École Polytechnique

CSC_52064 – Compilation

Jean-Christophe Filliâtre

static typing

Jean-Christophe Filliâtre

CSC_52064 - Compilation

static typing 1

type checking

if we write

"5" + 37

do we get

- a compile-time error? (OCaml, Rust, Go)
- a runtime error? (Python, Julia)
- the integer 42? (Visual Basic, PHP)
- the string "537"? (Java, Scala, Kotlin)
- a pointer? (C, C++)
- something else?

and what about

37 / "5"

if we now add two arbitrary expressions

e1 + e2

how can we decide whether this is legal and which operation to perform?

the answer is **typing**, a program analysis that binds **types** to each sub-expression, to rule out inconsistent programs

some languages are **dynamically typed**: types are bound to **values** and are used **at runtime**

examples: Lisp, PHP, Python, Julia

other languages are **statically typed**: types are bound to **expressions** and are used **at compile time**

```
examples: C, C++, Java, OCaml, Rust, Go
```

remark

a language may use **both** static and dynamic typing

we will illustrate it with Java at the end of this lecture

today

1. static typing

- 1.1 examples
- $1.2\,$ type checking $_{\rm WHILE,}$ formally
- 1.3 type safety
- 2. implementing type checking
- 3. subtyping
- 4. overloading

static typing

goals of typing

- type checking must be **decidable**
- type checking must reject programs whose evaluation would fail; this is type safety
- type checking must not reject too many non-absurd programs; the type system must be expressive

int f(long x) { return *x; }

on the other hand, the compiler accepts an integer where a pointer is expected

```
int *f(long x) { return x; }
```

yet it emits a warning

one can "bypass" type checking with a cast (transtypage en français)
int f(long x) { return *((int*)x); }

the cast only impacts static typing and is a no-op in the generated code

f: movl (%rdi), %eax ret

implicit cast

a C compiler introduce a lot of type conversions by itself, notably between the various numerical types

examples:

```
int f(float x) { return x; }
float g(int x) { return x; }
```

here this means converting between integers and floating-point numbers

```
f:

cvttss2sil %xmm0, %eax

ret
```

float f(int x, int y) { return x / y; }

divide then convert (implicit cast)

float f(int x, int y) { return ((float)x) / y; }

convert then divide

when the same name is used for several operations, we say it is overloaded

example: the same notation + can be used to add two integers, two floating-point numbers, a pointer and an integer, etc.

the **types of the operands**, set at compile time, determine which operation to perform

example

addition of two integers

int f(int x, int y) { return x + y; }
f: leal (%rdi,%rsi), %eax
 ret

addition of a pointer and an integer (pointer arithmetic)

int *f(int *x, int y) { return x + y; }

f: movslq %esi, %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

if the two operands must have the same type, but this is not the case, they are first **promoted** to a common type

the rules are complex (see for instance Kernighan & Ritchie)

another example

C makes a distinction between an array of pointers int *t[2]; $t[0] \rightarrow abc$ $t[1] \rightarrow def$ and an array of arrays int t[2][3]; abcdef $t[0] \uparrow \uparrow$ t[0] t[1]

in both cases, we write t[i][j] and the type checking allows the compiler to emit different operations

and many other things

type checking also means checking

- the existence of types, of structure fields, etc.
- existence and uniqueness of functions, their arity
- existence of variables
- that a break is within a loop
- that &e mentions a left value
- etc.

by nature, verification performed by static typing are limited to **decidable** properties

(reminder: decidable means that we can write a program that, for any input, terminates and outputs yes or no)

almost all "interesting" properties over source code are not decidable (Rice theorem)

the compiler cannot check

- the absence of division by zero
- that a computation terminates
- the absence of arithmetic overflow
- etc.

