
École Polytechnique

CSC 52064 – Compilation

Jean-Christophe Filliâtre

stratégies d’évaluation
passage des paramètres

Jean-Christophe Filliâtre CSC 52064 – Compilation 1

aujourd’hui

1. stratégie d’évaluation et passage des paramètres
• Java
• OCaml
• Python
• C
• C++

2. compiler l’appel par valeur et l’appel par référence
• illustration avec C++

Jean-Christophe Filliâtre CSC 52064 – Compilation 2

stratégie d’évaluation et passage des paramètres

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 3

un peu de vocabulaire

dans la déclaration d’une fonction

function f(x1, ..., xn) =

...

les variables x1,...,xn sont appelées paramètres formels de f

et dans l’appel de cette fonction

f(e1, ..., en)

les expressions e1,...,en sont appelées paramètres effectifs de f

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 4

un peu de vocabulaire

dans un langage comprenant des modifications en place, une affectation

e1 := e2

modifie un emplacement mémoire désigné par l’expression e1

l’expression e1 est limitée à certaines constructions,
car des affectations comme

42 := 17

true := false

n’ont en général pas de sens

on parle de valeur gauche pour désigner les expressions légales à gauche
d’une affectation

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 5

stratégie d’évaluation

la stratégie d’évaluation d’un langage spécifie l’ordre dans lequel les calculs
sont effectués

on peut la définir à l’aide d’une sémantique formelle (cf cours 2)

le compilateur se doit de respecter la stratégie d’évaluation

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 6

stratégie d’évaluation

en particulier, la stratégie d’évaluation peut spécifier

• à quel moment les paramètres effectifs d’un appel sont évalués

• l’ordre d’évaluation des opérandes et des paramètres effectifs

certains aspects de l’évaluation peuvent cependant rester non spécifiés

cela laisse alors de la latitude au compilateur, notamment pour effectuer
des optimisations (par exemple en ordonnant les calculs comme il le
souhaite)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 7

stratégie d’évaluation

on distingue notamment

• l’évaluation stricte : les opérandes / paramètres effectifs sont
évalués avant l’opération / l’appel

exemples : C, C++, Java, OCaml, Python

• l’évaluation paresseuse : les opérandes / paramètres effectifs ne
sont évalués que si nécessaire

exemples : Haskell, Clojure
mais aussi les connectives logiques && et || de la plupart des langages

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 8

évaluation et effets

un langage impératif adopte systématiquement une évaluation stricte, pour
garantir une séquentialité des effets de bord qui cöıncide avec le texte
source

par exemple, le code Java

int r = 0;

int id(int x) { r += x; return x; }

int f(int x, int y) { return r; }

{ System.out.println(f(id(40), id(2))); }

affiche 42 car les deux arguments de f ont été évalués

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 9

exception

une exception est faite pour les connectives logiques && et || de la plupart
des langages, ce qui est bien pratique

void insertionSort(int[] a) {

for (int i = 1; i < a.length; i++) {

int v = a[i], j = i;

for (; 0 < j && v < a[j-1]; j--)

a[j] = a[j-1];

a[j] = v;

}

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 10

remarque

la non-terminaison est également un effet

ainsi, le code Java

int loop() { while (true); return 0; }

int f(int x, int y) { return x+1; }

{ System.out.println(f(41, loop())); }

ne termine pas, bien que l’argument y n’est pas utilisé

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 11

programmation purement applicative

un langage purement applicatif (= sans traits impératifs) peut en revanche
adopter la stratégie d’évaluation de son choix, car une expression aura
toujours la même valeur (on parle de transparence référentielle)

en particulier, il peut faire le choix d’une évaluation paresseuse

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 12

exemple

le programme Haskell

loop () = loop ()

f x y = x

main = putChar (f ’a’ (loop ()))

termine (après avoir affiché a)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 13

passage des paramètres

la sémantique précise également le mode de passage des paramètres lors
d’un appel

on distingue notamment

• l’appel par valeur (call by value)

• l’appel par référence (call by reference)

• l’appel par nom (call by name)

• l’appel par nécessité (call by need)

