
École Polytechnique

CSC 52064 – Compilation

Jean-Christophe Filliâtre

static typing

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 1

type checking

if we write

"5" + 37

do we get

• a compile-time error? (OCaml, Rust, Go)

• a runtime error? (Python, Julia)

• the integer 42? (Visual Basic, PHP)

• the string "537"? (Java, Scala, Kotlin)

• a pointer? (C, C++)

• something else?

and what about

37 / "5"

?
Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 4

typing

if we now add two arbitrary expressions

e1 + e2

how can we decide whether this is legal and which operation to perform?

the answer is typing, a program analysis that binds types to each
sub-expression, to rule out inconsistent programs

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 5

when?

some languages are dynamically typed: types are bound to values and
are used at runtime

examples: Lisp, PHP, Python, Julia

other languages are statically typed: types are bound to expressions and
are used at compile time

examples: C, C++, Java, OCaml, Rust, Go

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 6

remark

a language may use both static and dynamic typing

we will illustrate it with Java at the end of this lecture

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 7

today

1. static typing

1.1 examples
1.2 type checking while, formally
1.3 type safety

2. implementing type checking

3. subtyping

4. overloading

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 8

static typing

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 9

goals of typing

• type checking must be decidable

• type checking must reject programs whose evaluation would fail;
this is type safety

• type checking must not reject too many non-absurd programs;
the type system must be expressive

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 10

example

int f(long x) { return *x; }

file.c:1:23: error: invalid type argument of unary ‘*’

(have ‘long int’)

2 | int f(long x) { return *x; }

| ^~

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 11

but...

on the other hand, the compiler accepts an integer where a pointer is
expected

int *f(long x) { return x; }

yet it emits a warning

file.c:1:24: warning: returning ‘long int’ from a function

with return type ‘int *’ makes pointer from

integer without a cast [-Wint-conversion]

1 | int *f(long x) { return x; }

| ^

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 12

cast

one can “bypass” type checking with a cast (transtypage en français)

int f(long x) { return *((int*)x); }

the cast only impacts static typing and is a no-op in the generated code

f:

movl (%rdi), %eax

ret

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 13

implicit cast

a C compiler introduce a lot of type conversions by itself,
notably between the various numerical types

examples:

int f(float x) { return x; }

float g(int x) { return x; }

here this means converting between integers and floating-point numbers

f:

cvttss2sil %xmm0, %eax

ret

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 14

warning

float f(int x, int y) { return x / y; }

divide then convert (implicit cast)

float f(int x, int y) { return ((float)x) / y; }

convert then divide

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 15

overloading

when the same name is used for several operations, we say it is overloaded

example: the same notation + can be used to add two integers, two
floating-point numbers, a pointer and an integer, etc.

the types of the operands, set at compile time, determine which
operation to perform

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 16

example

addition of two integers

int f(int x, int y) { return x + y; }

f: leal (%rdi,%rsi), %eax

ret

addition of a pointer and an integer (pointer arithmetic)

int *f(int *x, int y) { return x + y; }

f: movslq %esi, %rsi

leaq (%rdi,%rsi,4), %rax

ret

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 17

promotion

if the two operands must have the same type, but this is not the case,
they are first promoted to a common type

the rules are complex (see for instance Kernighan & Ritchie)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 18

another example

C makes a distinction
between an array of pointers

int *t[2];

a b c
d e f

t[0]
t[1]

and an array of arrays

int t[2][3];

a b c d e f

t[0] t[1]

in both cases, we write t[i][j] and the type checking allows the
compiler to emit different operations

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 19

and many other things

type checking also means checking

• the existence of types, of structure fields, etc.

• existence and uniqueness of functions, their arity

• existence of variables

• that a break is within a loop

• that &e mentions a left value

• etc.

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 20

limits of static typing

by nature, verification performed by static typing are limited to decidable
properties

(reminder: decidable means that we can write a program that, for any
input, terminates and outputs yes or no)

almost all “interesting” properties over source code are not decidable (Rice
theorem)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 21

examples

the compiler cannot check

• the absence of division by zero

• that a computation terminates

• the absence of arithmetic overflow

• etc.