(and beyond that a program is doing what it is supposed to do!

yet it is possible

- to detect errors with certainty in some cases
- to emit warnings, at the risk of false positives

type checking WHILE , formally

let us consider the language WHILE from lecture 2

we are going to formally

- 1. give type checking rule for this language
- 2. show a type safety property

syntax

е	::=	expression
	l n	constant (signed 32-bit integer)
	X	variable
	e op e	binary operator $(+, < \dots)$
	* <i>e</i>	read from memory

s ::=

statement

<i>х=е</i> ;	assignment
x=malloc(4);	allocate memory
*e=e;	write to memory
if(<i>e</i>) <i>s</i> else <i>s</i>	conditional
while(<i>e</i>) <i>s</i>	loop
{ <i>s s</i> }	block

semantics

we define a big-step operational semantics for expressions

 $M, E, e \twoheadrightarrow v$

and a small-step operational semantics for statements

 $M, E, s \rightarrow M', E', s'$

where *E* is a function from variables to values and *M* is a function from addresses (ℓ) to integers (n)

$$v ::= value$$

| n integer value (signed 32-bit integer)
| ℓ memory address

semantics of expressions

$$\frac{x \text{ in } E}{M, E, n \twoheadrightarrow n} \qquad \frac{x \text{ in } E}{M, E, x \twoheadrightarrow E(x)}$$

$$\frac{M, E, e_1 \twoheadrightarrow n_1 \quad M, E, e_2 \twoheadrightarrow n_2 \quad n \stackrel{\text{def}}{=} n_1 + n_2 \quad -2^{31} \le n < 2^{31}}{M, E, e_1 + e_2 \twoheadrightarrow n} \quad \text{etc.}$$

$$\frac{M, E, e \twoheadrightarrow \ell \quad \ell \text{ in } M}{M, E, *e \twoheadrightarrow M(\ell)}$$

semantics of statements

$$\frac{M, E, e \twoheadrightarrow v}{M, E, x=e; \rightarrow M, E\{x \mapsto v\}, \{\}} \qquad \frac{M, E, e_1 \twoheadrightarrow \ell \quad \ell \text{ in } M \quad M, E, e_2 \twoheadrightarrow n}{M, E, x=e_1=e_2; \rightarrow M\{\ell \mapsto n\}, E, \{\}}$$

$$\frac{\ell \text{ an address that is not in } M}{M, E, x=\text{malloc}(4); \twoheadrightarrow M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, x=\text{malloc}(4); \implies M\{\ell \mapsto n\}, E, \{\}}$$

$$\overline{M, E, e \Rightarrow n \neq 0}$$

$$\overline{M, E, e \Rightarrow n \neq 0}$$

$$\overline{M, E, w\text{hile}(e) \ s \rightarrow M, E, \{s \text{ while}(e) \ s\}}$$

$$\overline{M, E, w\text{hile}(e) \ s \rightarrow M, E, \{\}}$$

Jean-Christophe Filliâtre

typing

we introduce **types**, with the following abstract syntax

 $\begin{array}{rrrr} \tau & ::= & \mbox{type} \\ & & | & \mbox{int} & \mbox{type of integers} \\ & & | & \mbox{int} * & \mbox{type of pointers} \end{array}$

typing judgment

the type of a variable is given by a **typing environment** Γ (a function from variables to types)

the typing judgment is written

 $\Gamma \vdash e : \tau$

and reads "in typing environment Γ , expression *e* has type τ "

we use **inference rules** to define $\Gamma \vdash e : \tau$

typing expressions

 $\Gamma \vdash n$: int

 $\frac{x \in \Gamma}{\Gamma \vdash x : \Gamma(x)}$

 $\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}} \quad \text{etc.}$ $\Gamma \vdash e : \text{int}*$

$$\Gamma \vdash *e : int$$

Jean-Christophe Filliâtre

example

with $\Gamma = \{ p \mapsto \texttt{int} *; b \mapsto \texttt{int} \}$, we have

$$\frac{p \in \Gamma}{\frac{\Gamma \vdash p: \text{int}^*}{\Gamma \vdash *p: \text{int}}} \quad \frac{b \in \Gamma}{\Gamma \vdash b: \text{int}}}{\Gamma \vdash *p + b: \text{int}}$$

this derivation is a proof that *p+b is well-typed

expressions without a type

in the same environment, we cannot type expressions such as

*p + c

or

*42

or

1 + p

this is precisely what we want, for these expressions have no value in our semantics

type checking statements

to type statements, we introduce a new judgment

$\Gamma \vdash s$

that reads "in environment Γ , statement *s* is well-typed"