(on parle aussi parfois de passage par valeur, par référence, etc.)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 14

appel par valeur

de nouvelles variables représentant les paramètres formels reçoivent les
valeurs des paramètres effectifs

function f(x) =

x := x + 1

main() =

int v := 41

f(v)

print(v) // affiche 41

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 15

appel par référence

les paramètres formels désignent les mêmes valeurs gauches que les
paramètres effectifs

function f(x) =

x := x + 1

main() =

int v := 41

f(v)

print(v) // affiche 42

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 16

appel par nom

les paramètres effectifs sont substitués aux paramètres formels,
textuellement, et donc évalués seulement si nécessaire

function f(x, y, z) =

return x*x + y*y

main() =

print(f(1+2, 2+2, 1/0)) // affiche 25

// 1+2 est évalué deux fois

// 2+2 est évalué deux fois

// 1/0 n’est jamais évalué

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 17

appel par nécessité

les paramètres effectifs ne sont évalués que si nécessaire,
mais au plus une fois

function f(x, y, z) =

return x*x + y*y

main() =

print(f(1+2, 2+2, 1/0)) // affiche 25

// 1+2 est évalué une fois

// 2+2 est évalué une fois

// 1/0 n’est jamais évalué

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 18

quelques mots sur le langage Java

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 19

le langage Java

Java est muni d’une stratégie d’évaluation stricte, avec appel par valeur

l’ordre d’évaluation est spécifié gauche-droite

une valeur est

• soit d’un type primitif (booléen, caractère, entier machine, etc.)

• soit un pointeur vers un objet alloué sur le tas

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 20

appel par valeur

void f(int x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v vaut toujours 41

}

...
41
...
41
...

v

x

...
41
...
42
...

v

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 21

passage d’un objet

un objet est alloué sur le tas

class C { int f; }

void incr(C x) {

x.f += 1;

}

void main () {

C r = new C();

r.f = 41;

incr(r);

// r.f vaut maintenant 42

}

...

...

...

41

r

x

...

...

...

42

r

x

c’est toujours un passage par valeur,
d’une valeur qui est un pointeur (implicite) vers un objet

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 22

passage d’un tableau

un tableau est un objet comme un autre

void incr(int[] x) {

x[1] += 1;

}

void main () {

int[] a = new int[17];

a[1] = 41;

incr(a);

// a[1] vaut maintenant 42

}

...

...

...

41 ...
a

x

...

...

...

42 ...
a

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 23

appel par nom en Java

on peut simuler l’appel par nom en Java, en remplaçant les arguments
par des fonctions ; ainsi, la fonction

int f(int x, int y) {

if (x == 0) return 42; else return y + y;

}

peut être réécrite en

int f(Supplier<Integer> x, Supplier<Integer> y) {

if (x.get() == 0)

return 42;

else

return y.get() + y.get();

}

et appelée comme ceci

int v = f(() -> 0, () -> { throw new Error(); });

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 24

appel par nécessité en Java

plus subtilement, on peut aussi simuler l’appel par nécessité en Java

class Lazy<T> implements Supplier<T> {

private T cache = null;

private Supplier<T> f;

Lazy(Supplier<T> f) { this.f = f; }

public T get() {

if (this.cache == null) {

this.cache = this.f.get();

this.f = null; // permet au GC de récupérer f

}

return this.cache;

}

}

(c’est de la mémöısation)
Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 25

appel par nécessité en Java

et on l’utilise ainsi

int w = f(new Lazy<Integer>(() -> 1),

new Lazy<Integer>(() -> { ...gros calcul... }));

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 26

quelques mots sur le langage OCaml

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 27

le langage OCaml

OCaml est muni d’une stratégie d’évaluation stricte, avec appel par valeur

l’ordre d’évaluation n’est pas spécifié

une valeur est

• soit d’un type primitif (booléen, caractère, entier machine, etc.)

• soit un pointeur vers un bloc mémoire (tableau, enregistrement,
constructeur non constant, etc.) alloué sur le tas en général

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 28

valeurs gauches

les valeurs gauches sont les éléments de tableaux

a.(2) <- true

et les champs mutables d’enregistrements

x.age <- 42

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 29

références

rappel : une référence est un enregistrement

type ’a ref = { mutable contents: ’a }

et les opérations := et ! sont définies par

let (!) r = r.contents

let (:=) r v = r.contents <- v

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 30

passage d’une référence

une référence est allouée sur le tas

let incr x =

x := !x + 1

let main () =

let r = ref 41 in

incr r

(* !r vaut maintenant 42 *)

...

...

...

41

r

x

...

...

...