(and beyond that a program is doing what it is supposed to do!

yet it is possible

• to detect errors with certainty in some cases

• to emit warnings, at the risk of false positives

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 22

type checking while, formally

let us consider the language while from lecture 2

we are going to formally

1. give type checking rule for this language

2. show a type safety property

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 23

syntax

e ::= expression
| n constant (signed 32-bit integer)
| x variable
| e op e binary operator (+, <. . .)
| *e read from memory

s ::= statement
| x=e; assignment
| x=malloc(4); allocate memory
| *e=e; write to memory
| if (e) s else s conditional
| while (e) s loop
| { s . . . s } block

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 24

semantics

we define a big-step operational semantics for expressions

M,E , e ↠ v

and a small-step operational semantics for statements

M,E , s → M ′,E ′, s ′

where E is a function from variables to values
and M is a function from addresses (ℓ) to integers (n)

v ::= value
| n integer value (signed 32-bit integer)
| ℓ memory address

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 25

semantics of expressions

M,E , n ↠ n

x in E

M,E , x ↠ E (x)

M,E , e1 ↠ n1 M,E , e2 ↠ n2 n
def
= n1 + n2 − 231 ≤ n < 231

M,E , e1 + e2 ↠ n
etc.

M,E , e ↠ ℓ ℓ in M

M,E , *e ↠ M(ℓ)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 26

semantics of statements

M,E , e ↠ v

M,E , x=e; → M,E{x 7→ v}, { }

M,E , e1 ↠ ℓ ℓ in M M,E , e2 ↠ n

M,E , *e1=e2; → M{ℓ 7→ n},E , { }

ℓ an address that is not in M

M,E , x=malloc(4); ↠ M{ℓ 7→ n},E , { }

M,E , { { } s . . . } → M,E , { s . . . }

M,E , s1 → M1,E1, s
′
1

M,E , { s1 s2 . . . } → M1,E1, { s ′1 s2 . . . }

M,E , e ↠ n ̸= 0

M,E , if (e) s1 else s2 → M,E , s1

M,E , e ↠ 0

M,E , if (e) s1 else s2 → M,E , s2
M,E , e ↠ n ̸= 0

M,E , while (e) s → M,E , { s while (e) s }

M,E , e ↠ 0

M,E , while (e) s → M,E , { }

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 27

typing

we introduce types, with the following abstract syntax

τ ::= type
| int type of integers
| int∗ type of pointers

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 28

typing judgment

the type of a variable is given by a typing environment Γ
(a function from variables to types)

the typing judgment is written

Γ ⊢ e : τ

and reads “in typing environment Γ, expression e has type τ”

we use inference rules to define Γ ⊢ e : τ

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 29

typing expressions

Γ ⊢ n : int

x ∈ Γ

Γ ⊢ x : Γ(x)

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
etc.

Γ ⊢ e : int*

Γ ⊢ *e : int

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 30

example

with Γ = {p 7→ int∗; b 7→ int}, we have

p ∈ Γ

Γ ⊢ p : int*

Γ ⊢ *p : int

b ∈ Γ

Γ ⊢ b : int

Γ ⊢ *p + b : int

this derivation is a proof that *p+b is well-typed

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 31

expressions without a type

in the same environment, we cannot type expressions such as

*p + c

or
*42

or
1 + p

this is precisely what we want, for these expressions have no value in our
semantics

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 32

type checking statements

to type statements, we introduce a new judgment

Γ ⊢ s

that reads “in environment Γ, statement s is well-typed”

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 33

type checking statements

x ∈ Γ Γ(x) = τ Γ ⊢ e : τ

Γ ⊢ x=e;

x ∈ Γ Γ(x) = int*

Γ ⊢ x=malloc(4);

Γ ⊢ e1 : int* Γ ⊢ e2 : int

Γ ⊢ *e1=e2;

Γ ⊢ e : τ Γ ⊢ s1 Γ ⊢ s2
Γ ⊢ if (e) s1 else s2

Γ ⊢ e : τ Γ ⊢ s

Γ ⊢ while (e) s

Γ ⊢ { }

Γ ⊢ s1 Γ ⊢ { s2 . . . }

Γ ⊢ { s1 s2 . . . }

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 34

type safety

well-typed programs do not go wrong

(Milner, 1978)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 35

type safety

let us show that our type system is safe wrt our operational semantics

Theorem (type safety)

If Γ ⊢ s, then the reduction s is either infinite or reaches { }.

or, equivalently,

Theorem

If Γ ⊢ s and M,E , s →⋆ M ′,E ′, s ′ and s ′ is irreducible, then s ′ is { }.

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 36

type safety

this means evaluation won’t be stuck or any expression such as

*42

or on a statement
if (e) s1 else s2

where e does not evaluate to a value

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 37

expressions

let us show first that well-typed expressions do evaluate successfully

if Γ ⊢ e : τ , then M,E , e ↠ v

stated as such, this is not correct: we need a relationship between Γ on
one side and M and E on the other side

counterexamples:

Γ = {p 7→ int∗}
e = *p
E = {p 7→ 89}
M = ...

Γ = {p 7→ int∗}
e = *p
E = {p 7→ ℓ}
M = ∅

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 38

consistency of environments

Definition (well-typed environment)

An execution environment M,E is well-typed in a typing environment Γ,
written Γ ⊢ M,E , if

∀x , if Γ(x) = τ then

{
x ∈ E and Γ ⊢ E (x) : τ,
if τ = int* then E (x) ∈ M.