type checking statements

$$\frac{x \in \Gamma \quad \Gamma(x) = \tau \quad \Gamma \vdash e : \tau}{\Gamma \vdash x = e;}$$

$$\frac{x \in \Gamma \quad \Gamma(x) = \text{int}*}{\Gamma \vdash x = \text{malloc}(4);} \qquad \frac{\Gamma \vdash e_1 : \text{int}* \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash *e_1 = e_2;}$$

$$\frac{\Gamma \vdash e : \tau \quad \Gamma \vdash s_1 \quad \Gamma \vdash s_2}{\Gamma \vdash \text{if} (e) \ s_1 \text{ else } s_2}$$

$$\frac{\Gamma \vdash e : \tau \qquad \Gamma \vdash s}{\Gamma \vdash \text{while } (e) \ s}$$

$$\frac{\Gamma \vdash \{s_1 \quad \Gamma \vdash \{s_2 \dots\}}{\Gamma \vdash \{s_1 \quad s_2 \dots\}}$$

Jean-Christophe Filliâtre

CSC_52064 - Compilation

type safety

well-typed programs do not go wrong

(Milner, 1978)

type safety

let us show that our type system is safe wrt our operational semantics

Theorem (type safety)

If $\Gamma \vdash s$, then the reduction s is either infinite or reaches { }.

or, equivalently,

Theorem

If $\Gamma \vdash s$ and $M, E, s \rightarrow^* M', E', s'$ and s' is irreducible, then s' is { }.

type safety

this means evaluation won't be stuck or any expression such as

*42

or on a statement

if (e) s_1 else s_2

where e does not evaluate to a value

expressions

let us show first that well-typed expressions do evaluate successfully

```
if \Gamma \vdash e : \tau, then M, E, e \twoheadrightarrow v
```

stated as such, this is not correct: we need a relationship between Γ on one side and M and E on the other side

counterexamples:
Definition (well-typed environment)

An execution environment M, E is well-typed in a typing environment Γ , written $\Gamma \vdash M, E$, if

$$\forall x, \text{ if } \Gamma(x) = \tau \text{ then } \begin{cases} x \in E \text{ and } \Gamma \vdash E(x) : \tau, \\ \text{ if } \tau = \text{ int* then } E(x) \in M. \end{cases}$$

Lemma (evaluation of a well-typed expression)

If $\Gamma \vdash e : \tau$ and $\Gamma \vdash M$, E, then M, E, $e \twoheadrightarrow v$ and $\Gamma \vdash v : \tau$. Beside, if $v = \ell$ then $\ell \in M$.

proof: by induction on the derivation $\Gamma \vdash e : \tau$.

$$e = n$$
 immediate with $v = n$

$$e = x$$
 immediate with $v = E(x)$;
and if $v = \ell$ then $\ell \in M$ since M, E is well-typed

 $e = e_1 + e_2$ by IH on e_1 and e_2 we have $M, E, e_i \twoheadrightarrow v_i$ and $\Gamma \vdash v_i : \text{int}$, so v_1 and v_2 are integers and we conclude with $v = v_1 + v_2$ $e = *e_1$ by IH on e_1 we have $M, E, e_1 \twoheadrightarrow \ell$ and since M, E is well-typed we have $\ell \in M$, so we conclude with $v = M(\ell)$.

evaluation of statements

the type safety proof is based on two lemmas

Lemma (progress)

If $\Gamma \vdash s$ and $\Gamma \vdash M, E$, then either s is { }, or $M, E, s \rightarrow M', E', s'$.

Lemma (preservation)

If $\Gamma \vdash s$, if $\Gamma \vdash M$, E and if $M, E, s \rightarrow M', E', s'$ then $\Gamma \vdash s'$ and $\Gamma \vdash M', E'$.