42

r

x

c’est toujours un passage par valeur,
d’une valeur qui est un pointeur (implicite) vers une valeur mutable

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 31

passage d’un tableau

un tableau est également alloué sur le tas

let incr x =

x.(1) <- x.(1) + 1

let main () =

let a = Array.make 17 0 in

a.(1) <- 41;

incr a

(* a.(1) vaut maintenant 42 *)

...

...

...

41 ...
a

x

...

...

...

42 ...
a

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 32

attention

pour construire une matrice, on n’écrit pas

let m = Array.make 2 (Array.make 3 0)

0 0 0

m

mais

let m = Array.make_matrix 2 3 0

0 0 0 0 0 0

m

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 33

appel par nom en OCaml

on peut simuler l’appel par nom en OCaml, en remplaçant les arguments
par des fonctions

ainsi, la fonction

let f x y =

if x = 0 then 42 else y + y

peut être réécrite en

let f x y =

if x () = 0 then 42 else y () + y ()

et appelée comme ceci

let v = f (fun () -> 0) (fun () -> failwith "oups")

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 34

appel par nécessité en OCaml

plus subtilement, on peut aussi simuler l’appel par nécessité en OCaml

on commence par introduire un type pour représenter les calculs paresseux

type ’a value = Value of ’a

| Frozen of (unit -> ’a)

type ’a by_need = ’a value ref

et une fonction qui évalue un tel calcul si ce n’est pas déjà fait

let force l = match !l with

| Value v -> v

| Frozen f -> let v = f () in l := Value v; v

(c’est de la mémöısation)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 35

appel par nécessité en OCaml

on définit alors la fonction f comme ceci

let f x y =

if force x = 0 then 42 else force y + force y

et on l’utilise ainsi

let v = f (ref (Frozen (fun () -> 1)))

(ref (Frozen (fun () -> ...gros calcul...)))

note : la construction lazy d’OCaml fait quelque chose de semblable
(un peu plus subtilement)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 36

quelques mots sur le langage Python

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 37

le langage Python

Python est muni d’une stratégie d’évaluation stricte, avec appel par valeur

l’ordre d’évaluation est spécifié gauche-droite
(mais droite-gauche pour une affectation)

une valeur est un pointeur vers un objet alloué sur le tas

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 38

passage d’un entier

un entier est un objet immuable

def f(x):

x += 1

v = 41

f(v)

print(v) # affiche 41

...

...

...

41
v

x

...

...

...

41

42

v

x

c’est toujours un passage par valeur,
d’une valeur qui est un pointeur (implicite) vers un objet

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 39

passage d’un tableau

un tableau est un objet mutable

def incr(x):

x[1] += 1

a = [0] * 17

a[1] = 41

incr(a)

a[1] vaut maintenant 42

...

...

...

...

41

a

x

...

...

...

...

42

a

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 40

attention

en Python, on ne construit pas non plus une matrice en faisant

m = [[0] * 3] * 2

0 0 0

m

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 41

abstraction

les entiers étant des objets immuables, on peut faire abstraction de leur
représentation comme des objets

dit autrement, on peut identifier deux représentations comme

...

...

...

...

41

a

x

...

...

...

41 ...
a

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 42

remarque

les modèles d’exécution de Java, d’OCaml et de Python
sont très semblables

même si leurs langages de surface sont très différents

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 43

des choix différents

42x

OCaml : variable immuable

Java : variable mutable

42x

OCaml : variable immuable +
contenu mutable

Python : variable mutable +
contenu immuable

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 44

quelques mots sur le langage C

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 45

le langage C

le langage C est un langage impératif relativement bas niveau, notamment
parce que la notion de pointeur, et d’arithmétique de pointeur, y est
explicite

on peut le considérer inversement comme un assembleur de haut niveau

un ouvrage toujours d’actualité :
Le langage C
de Brian Kernighan et Dennis Ritchie

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 46

le langage C

le langage C est muni d’une stratégie d’évaluation stricte,
avec appel par valeur

l’ordre d’évaluation n’est pas spécifié

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 47

les types du C

• on trouve des types de base tels que char, int, float, etc.

