integer>(() -> { ...gros calcul... }));

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 26

quelques mots sur le langage OCaml

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 27

le langage OCaml

OCaml est muni d'une stratégie d'évaluation stricte, avec appel par valeur

I'ordre d'évaluation n’est pas spécifié

une valeur est

e soit d'un type primitif (booléen, caractére, entier machine, etc.)

® soit un pointeur vers un bloc mémoire (tableau, enregistrement,
constructeur non constant, etc.) alloué sur le tas en général

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 28

valeurs gauches

les valeurs gauches sont les éléments de tableaux

a.(2) <- true

et les champs mutables d'enregistrements

x.age <- 42

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 29

références

rappel : une référence est un enregistrement

type ’a ref = { mutable contents: ’a }

et les opérations := et ! sont définies par

let (1) r
let (:=) r v

r.contents
r.contents <- v

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

30

passage d'une référence

une référence est allouée sur le tas

let incr x =
x := Ix + 1

let main () = : :

let r = ref 41 in
x| o—] x| o

incr r
(* !'r vaut maintenant 42 *)

c’'est toujours un passage par valeur,
d’une valeur qui est un pointeur (implicite) vers une valeur mutable

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parameétres 31

passage d'un tableau

un tableau est également alloué sur le tas

al o]
let incr x = : ..!
x.(1) <- x.(1) + 1 x[oe—

let main () =
let a = Array.make 17 O in
a.(1) <- 41;
incr a

(* a.(1) vaut maintenant 42 *) al o
| CE
x| o

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parameétres 32

attention

pour construire une matrice, on n'écrit pas

let m = Array.make 2 (Array.make 3 0)
m o] o]
0[o]0]
mais

let m = Array.make_matrix 2 3 O

m o] 2l

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 33

appel par nom en OCaml

on peut simuler I'appel par nom en OCaml, en remplagant les arguments
par des fonctions

ainsi, la fonction

let £ xy =
if x = 0 then 42 else y + y

peut étre réécrite en

let £ x ¥y
if x O

0 then 42 elsey O +y O
et appelée comme ceci

let v = f (fun O -> 0) (fun () -> failwith "oups")

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

34

appel par nécessité en OCaml

plus subtilement, on peut aussi simuler I'appel par nécessité en OCaml

on commence par introduire un type pour représenter les calculs paresseux

type ’a value = Value of ’a
| Frozen of (unit -> ’a)
type ’a by_need = ’a value ref
et une fonction qui évalue un tel calcul si ce n'est pas déja fait

let force 1 = match !'1 with
| Value v —> v
| Frozen £ > let v = f () in 1 := Value v; v

(c'est de la mémoisation)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres B5]

appel par nécessité en OCaml

on définit alors la fonction £ comme ceci
let £ xy =
if force x = 0 then 42 else force y + force y
et on |'utilise ainsi

let v = £ (ref (Frozen (fun () -> 1)))
(ref (Frozen (fun () -> ...gros calcul...)))

note : la construction lazy d'OCaml fait quelque chose de semblable
(un peu plus subtilement)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 36

quelques mots sur le langage Python

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 37

le langage Python

Python est muni d’une stratégie d'évaluation stricte, avec appel par valeur

I'ordre d'évaluation est spécifié gauche-droite
(mais droite-gauche pour une affectation)

une valeur est un pointeur vers un objet alloué sur le tas

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

38

passage d'un entier

un entier est un objet immuable

def f(x):
v *—| . v o—1
41
v = 41 : :
‘@ e =
print(v) # affiche 41

c'est toujours un passage par valeur,
d'une valeur qui est un pointeur (implicite) vers un objet

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parameétres 39

passage d'un tableau

un tableau est un objet mutable

a
def incr(x):

x[1] += 1 X
a = [0] * 17
a[1] = 41
incr(a)
al[l1] vaut maintenant 42 a

x

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 40

attention

en Python, on ne construit pas non plus une matrice en faisant

m [e (o]s]
m = [[0] *x 3] *x 2

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 41

abstraction

les entiers étant des objets immuables, on peut faire abstraction de leur

représentation comme des objets

dit autrement, on peut identifier deux représentations comme

Jean-Christophe Fillidtre

CSC-52064 — Compilation

| [a1] [--]