Lemma (progress)

If $\Gamma \vdash s$ and $\Gamma \vdash M, E$, then either s is { }, or $M, E, s \rightarrow M', E', s'$.

proof: by induction on the derivation $\Gamma \vdash s$

s = { } immediate

$$\begin{split} \textbf{s} &= \{ \textbf{s}_1 \ \textbf{s}_2 \dots \} \text{ if } \textbf{s}_1 = \{ \}, \text{ we have } M, E, \{ \textbf{s}_1 \ \textbf{s}_2 \dots \} \rightarrow M, E, \{ \textbf{s}_2 \dots \} \\ &\text{otherwise, we use IH on } \textbf{s}_1, \text{ so } M, E, \textbf{s}_1 \rightarrow M', E', \textbf{s}_1' \text{ and} \\ &\text{thus } M, E, \{ \textbf{s}_1 \ \textbf{s}_2 \dots \} \rightarrow M', E', \{ \textbf{s}_1' \ \textbf{s}_2 \dots \} \end{split}$$

 $s = *e_1 = e_2$; since e_1 and e_2 are well-typed, they evaluate to ℓ and n respectively, with $\ell \in M$, and thus $M, E, *e_1 = e_2$; $\rightarrow M\{\ell \mapsto n\}, E, \{ \}$

other cases left as exercise

then we show

Lemma (preservation)

If $\Gamma \vdash s$, if $\Gamma \vdash M$, E and if $M, E, s \rightarrow M', E', s'$ then $\Gamma \vdash s'$ and $\Gamma \vdash M', E'$.

proof: by induction on the derivation $\Gamma \vdash s$ $s = \{ s_1 \ s_2 \dots \}$ we have $\Gamma \vdash s_1$ and $\Gamma \vdash \{ s_2 \dots \}$ • if $s_1 = \{ \}$, then $M, E, \{ s_1 \ s_2 \dots \} \rightarrow M, E, \{ s_2 \dots \}$ • otherwise, $M, E, s_1 \rightarrow M', E', s'_1$ and by IH $\Gamma \vdash s'_1$ and $\Gamma \vdash M', E'$ so $\Gamma \vdash \{ s'_1 \ s_2 \dots \}$ $s = *e_1 = e_2$; we have $M, E, e_1 \rightarrow \ell$ and $M, E, e_2 \rightarrow n$ (slide 40) and $s' = \{ \}$ (so $\Gamma \vdash s'$) and $M' = M\{\ell \mapsto n\}$ thus $\Gamma \vdash s'$ and $\Gamma \vdash M', E'$

other cases left as exercise

type safety

now we can deduce type safety easily

```
Theorem (type safety)
```

If $\Gamma \vdash s$ and $\Gamma \vdash M$, E and M, E, $s \rightarrow^* M'$, E', s' and s' is irreducible, then s' is { }.

proof: we have $M, E, s \to M_1, E_1, s_1 \to \cdots \to M', E', s'$ and by repeated applications of the preservation lemma, we have $\Gamma \vdash s'$ by the progress lemma, s' is reducible or is { } so this is { }

in the lecture notes

the lecture notes contain a similar proof for Mini-ML, with types as follows

au	::=	$int \mid bool \mid$	 base types
		$\tau \to \tau$	function type
		$\tau\times\tau$	type of a pair

as we just did, the proof is based on progress and preservation properties

see chapter 5

languages such as Java or OCaml enjoy such a type safety property

which means that the evaluation of an expression of type $\boldsymbol{\tau}$

- either does not terminate
- or raises an exception
- or terminates on a value with type au

in OCaml, the absence of null makes it a rather strong property

implementing type checking

implementing type checking

there is a difference between the typing rules, which define the relation

$$\Gamma \vdash e : \tau$$

and the type checking algorithm, which checks that a given expression e is well-typed in some environment Γ

for instance

- the type au is not necessarily given (type inference)
- several rules may apply for a single construct
- an expression may have several types

the case of WHILE is simple, as a single rule applies for each expression we say that typing is **syntax-directed**

the type checking is then implemented with a linear time traversal of the program

practical considerations

we do not simply say

type error

but we **explain** the type error precisely

• we keep types for the further phases of the compiler

to do this, we **decorate** abstract syntax trees

- input of type checking contains positions in source code
- output of type checking contains types

decorated AST

in OCaml	in Java
<pre>type loc =</pre>	<pre>class Loc { }</pre>
type expr =	abstract class Expr {
<pre> Evar of string Econst of int Efield of expr * string</pre>	<pre>} class Evar extends Expr {} class Econst extends Expr {} class Efield extends Expr {}</pre>