• un type τ* des pointeurs vers des valeurs de type τ

si p est un pointeur de type τ*, alors *p désigne la valeur pointée par
p, de type τ

si e est une valeur gauche de type τ , alors &e est un pointeur sur
l’emplacement mémoire correspondant, de type τ*

• des enregistrements, appelés structures, tels que

struct L { int head; struct L *next; };

si e a le type struct L, on note e.head l’accès au champ

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 48

valeurs gauches du C

en C, une valeur gauche est de la forme

• x, une variable

• *e, le déréférencement d’un pointeur

• e.x, l’accès à un champ de structure,
si e est elle-même une valeur gauche

• t[e], qui n’est autre que *(t+e)

• e->x, qui n’est autre que (*e).x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 49

appel par valeur

void f(int x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v vaut toujours 41

}

...
41
...
41
...

v

x

...
41
...
42
...

v

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 50

structures

l’appel par valeur implique que les structures sont copiées lorsqu’elles
sont passées en paramètres ou renvoyées

les structures sont également copiées lors des affectations de structures,
i.e. des affectations de la forme x = y, où x et y ont le type struct S

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 51

structures

struct S { int a; int b; };

void f(struct S x) {

x.b = x.b + 1;

}

int main() {

struct S v = { 1, 2 };

f(v);

// v.b vaut toujours 2

}

...
2
1
...
2
1
...

v

x

...
2
1
...
3
1
...

v

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 52

passage d’un pointeur

on peut simuler un passage par référence en passant un pointeur explicite

void incr(int *x) {

*x = *x + 1;

}

int main() {

int v = 41;

incr(&v);

// v vaut maintenant 42

}

...
41
...

...

v

x

...
42
...

...

v

x

mais ce n’est qu’un passage de pointeur par valeur

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 53

pointeurs sur structures

pour éviter le coût des copies, on passe des pointeurs sur les structures le
plus souvent

struct S { int a; int b; };

void f(struct S *x) {

x->b = x->b + 1;

}

int main() {

struct S v = { 1, 2 };

f(&v);

// v.b vaut maintenant 3

}

...
2
1
...

...

v

x

...
3
1
...

...

v

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 54

référence fantôme

la manipulation explicite de pointeurs peut être dangereuse

int* p() {

int x;

...

return &x;

}

cette fonction renvoie un pointeur qui correspond à un emplacement sur la
pile qui vient justement de disparâıtre (à savoir le tableau d’activation
de p), et qui sera très probablement réutilisé rapidement par un autre
tableau d’activation

on parle de référence fantôme (dangling reference)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 55

tableaux

la notation t[i] n’est que du sucre syntaxique pour *(t+i) où

• t désigne un pointeur sur le début d’une zone contenant 10 entiers

• + désigne une opération d’arithmétique de pointeur (qui consiste à
ajouter à t la quantité 4i pour un tableau d’entiers 32 bits)

le premier élément du tableau est donc t[0] c’est-à-dire *t

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 56

tableaux

un tableau peut être alloué sur la pile, comme ceci

int t[10];

et il sera désalloué à la sortie de la fonction

ou sur le tas, comme ceci

int *t = malloc(10 * sizeof(int));

et il faudra le désallouer avec free (cf cours 9)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 57

petite différence

on ne peut affecter des tableaux, seulement des pointeurs

ainsi, on ne peut pas écrire

void p() {

int t[3];

int u[3];

t = u; // <- erreur

}

t[2]

t[1]

t → t[0]

u[2]

u[1]

u → u[0]

car t et u sont des tableaux (alloués sur la pile) et l’affectation de
tableaux n’est pas autorisée

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 58

passage

quand on passe un tableau en paramètre, on ne fait que passer le pointeur
(par valeur, toujours)

on peut donc écrire

void q(int t[3], int u[3]) {

t = u;

}

car c’est exactement la même chose
que

void q(int *t, int *u) {

t = u;

}

et l’affectation de pointeurs est
autorisée

t[2]
t[1]
t[0]
...

u[2]
u[1]
u[0]
...

...

t
u

t[2]
t[1]
t[0]
...

u[2]
u[1]
u[0]
...

...

t
u

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 59

quelques mots sur le langage C++

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 60

C++

en C++, on trouve (entre autres) les types et constructions du C,
avec une stratégie d’évaluation stricte

le mode de passage est par valeur par défaut

mais on trouve aussi un passage par référence
indiqué par le symbole & au niveau de l’argument formel

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 61

exemple

void f(int &x) {

x = x + 1;

}

int main() {

int v = 41;

f(v);

// v vaut maintenant 42

}

...
41
...

...

v

x

...
42
...

...

v

x

en particulier, c’est le compilateur qui

• a pris l’adresse de v au moment de l’appel

• a déréférencé l’adresse x dans la fonction f

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 62

structures par référence

on peut passer une structure par référence

struct S { int a; int b; };

void f(struct S &x) {

x.b = x.b + 1;

}

int main() {

struct S v = { 1, 2 };

f(v);

// v.b vaut maintenant 3

}

...
2
1
...