évaluation et passage des parametres 42

remarque

les modeles d'exécution de Java, d’OCaml et de Python
sont trés semblables

méme si leurs langages de surface sont trés différents

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

43

des choix différents

@) @]

OCaml : variable immuable OCaml : variable immuable +

_ contenu mutable
Java : variable mutable

Python : variable mutable +
contenu immuable

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 44

quelques mots sur le langage C

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 45

le langage C

le langage C est un langage impératif relativement bas niveau, notamment
parce que la notion de pointeur, et d'arithmétique de pointeur, y est
explicite

on peut le considérer inversement comme un assembleur de haut niveau

suznw KERNIGHAN =

LE LANGAGE

un ouvrage toujours d'actualité :
Le langage C
de Brian Kernighan et Dennis Ritchie

2¢ édition

Jean-Christophe Filliatre CSC_52064 — Compilation évaluation et passage des paramétres 46

le langage C

le langage C est muni d'une stratégie d'évaluation stricte,
avec appel par valeur

I'ordre d'évaluation n’est pas spécifié

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

47

les types du C

® on trouve des types de base tels que char, int, float, etc.

® un type 7* des pointeurs vers des valeurs de type 7

si p est un pointeur de type 7*, alors *p désigne la valeur pointée par
p, de type 7

si e est une valeur gauche de type 7, alors &e est un pointeur sur
['emplacement mémoire correspondant, de type 7%

® des enregistrements, appelés structures, tels que
struct L { int head; struct L *next; I};

si e a le type struct L, on note e.head l'accés au champ

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

48

valeurs gauches du C

en C, une valeur gauche est de la forme
® x, une variable
® xg, le déréférencement d'un pointeur

® e¢.x, I'accés a un champ de structure,
si e est elle-méme une valeur gauche

e t[e], qui n'est autre que *(t+e)

® e->x, qui n'est autre que (*e) .x

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

49

void f(int x) {

Xx =x + 1;

int main() {

}

int v = 41;
f(v);
// v vaut toujours 41

Jean-Christophe Fillidtre

41

41

CSC-52064 — Compilation

appel par valeur

évaluation et passage des parameétres

50

structures

I"appel par valeur implique que les structures sont copiées lorsqu’elles
sont passées en parameétres ou renvoyées

les structures sont également copiées lors des affectations de structures,
i.e. des affectations de la forme x = y, ol x et y ont le type struct S

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

51

structures

struct S { int a; int b; };

void f(struct S x) { . .
b =x.b + 1; : :
x.b x.b 1; 5 5
} v 1 vi 1
int main() { 2 é
struct Sv={1, 2 }; x| 1 x| 1
f(v);
// v.b vaut toujours 2

3

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 52

on peut simuler un passage par référence en passant un pointeur explicite

void incr(int *x) {
*X = *x + 1;

int main() {
int v = 41;
incr(&v) ;

// v vaut maintenant 42

}

passage d'un pointeur

41

mais ce n'est qu'un passage de pointeur par valeur

Jean-Christophe Fillidtre

CSC-52064 — Compilation

évaluation et passage des parametres

53

pointeurs sur structures

pour éviter le colit des copies, on passe des pointeurs sur les structures le
plus souvent

struct S { int a; int b; };

void f(struct S *x) {
x->b = x->b + 1; : :
} 2 3

vl 1 v 1
int main() { : i:} : j:}
X *— X *—

struct Sv=9{1, 2 };
f(&v);
// v.b vaut maintenant 3

¥

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 54

référence fantome

la manipulation explicite de pointeurs peut étre dangereuse

int* pO {
int x;
return &x;
}
cette fonction renvoie un pointeur qui correspond a un emplacement sur la
pile qui vient justement de disparaitre (a savoir le tableau d'activation

de p), et qui sera trés probablement réutilisé rapidement par un autre
tableau d'activation

on parle de référence fantdme (dangling reference)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 55]

tableaux

la notation t[i] n'est que du sucre syntaxique pour *(t+i) ou
® t désigne un pointeur sur le début d'une zone contenant 10 entiers