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 39

expressions

Lemma (evaluation of a well-typed expression)

If Γ ⊢ e : τ and Γ ⊢ M,E , then M,E , e ↠ v and Γ ⊢ v : τ .
Beside, if v = ℓ then ℓ ∈ M.

proof: by induction on the derivation Γ ⊢ e : τ .

e = n immediate with v = n

e = x immediate with v = E (x);
and if v = ℓ then ℓ ∈ M since M,E is well-typed

e = e1 + e2 by IH on e1 and e2 we have M,E , ei ↠ vi and Γ ⊢ vi : int,
so v1 and v2 are integers and we conclude with v = v1 + v2

e=*e1 by IH on e1 we have M,E , e1 ↠ ℓ and since M,E is
well-typed we have ℓ ∈ M, so we conclude with v = M(ℓ).

□

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 40

evaluation of statements

the type safety proof is based on two lemmas

Lemma (progress)

If Γ ⊢ s and Γ ⊢ M,E , then either s is { }, or M,E , s → M ′,E ′, s ′.

Lemma (preservation)

If Γ ⊢ s, if Γ ⊢ M,E and if M,E , s → M ′,E ′, s ′ then Γ ⊢ s ′ and Γ ⊢ M ′,E ′.

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 41

progress

Lemma (progress)

If Γ ⊢ s and Γ ⊢ M,E , then either s is { }, or M,E , s → M ′,E ′, s ′.

proof: by induction on the derivation Γ ⊢ s

s = { } immediate

s = { s1 s2 . . . } if s1 = { }, we have M,E , { s1 s2 . . . } → M,E , { s2 . . . }
otherwise, we use IH on s1, so M,E , s1 → M ′,E ′, s ′1 and
thus M,E , { s1 s2 . . . } → M ′,E ′, { s ′1 s2 . . . }

s = *e1=e2; since e1 and e2 are well-typed, they evaluate to ℓ and n
respectively, with ℓ ∈ M, and thus
M,E , *e1=e2; → M{ℓ 7→ n},E , { }

other cases left as exercise □

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 42

preservation

then we show

Lemma (preservation)

If Γ ⊢ s, if Γ ⊢ M,E and if M,E , s → M ′,E ′, s ′ then Γ ⊢ s ′ and Γ ⊢ M ′,E ′.

proof: by induction on the derivation Γ ⊢ s

s = { s1 s2 . . . } we have Γ ⊢ s1 and Γ ⊢ { s2 . . . }

• if s1 = { }, then M,E , { s1 s2 . . . } → M,E , { s2 . . . }
• otherwise, M,E , s1 → M ′,E ′, s ′1 and by IH Γ ⊢ s ′1 and

Γ ⊢ M ′,E ′ so Γ ⊢ { s ′1 s2 . . . }

s = *e1=e2; we have M,E , e1 ↠ ℓ and M,E , e2 ↠ n (slide 40) and
s ′ = { } (so Γ ⊢ s ′) and M ′ = M{ℓ 7→ n}
thus Γ ⊢ s ′ and Γ ⊢ M ′,E ′

other cases left as exercise □

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 43

type safety

now we can deduce type safety easily

Theorem (type safety)

If Γ ⊢ s and Γ ⊢ M,E and M,E , s →⋆ M ′,E ′, s ′ and s ′ is irreducible,
then s ′ is { }.

proof: we have M,E , s → M1,E1, s1 → · · · → M ′,E ′, s ′ and by repeated
applications of the preservation lemma, we have Γ ⊢ s ′

by the progress lemma, s ′ is reducible or is { }

so this is { } □

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 44

in the lecture notes

the lecture notes contain a similar proof for Mini-ML,
with types as follows

τ ::= int | bool | . . . base types
| τ → τ function type
| τ × τ type of a pair

as we just did, the proof is based on progress and preservation properties

see chapter 5

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 45

in real life

languages such as Java or OCaml enjoy such a type safety property

which means that the evaluation of an expression of type τ

• either does not terminate

• or raises an exception

• or terminates on a value with type τ

in OCaml, the absence of null makes it a rather strong property

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 46

implementing type checking

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 47

implementing type checking

there is a difference between the typing rules, which define the relation

Γ ⊢ e : τ

and the type checking algorithm, which checks that a given expression e
is well-typed in some environment Γ

for instance

• the type τ is not necessarily given (type inference)

• several rules may apply for a single construct

• an expression may have several types

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 48

in our case

the case of while is simple, as a single rule applies for each expression

we say that typing is syntax-directed

the type checking is then implemented with a linear time traversal of the
program

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 49

practical considerations

• we do not simply say

type error

but we explain the type error precisely

• we keep types for the further phases of the compiler

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 50

practical considerations

to do this, we decorate abstract syntax trees

• input of type checking contains positions in source code

• output of type checking contains types

source
file

parser−−−→ syntax trees
with locations

type checker−−−−−−−→ syntax trees
with types

t[i] *(t+i) *(t+4i)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 51

decorated AST

in OCaml

type loc = ...

type expr =

| Evar of string

| Econst of int

| Efield of expr * string

...

in Java

class Loc { ... }

abstract class Expr {

}

class Evar extends Expr {...}

class Econst extends Expr {...}

class Efield extends Expr {...}

...