...

v

x

...
3
1
...

...

v

x

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 63

références et pointeurs

on peut passer un pointeur par référence

par exemple pour ajouter un élément dans un arbre

struct Node { int elt; Node *left, *right; };

void add(Node* &t, int x) {

if (t == NULL) t = create(NULL, x, NULL);

else if (x < t->elt) add(t->left, x);

else if (x > t->elt) add(t->right, x);

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 64

résumé

...
41
...
41
...

v

x

...
41
...

...

v

x

...

...

...

41

r

x

Java entier par valeur — pointeur par valeur

(objet)

OCaml entier par valeur — pointeur par valeur

(ref, tableau, etc.)

Python — — pointeur par valeur
(objet)

C entier par valeur pointeur par valeur pointeur par valeur

C++ entier par valeur pointeur par valeur pointeur par valeur

entier par référence ou par référence

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 65

compilation du passage par valeur et par référence

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 66

micro C++

considérons la compilation d’un micro fragment de C++ avec

• des entiers

• des fonctions (mais qui ne renvoient rien)

• du passage par valeur et par référence

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 67

micro C++

on considère le fragment suivant

E → n
| x
| E + E | E - E
| E * E | E / E
| - E

C → E == E | E != E
| E < E | E <= E | E > E | E >= E
| C && C
| C || C
| ! C

S → x = E;
| if (C) S
| if (C) S else S
| while (C) S
| f (E , . . . ,E);
| printf("%d\n", E);
| int x, . . . ,x;
| B

B → { S . . . S }

F → void f (X, . . . ,X) B

X → int x
| int &x

P → F . . .F
int main() B

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 68

exemple

void fib(int n, int &r) {

if (n <= 1)

r = n;

else {

int tmp;

fib(n - 2, tmp);

fib(n - 1, r);

r = r + tmp;

}

}

int main() {

int f;

fib(10, f);

printf("%d\n", f);

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 69

portée

la portée définit les portions du programme où une variable est visible

ici, si le corps d’une fonction f mentionne une variable x alors

• soit x est un paramètre de f

• soit x est déclarée plus haut dans un bloc englobant (y compris le
bloc courant)

par ailleurs, une variable peut en cacher une autre

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 70

exemple

void f(int n) {

printf("%d\n", n); // affiche 34

if (n > 0) {

int n; n = 89;

printf("%d\n", n); // affiche 89

}

if (n > 21) {

printf("%d\n", n); // affiche 34

int n; n = 55;

printf("%d\n", n); // affiche 55

}

printf("%d\n", n); // affiche 34

}

int main() {

f(34);

}
Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 71

portée

ici la portée ne dépend que du texte source (on parle de portée lexicale)
et on peut la réaliser avant ou pendant le typage

la syntaxe abstraite conserve une trace de cette analyse,
en identifiant chaque variable de façon unique

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 72

portée

avant

arbres de syntaxe abstraite issus
de l’analyse syntaxique

type pint_expr =

| PEconst of int

| PEvar of string

| ...

type pstmt =

| PSvars of string list

| PSblock of pstmt list

| ...

pour l’instant, les variables sont
des châınes de caractères

après

arbres de syntaxe abstraite après
le typage

type int_expr =

| Econst of int

| Evar of ident

| ...

type func = {

locals: ident list;

...

maintenant ident est un
identifiant : entier, nom unique,
enregistrement, etc.

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 73

exemple

on a maintenant un arbre de syntaxe abstraite qui correspond à

void f(int n0) {

printf("%d\n", n0);

if (n0 > 0) {

int n1; n1 = 89;

printf("%d\n", n1);

}

if (n0 > 21) {

printf("%d\n", n0);

int n2; n2 = 55;

printf("%d\n", n2);

}

printf("%d\n", n0);

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 74

exemple

ou plus précisément comme ceci :
void f(int) {

printf("%d\n",);

if (> 0) {

int ; = 89;

printf("%d\n",);

}

if (> 21) {

printf("%d\n", n0);

int ; = 55;

printf("%d\n",);

}

printf("%d\n",);

}

n int . . .

n int . . .

n int . . .