® + désigne une opération d'arithmétique de pointeur (qui consiste a
ajouter a t la quantité 41 pour un tableau d’entiers 32 bits)

le premier élément du tableau est donc £ [0] c'est-a-dire *t

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

56

tableaux

un tableau peut étre alloué sur la pile, comme ceci
int t[10];

et il sera désalloué a la sortie de la fonction

ou sur le tas, comme ceci
int *t = malloc(10 * sizeof(int));

et il faudra le désallouer avec free (cf cours 9)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

57

petite différence

on ne peut affecter des tableaux, seulement des pointeurs

ainsi, on ne peut pas écrire

void p() { t[2]
int t[3]; t[1]
int ul3]: t — | t[0]
t = u; // <- erreur u[2]

} ul1]

u— | ulo]

car t et u sont des tableaux (alloués sur la pile) et I'affectation de
tableaux n'est pas autorisée

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 58

passage

quand on passe un tableau en parameétre, on ne fait que passer le pointeur
(par valeur, toujours)

on peut donc écrire

void q(int t[3], int ul[3]) { t[2] t[2]
t = u; t[1] t[1]
} t[0] | t [0]
car c'est exactement la méme chose u['2:| u['gj
que ul1] ul1]
ul0] |+ ul0] e
void q(int *t, int *u) { . . —‘
t = u; ™ — t[e
T u ° u °

et |'affectation de pointeurs est
autorisée

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 59

quelques mots sur le langage C++

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 60

C++

en C++, on trouve (entre autres) les types et constructions du C,
avec une stratégie d'évaluation stricte

le mode de passage est par valeur par défaut

mais on trouve aussi un passage par référence
indiqué par le symbole & au niveau de I'argument formel

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

61

void f(int &x) {
X =x + 1;

}

int main() {
int v = 41;
f(v);

// v vaut maintenant 42

3

41

en particulier, c'est le compilateur qui

® 3 pris I'adresse de v au moment de I'appel

® 3 déréférencé I'adresse x dans la fonction £

Jean-Christophe Fillidtre

CSC-52064 — Compilation

exemple

évaluation et passage des parametres

62

structures par référence

on peut passer une structure par référence

struct S { int a; int b; };

void f(struct S &x) {
x.b = x.b + 1; : .
} 2 3

vl 1 vl 1
int main() { : i:} : j:}
X *— X *—

struct Sv=4{1, 2 };
f(v);
// v.b vaut maintenant 3

¥

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 63

références et pointeurs

on peut passer un pointeur par référence

par exemple pour ajouter un élément dans un arbre

struct Node { int elt; Node *left, *right; };

void add(Nodex &t, int x) {
if (t == NULL) t = create(NULL, x, NULL);
else if (x < t->elt) add(t->left, x);
else if (x > t->elt) add(t->right, x);

}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 64

résumé

Java

entier par valeur

pointeur par valeur

(objet)

OCaml

entier par valeur

pointeur par valeur
(ref, tableau, etc.)

Python

pointeur par valeur
(objet)

C

entier par valeur

pointeur par valeur

pointeur par valeur

Cr

entier par valeur

pointeur par valeur
entier par référence

pointeur par valeur
ou par référence

Jean-Christophe Fillidtre

CSC-52064 — Compilation

évaluation et passage des parametres

65

compilation du passage par valeur et par référence

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 66

micro C++

considérons la compilation d’'un micro fragment de C++ avec
® des entiers
® des fonctions (mais qui ne renvoient rien)