decorated AST

in OCaml	in Java
<pre>type loc =</pre>	<pre>class Loc { }</pre>
<pre>type expr = {</pre>	<pre>abstract class Expr {</pre>
desc: desc;	Loc loc;
loc : loc;	
}	
and desc =	}
Evar <mark>of</mark> string	<pre>class Evar extends Expr {}</pre>
Econst <mark>of</mark> int	<pre>class Econst extends Expr {}</pre>
Efield of expr * string	<pre>class Efield extends Expr {}</pre>

we signal a type error with an exception

the exception contains

- a message explaining the error
- a position in the source code

we catch this exception in the main function

we display the position and the message

test.c:8:14: error: too few arguments to function 'f'

output

we set up an abstract syntax for types

type typ = ... class Typ { ... }

and a new abstract syntax for programs

<pre>type texpr = {</pre>	<pre>abstract class Texpr {</pre>
tdesc: tdesc;	Typ typ;
typ : typ	
}	
and tdesc =	}
Tvar <mark>of</mark> string	<pre>class Tvar extends Texpr {}</pre>
Tconst <mark>of</mark> int	<pre>class Tconst extends Texpr {}</pre>
Tfield of texpr * string	<pre>class Tfield extends Texpr {}</pre>

during type checking, the compiler maintains data structures that contain the symbols in scope

we have a dictionary for variables, another for types, etc.

these are called name spaces

the following C program is accepted (even if questionable)

```
struct f { int f; };
int f(struct f f) { f.f = 1; }
```

but the following is rejected

int f(int f) { return f(f); }

at any moment, we know the variables that are in scope

for each one, we know

- the location of its declaration
- its type
- possibly other things (size in memory, etc.)

terminology: **symbol tables** refer to such data associated to symbols inside compilers

a variable may temporarily hide another one; this is called shadowing

```
int x = 1;
{ int *x; ... }
x = 2; // back with int x
```

in practice

during type checking, a dictionary maps names to symbolswhen we are done, we throw the dictionary away, and we are left with the typed tree containing the symbols

subtyping

we say that a type τ_1 is a subtype of a type $\tau_2,$ which we write

$\tau_1 \leq \tau_2$

if any value with type au_1 can be considered as a value with type au_2

in many languages, there is subtyping between numerical types in Java, it is as shown on the right double float thus we can write long int n = 'a';int but not char short **byte** b = 144;byte

in an object-oriented language, inheritance induces **subtyping**: if a class B inherits from a class A, we have

$\mathtt{B} \leq \mathtt{A}$

i.e. any value of type B can be seen as a value of type A

example in Java

the two classes

class Vehicle { ... void move() { ... } ... }
class Car extends Vehicle { ... void move() { ... } ... }

induce the subtyping relation

 $\texttt{Car} \leq \texttt{Vehicle}$

and thus we can write

Vehicle v = new Car(); v.move();

static and dynamic types

the construct new C(...) builds an object of class C, and the class of this object cannot be changed in the future; this is the **dynamic type** of the object

however, the **static type** of an expression, as computed by the compiler, may differ from the dynamic type, because of subtyping

when we write

```
Vehicle v = new Car();
v.move();
```

variable v has type Vehicle, but the method move that is called is that of class Car (we'll explain how in another lecture)

static and dynamic types

in many cases, the compiler cannot determine the dynamic type

example:

```
void moveAll(LinkedList<Vehicule> 1) {
  for (Vehicule v: 1)
    v.move();
}
```

sometimes we need to force the compiler's hand, which means we claim that a value has some type

we call this type casting (or simply cast)

Java's notation, inherited from C, is

 $(\tau)e$

the static type of this expression $\boldsymbol{\tau}$

example

using a cast, we can write

int n = ...; byte b = (byte)n;

in this case, there is no dynamic verification (if the integer is too large, it is truncated)

casting objects

let us consider

(C)e

where

- *D* is the dynamic type of (the object designated by) *e*
- E is the static type of expression e

there are three cases

- C is a super class of E: this is an **upcast** and the code for (C)e is that of e (but the cast has some influence anyway, since (C)e has type C)
- *C* is a subclass of *E*: this is a **downcast** and the code contains **dynamic test** to check that *D* is indeed a subclass of *C*
- *C* is neither a subclass nor a super of *E*: the compiler rejects the program with a type error

example (upcast)

```
class A {
  int x = 1;
}
class B extends A {
  int x = 2;
}
```

```
B b = new B();
System.out.println(b.x); // 2
System.out.println(((A)b).x); // 1
```