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 75

note

il existe des langages où la portée est dynamique i.e. dépend de
l’exécution du programme

exemple : bash

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 76

organisation des variables en mémoire

il faut choisir un emplacement mémoire pour chaque variable et être
capable de calculer cet emplacement à l’exécution

ici les variables vont toutes être stockées sur la pile

à chaque fonction en cours d’exécution correspond une portion de la pile,
appelée tableau d’activation (cf cours 1), qui contient notamment

• ses paramètres effectifs

• l’adresse de retour

• ses variables locales

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 77

tableau d’activation

tableau d’activation correspondant à un appel f (e1, . . . , en) d’une fonction
f avec n paramètres

en
... construit
e1 par l’appelant

adr. retour

%rbp → %rbp appelant construit
v1 par l’appelé
...
vm
...
↓

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 78

exemple

void g(int a, int b) {

if (...) {

int c;

...

}

if (...) {

int d;

...

int e;

...

}

}

int main() {

g(100, 10);

}

b 10
a 100

adr. retour
%rbp → %rbp appelant

c, d . . .
e . . .

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 79

rôle de %rbp

positionner ainsi le registre %rbp permet de retrouver facilement
l’emplacement d’une variable (par ex. %rbp+ 16 ou %rbp− 8)

en effet, le sommet de pile peut bouger si

• on y stocke des calculs intermédiaires

• on est en train de préparer un appel de fonction

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 80

identificateurs

pour chaque variable, le compilateur détermine une position dans la pile

par exemple dans le type ident

type ident = { ofs: int; ... }

• pour les paramètres, ce sont +16, +24, etc.

• pour les variables locales, ce sont −8, −16, etc.,
avec souvent plusieurs solutions possibles, certaines plus économes

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 81

compilation

détaillons maintenant la production d’assembleur x86-64 pour micro C++

on se limite pour commencer au passage par valeur

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 82

expressions arithmétiques

on suit un schéma de compilation simpliste, utilisant la pile pour stocker
les résultats intermédiaires (on verra comment utiliser efficacement les
registres aux cours 10–11)

on note C (e) le code assembleur pour la compilation d’une expression
arithmétique e

principe : à l’issue de l’exécution de C (e),

• la valeur de l’expression e se trouve dans le registre %rdi (choix
arbitraire)

• le pointeur de pile est inchangé

• les registres caller-saved peuvent être modifiés

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 83

expressions

constantes
C (n)

def
= movq n %rdi

opérations

C (e1 + e2)
def
= C (e1)

pushq %rdi

C (e2)
popq %rsi

addq %rsi, %rdi

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 84

efficacité

bien entendu, c’est extrêmement näıf ; le code pour 1+2 est

movq $1, %rdi

pushq %rdi

movq $2, %rdi

popq %rsi

addq %rsi, %rdi

alors même que l’on dispose de 16 registres

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 85

compiling expressions

pour une variable, on utilise l’adressage indirect, car la position par
rapport à %rbp est une constante connue du compilateur

C (x)
def
= movq ofs(%rbp), %rdi

(rappel : on se limite pour l’instant au passage par valeur)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 86

expressions booléennes

les expressions booléennes sont compilées de manière très analogue

C (e1 = e2)
def
= C (e1)

pushq %rdi

C (e2)
popq %rsi

cmpq %rdi, %rsi

sete %dil

movzbq %dil, %rdi

attention : les opérateurs && et || doivent être évalués paresseusement
i.e. e2 n’est pas évaluée dans e1 && e2 (resp. e1 || e2) si e1 vaut false
(resp. true)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 87

instructions

une instruction s est compilée par un morceau d’assembleur C (s)

principe : après l’exécution de C (s),

• le pointeur de pile est inchangé

• les registres caller-saved peuvent être modifiés

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 88

exemple

C (print(e))
def
= C (e)

call print int

print int:

pushq %rbp

movq %rsp, %rbp

andq $-16, %rsp # alignement de la pile

movq %rdi, %rsi

movq $.Sprint int, %rdi

movq $0, %rax

call printf

movq %rbp, %rsp

popq %rbp

ret

.data

.Sprint int:

.string "%d\n"

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 89

appel de fonction

pour un appel à une fonction f, il faut

1. empiler les arguments

2. appeler le code situé à l’étiquette f

3. dépiler les arguments

C (f (e1, . . . , en)
def
= C (en)

pushq %rdi
...