® du passage par valeur et par référence

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 67

micro C++

on considere le fragment suivant

E — n C - E==E|E!'=E

| x | E<XE|E<=E|E>E|E>=E

| E+E|E-E | C&& C

| ExE|E/E | CIlIC

| - E | 1 C

S — x=E; B - {§...§5}

| if (C) S
| if (C) SelseS F — wvoid f(X,...,X) B
| while (C) S)
| FCE,... E); X — intx
| printf("%d\n", E); | int &x
| int x,...,x; P F F
| B

int main() B

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 68

exemple

void fib(int n, int &r) {

if (n <= 1)
r = n;
else {
int tmp;

fib(n - 2, tmp);
fib(n - 1, 1);
r =r + tmp;

int main() {

int f;

fib(10, f);

printf ("%d\n", £);
}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 69

portée

la portée définit les portions du programme ou une variable est visible

ici, si le corps d'une fonction f mentionne une variable x alors
® soit x est un paramétre de f

® soit x est déclarée plus haut dans un bloc englobant (y compris le
bloc courant)

par ailleurs, une variable peut en cacher une autre

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

70

exemple

void f(int n) {
printf ("%d\n", n); // affiche 34
if (@a > 0) {
int n; n = 89;
printf ("%d\n", n); // affiche 89
+
if (n > 21) {
printf ("%d\n", n); // affiche 34
int n; n = 55;
printf ("%d\n", n); // affiche 55
+
printf ("%d\n", n); // affiche 34

int main() {
£(34);

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 71

portée

ici la portée ne dépend que du texte source (on parle de portée lexicale)
et on peut la réaliser avant ou pendant le typage

la syntaxe abstraite conserve une trace de cette analyse,
en identifiant chaque variable de facon unique

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

72

portée

avant apres

arbres de syntaxe abstraite issus arbres de syntaxe abstraite apres
de I'analyse syntaxique le typage
type pint_expr = type int_expr =

| PEconst of int | Econst of int

| PEvar of string | Evar of ident

[... |
type pstmt =

| PSvars of string list type func = {

| PSblock of pstmt list locals: ident list;

|
pour l'instant, les variables sont maintenant ident est un
des chatnes de caracteéres identifiant : entier, nom unique,

enregistrement, etc.

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 73

exemple

on a maintenant un arbre de syntaxe abstraite qui correspond a

void f(int n0) {
printf ("%d\n", no0);
if (n0 > 0) {
int nl; nl = 89;
printf ("%d\n", nl);
+
if (@m0 > 21) {
printf ("%d\n", no0);
int n2; n2 = 55;
printf ("%d\n", n2);
+
printf ("%d\n", no);
+

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 74

exemple

ou plus précisément comme ceci :
void f(int

}
if (
printf ("%d\n", no);

int e —e—=—5b5-

printf ("%d\n",

}
printf ("%d\n",

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parameétres 75

note

il existe des langages ol la portée est dynamique i.e. dépend de
I'exécution du programme

exemple : bash

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 76

organisation des variables en mémoire

il faut choisir un emplacement mémoire pour chaque variable et étre
capable de calculer cet emplacement a I'exécution

ici les variables vont toutes étre stockées sur la pile

a chaque fonction en cours d'exécution correspond une portion de la pile,
appelée tableau d’activation (cf cours 1), qui contient notamment

® ses parametres effectifs
® |'adresse de retour

® ses variables locales

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 7

tableau d’activation

tableau d'activation correspondant a un appel f(ey,...,e,) d'une fonction
f avec n parametres

€n
construit
e par |'appelant
adr. retour
%rbp — | %rbp appelant | construit
Vi par I'appelé
Vm
+

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 78

exemple

void g(int a, int b) {

if (...) {
int c;
}
if (...) { b 10
int d; a 100
000 adr. retour
int e; %rbp — | %rbp appelant
c, d
} e

int main() {
g(100, 10);
}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parameétres 79

role de %rbp

positionner ainsi le registre %rbp permet de retrouver facilement
I'emplacement d'une variable (par ex. %rbp + 16 ou %rbp — 8)

en effet, le sommet de pile peut bouger si
® on y stocke des calculs intermédiaires

® on est en train de préparer un appel de fonction

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

80

identificateurs

pour chaque variable, le compilateur détermine une position dans la pile
par exemple dans le type ident
type ident = { ofs: int; ... }

® pour les parametres, ce sont +16, +24, etc.