Jean-Christophe Filliâtre

example (downcast)

```
void m(Vehicle v, Vehicle w) {
  ((Car)v).await(w);
}
```

nothing guarantees that the object passed to m will be a car; in particular, it could have no method await!

the dynamic test is required

Java raises ClassCastException is the test fails

testing subtyping dynamically

to allow defensive programming, there exists a Boolean construct

 $e \; \texttt{instanceof} \; C$

that checks whether the class of e is indeed a subclass of C

it is idiomatic to do

```
if (e instanceof C) {
   C c = (C)e;
   ...
}
```

in this case, the compiler makes an optimization to perform a single test

Jean-Christophe Filliâtre
overloading (surcharge en français)

overloading is the ability to reuse the same name of several operations

overloading is handled **at compile time**, using the number and the (static) types of arguments

caveat: not to be confused with *overriding* (see lecture 6)

example

in Java, operation + is overloaded

int n = 40 + 2; String s = "foo" + "bar"; String t = "foo" + 42;

these are three distinct operations

int	+(int ,	int)
String	+(String,	String)
String	+(String,	int)

be careful!

when we write

int n = 'a' + 42;

this is subtyping that allows us to consider 'a' with type char as a value of type int, and thus the operation is +(int, int)

but when we write

String t = "foo" + 42;

this is **not** subtyping (int ∠ String)

in particular, we cannot write

String t = 42;

in Java, one cannot overload operators such as + but one can overload methods/constructors

```
int f(int n, int m) { ... }
int f(int n) { ... }
int f(String s) { ... }
```

overloading resolution

this is exactly as if we had written

int f_int_int(int n, int m) { ... }
int f_int (int n) { ... }
int f_String (String s) { ... }

the compiler uses the static types of ${\tt f}$'s arguments to determine which method to call

overloading resolution

yet overloading resolution can be tricky

```
class A {...}
class B extends A {
    void m(A a) {...}
    void m(B b) {...}
}
```

with

```
{ ... B b = new B(); b.m(b); ... }
```

both methods apply

this is method m(B b) that is called, because it is considered more precise

Jean-Christophe Filliâtre

CSC_52064 - Compilation

ambiguity

some cases are ambiguous

```
class A {...}
class B extends A {
   void m(A a, B b) {...}
   void m(B b, A a) {...}
}
{ ... B b = new B(); b.m(b, b); ... }
```

and reported as such

test.java:13: reference to m is ambiguous, both method m(A,B) in B and method m(B,A) in B match

Java's overloading resolution

to each method defined in class C

 $\tau \operatorname{m}(\tau_1 x_1, ..., \tau_n x_n)$

we set the profile $(C, \tau_1, \ldots, \tau_n)$

then we order profiles: $(\tau_0, \tau_1, \ldots, \tau_n) \sqsubseteq (\tau'_0, \tau'_1, \ldots, \tau'_n)$ if and only if τ_i is a subtype of τ'_i for all i

for a call

$$e.m(e_1,\ldots,e_n)$$

where *e* has static type τ_0 and e_i has static type τ_i , we consider the set of all **minimal** elements in the set of all compatible profiles

- no element \Rightarrow no method applies
- several elements ⇒ ambiguity
- a single element \Rightarrow this is the method to call

what about Python

as far as the execution model is concerned, Python is relatively close to Java, but there is almost **no static typing** in Python

all the verification is performed dynamically

including the existence of a function, the check of its arity, etc.

- labs 4-9 = the project = a tiny Java to x86-64 compiler
 - PDF description on Moodle
- lab 4 = static typing of Mini Java
 - the parser is provided
 - but no need to run CUP or Menhir
 - both parsed and typed AST are provided
 - read and understand before you start
 - tests are provided
 - test as you go
- next lecture
 - evaluation strategy
 - parameter passing