C (e1)
pushq %rdi

call f

addq $8n, %rsp

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 90

affectation

reste l’affectation x = e;

le membre gauche est ici réduit à une variable x
et on sait où cette variable est stockée sur la pile

C (x = e)
def
= C (e)

movq %rdi, ofs(%rbp)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 91

passage par référence

pour l’instant, on a passé les paramètres par valeur

i.e. le paramètre formel est une nouvelle variable qui prend comme valeur
initiale celle du paramètre effectif

en C++, le qualificatif & permet de spécifier un passage par référence

dans ce cas, le paramètre formel désigne la même variable que le
paramètre effectif, qui doit donc être une variable (une valeur gauche, de
manière plus générale)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 92

exemple

void fib(int n, int &r) {

if (n <= 1)

r = n;

else {

int tmp;

fib(n - 2, tmp);

fib(n - 1, r);

r = r + tmp;

}

}

int main() {

int f;

fib(10, f); // modifie la valeur de f

printf("%d\n", f); // affiche 55

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 93

passage par référence

pour prendre en compte le passage par référence, on étend encore le type
ident pour indiquer s’il s’agit d’une variable passée par référence

type ident = { ofs: int; byref: bool; ... }

(vaut false pour une variable locale)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 94

passage par référence

dans un appel tel que f(e) le paramètre effectif e n’est plus typé ni
compilé de la même manière selon qu’il s’agit d’un paramètre passé par
valeur ou par référence

lorsque le paramètre est passé par référence, le typage va donc

1. vérifier qu’il s’agit bien d’une valeur gauche (ici une variable)

2. indiquer qu’elle doit être passée par référence

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 95

passage par référence

une façon de procéder consiste à ajouter une construction de ≪ calcul de
valeur gauche ≫ dans la syntaxe des expressions

type int_expr =

...

| Eaddr of ident

et à remplacer, le cas échéant, le paramètre effectif e par Eaddr e

note : c’est l’opérateur & de C++, qui n’est pas dans notre fragment

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 96

passage par référence

il faut ajouter le code correspondant dans int expr :

C (&x)
def
= leaq ofs(%rbp), %rdi

movq (%rdi), %rdi si x.byref

note : le cas br = true correspond au cas d’une variable elle-même
passée par référence

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 97

exemple

void z(int &x) { x = 0; }

void h(int &s) { z(s); while (s < 100) s = 2*s+1; }

int main() { int tmp; h(tmp); printf("%d\n", tmp); }

ret

0

ret

ret

...

main

h

z

tmp

x

s

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 98

passage par référence

il faut aussi modifier le calcul des valeurs droites :

C (x)
def
= movq ofs(%rbp), %rdi

movq (%rdi), %rdi si x.byref

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 99

passage par référence

ainsi que celui de l’affectation :

C (x = e)
def
= C(e)

movq ofs(%rbp), %rsi si x.byref
leaq ofs(%rbp), %rsi sinon

movq %rdi, (%rsi)

en revanche, il n’y a rien à modifier dans l’appel (grâce à la nouvelle
construction Eaddr)

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 100

compilation des fonctions

il reste à compiler les déclarations des fonctions

void f(x1, ..., xn) {

// variables locales y1,...,ym

corps

}

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 101

compilation d’une fonction

on calcule
fs = max

yi
|yi.ofs|

puis

f: pushq %rbp # sauver %rbp

movq %rsp, %rbp # et le définir

subq $fs, %rsp # allouer fs octets

C (corps)

movq %rbp, %rsp # désallouer

popq %rbp # restaurer %rbp

ret # retour

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 102

exemple

void swap(int &x, int &y) {

int tmp;

tmp = x;

x = y;

y = tmp;

}

y (+24)
x (+16)

adr. retour
%rbp → %rbp appelant
tmp (-8) . . .

swap: pushq %rbp

movq %rsp, %rbp

subq $8, %rsp

movq 16(%rbp), %rdi

movq 0(%rdi), %rdi

leaq -8(%rbp), %rsi

movq %rdi, 0(%rsi)

movq 24(%rbp), %rdi

movq 0(%rdi), %rdi

movq 16(%rbp), %rsi

movq %rdi, 0(%rsi)

movq -8(%rbp), %rdi

movq 24(%rbp), %rsi

movq %rdi, 0(%rsi)

movq %rbp, %rsp

popq %rbp

ret

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 103

la suite

• TD 5
• typage Mini Go (suite)

• prochain cours
• langages OO et fonctionnels

Jean-Christophe Filliâtre CSC 52064 – Compilation évaluation et passage des paramètres 104