® pour les variables locales, ce sont —8, —16, etc.,
avec souvent plusieurs solutions possibles, certaines plus économes

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

compilation

détaillons maintenant la production d'assembleur x86-64 pour micro C++

on se limite pour commencer au passage par valeur

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 82

expressions arithmétiques

on suit un schéma de compilation simpliste, utilisant la pile pour stocker
les résultats intermédiaires (on verra comment utiliser efficacement les
registres aux cours 10-11)

on note C(e) le code assembleur pour la compilation d'une expression
arithmétique e

principe : a l'issue de I'exécution de C(e),

® la valeur de I'expression e se trouve dans le registre %rdi (choix
arbitraire)

® |e pointeur de pile est inchangé

® |es registres caller-saved peuvent étre modifiés

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

83

constantes
C(n) = movq n Y%rdi

opérations
Clea+e)= Cla)
pushq %rdi
C(e2)
popq %rsi
addq Y%rsi, %rdi

Jean-Christophe Fillidtre CSC-52064 — Compilation

expressions

évaluation et passage des parametres

84

efficacité

bien entendu, c’est extrémement naif; le code pour 1+2 est

movqg $1, %rdi
pushq %rdi

movq $2, Yrdi
popq %rsi

addq Y%rsi, Y%rdi

alors méme que I'on dispose de 16 registres

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 85

compiling expressions

pour une variable, on utilise I'adressage indirect, car la position par
rapport a %rbp est une constante connue du compilateur

C(x) € movq ofs(%rbp), %rdi

(rappel : on se limite pour l'instant au passage par valeur)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

86

expressions booléennes

les expressions booléennes sont compilées de maniere trés analogue

Clea=e)= C(e)
pushq %rdi
C(ez)
popq %rsi
cmpq %rdi, Yrsi
sete %dil
movzbq %dil, Y%rdi

attention : les opérateurs && et || doivent étre évalués paresseusement
i.e. e n'est pas évaluée dans e; && e, (resp. e1 || &) si e; vaut false

(resp. true)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 87

instructions

une instruction s est compilée par un morceau d'assembleur C(s)

principe : aprés |'exécution de C(s),
® |e pointeur de pile est inchangé

® les registres caller-saved peuvent étre modifiés

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

88

exemple

C(print(e)) ¥ C(e)

call print_int

print_int:
pushq %rbp
movq hrsp, %rbp
andg $-16, Yrsp # alignement de la pile
movq %rdi, %rsi
movqg $.Sprint_int, %rdi
movq $0, Yrax
call printf
movq ‘%rbp, %rsp
popq ’rbp
ret
.data
.Sprint_int:
.string "%d\n"

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 89

appel de fonction

pour un appel a une fonction £, il faut
1. empiler les arguments
2. appeler le code situé a I'étiquette £

3. dépiler les arguments

C(f(er,...,en) E Clen)
pushq %rdi

C(el)

pushq Yrdi
call £

addq $8n, Yrsp

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 90

affectation

reste |'affectation x = e;

le membre gauche est ici réduit a une variable x
et on sait ou cette variable est stockée sur la pile

Cx=e)= C(e)
movq %rdi, ofs(%rbp)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 91

passage par référence

pour l'instant, on a passé les parametres par valeur

i.e. le parameétre formel est une nouvelle variable qui prend comme valeur
initiale celle du paramétre effectif

en C++, le qualificatif & permet de spécifier un passage par référence

dans ce cas, le paramétre formel désigne la méme variable que le
parameétre effectif, qui doit donc &tre une variable (une valeur gauche, de
maniére plus générale)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 92

exemple

void fib(int n, int &r) {

if (n <= 1)
r = n;
else {
int tmp;

fib(n - 2, tmp);
fib(n - 1, 1);
r =r + tmp;

}
}
int main() {
int f;
fib(10, f); // modifie la valeur de f
printf ("%d\n", £); // affiche 55

}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 93

passage par référence

pour prendre en compte le passage par référence, on étend encore le type
ident pour indiquer s'il s'agit d’une variable passée par référence

type ident = { ofs: int; byref: bool; ... }

(vaut false pour une variable locale)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 94

passage par référence

dans un appel tel que £ (e) le parameétre effectif e n'est plus typé ni
compilé de la méme maniére selon qu'il s'agit d'un parametre passé par
valeur ou par référence

lorsque le paramétre est passé par référence, le typage va donc
1. vérifier qu'il s'agit bien d'une valeur gauche (ici une variable)

2. indiquer qu'elle doit étre passée par référence

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

95

passage par référence

une facon de procéder consiste a ajouter une construction de < calcul de
valeur gauche > dans la syntaxe des expressions

type int_expr =

| Eaddr of ident

et a remplacer, le cas échéant, le paramétre effectif e par Eaddr e

note : c'est I'opérateur & de C++-, qui n’est pas dans notre fragment

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

96

passage par référence

il faut ajouter le code correspondant dans int_expr :
C(&x) € leaq ofs(%rbp), %rdi
movq (Y%rdi), %rdi si x.byref

note : le cas br = true correspond au cas d'une variable elle-méme
passée par référence

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 97

exemple

void z(int &x) { x = 0; }
void h(int &s) { z(s); while (s < 100) s = 2*s+1; }
int main() { int tmp; h(tmp); printf("%d\n", tmp); }

ret
main tmp 0 a—
s s
ret
h > P
X
ret
Z . J

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 98

passage par référence

il faut aussi modifier le calcul des valeurs droites :

C(x) ¥ movq ofs(Yrbp), %rdi
movq (Yrdi), %rdi si x.byref

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 99

passage par référence

ainsi que celui de I'affectation :

Cx=e)E c(e)
movq ofs(%rbp), %rsi si x.byref
leaq ofs(%rbp), %rsi sinon
movq %rdi, (%rsi)

en revanche, il n'y a rien a modifier dans I'appel (grace a la nouvelle
construction Eaddr)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 10C

compilation des fonctions

il reste a compiler les déclarations des fonctions

void f(x1, ..., xn) {
// variables locales yi,...,ym
corps

}

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 101

fs = max |y;.ofs|
Yi

on calcule
puis
f: pushq Y%rbp

movq %4rsp, %rbp
subq $fs, Yrsp
C(corps)

movq ‘rbp, %rsp

popq %rbp
ret

Jean-Christophe Fillidtre

compilation d'une fonction

sauver Yrbp
et le définir

H+

H*

désallouer

allouer fs octets

restaurer %rbp

retour

CSC-52064 — Compilation

évaluation et passage des parametres

102

exemple

swap: pushq %rbp
movq %rsp, Arbp

void swap(int &x, int &y) { subq $8, %rsp

int tmp; movq 16 (%rbp), %rdi
tmp = x; movq O0(%rdi), Y%rdi
= o leaq -8(%rbp), %rsi
_ . movq %rdi, 0(%rsi)
y = tmp; movq 24 (%rbp), %rdi
by movq 0(%rdi), %rdi
movq 16 (%rbp), Y%rsi

y (+24) movq %rdi, O0(%rsi)
x (+16) movq -8(%rbp), %rdi

adr. retour movq 24 (%rbp), Y%rsi
movq %rdi, O(%rsi)
movq %rbp, %rsp
popq %rbp

ret

%rbp — | %rbp appelant
tmp (-8)

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres

la suite

e TD 5
® typage Mini Go (suite)

® prochain cours
® langages OO et fonctionnels

Jean-Christophe Fillidtre CSC-52064 — Compilation évaluation et passage des parametres 104