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 52

decorated AST

in OCaml

type loc = ...

type expr = {

desc: desc;

loc : loc;

}

and desc =

| Evar of string

| Econst of int

| Efield of expr * string

...

in Java

class Loc { ... }

abstract class Expr {

Loc loc;

}

class Evar extends Expr {...}

class Econst extends Expr {...}

class Efield extends Expr {...}

...

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 53

error reporting

we signal a type error with an exception

the exception contains

• a message explaining the error

• a position in the source code

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 54

error reporting

we catch this exception in the main function

we display the position and the message

test.c:8:14: error: too few arguments to function ’f’

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 55

output

we set up an abstract syntax for types

type typ = ... class Typ { ... }

and a new abstract syntax for programs

type texpr = {

tdesc: tdesc;

typ : typ

}

and tdesc =

| Tvar of string

| Tconst of int

| Tfield of texpr * string

...

abstract class Texpr {

Typ typ;

}

class Tvar extends Texpr {...}

class Tconst extends Texpr {...}

class Tfield extends Texpr {...}

...

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 56

name space

during type checking, the compiler maintains data structures that contain
the symbols in scope

we have a dictionary for variables, another for types, etc.

these are called name spaces

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 57

example

the following C program is accepted (even if questionable)

struct f { int f; };

int f(struct f f) { f.f = 1; }

but the following is rejected

int f(int f) { return f(f); }

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 58

symbol table

at any moment, we know the variables that are in scope

for each one, we know

• the location of its declaration

• its type

• possibly other things (size in memory, etc.)

terminology: symbol tables refer to such data associated to symbols
inside compilers

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 59

shadowing

a variable may temporarily hide another one; this is called shadowing

int x = 1;

{ int *x; ... }

x = 2; // back with int x

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 60

in practice

int x;

x = 1;

{ int *x; ... }

x = 2;

"x" 7→ x int . . . "x" 7→ x int . . . x int . . .

"x" 7→ x int* . . .

"x" 7→ x int . . .

x int* . . .

x int . . .

x int* . . .

during type checking, a dictionary maps names to symbolswhen we are
done, we throw the dictionary away, and we are left with the typed tree
containing the symbols

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 61

subtyping

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 62

definition

we say that a type τ1 is a subtype of a type τ2, which we write

τ1 ≤ τ2

if any value with type τ1 can be considered as a value with type τ2

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 63

example

in many languages, there is subtyping between numerical types

in Java, it is as shown on the right

thus we can write

int n = ’a’;

but not

byte b = 144;

double

float

long

int

char short

byte

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 64

inheritance

in an object-oriented language, inheritance induces subtyping:
if a class B inherits from a class A, we have

B ≤ A

i.e. any value of type B can be seen as a value of type A

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 65

example in Java

the two classes

class Vehicle { ... void move() { ... } ... }

class Car extends Vehicle { ... void move() { ... } ... }

induce the subtyping relation

Car ≤ Vehicle

and thus we can write

Vehicle v = new Car();

v.move();

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 66

static and dynamic types

the construct new C(...) builds an object of class C, and the class of this
object cannot be changed in the future; this is the dynamic type of the
object

however, the static type of an expression, as computed by the compiler,
may differ from the dynamic type, because of subtyping

when we write

Vehicle v = new Car();

v.move();

variable v has type Vehicle, but the method move that is called is that of
class Car (we’ll explain how in another lecture)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 67

static and dynamic types

in many cases, the compiler cannot determine the dynamic type

example:

void moveAll(LinkedList<Vehicule> l) {

for (Vehicule v: l)

v.move();

}

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 68

type casting

sometimes we need to force the compiler’s hand, which means we claim
that a value has some type

we call this type casting (or simply cast)

Java’s notation, inherited from C, is

(τ)e

the static type of this expression τ

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 69

example

using a cast, we can write

int n = ...;

byte b = (byte)n;

in this case, there is no dynamic verification
(if the integer is too large, it is truncated)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 70

casting objects

let us consider
(C)e

where

• D is the dynamic type of (the object designated by) e

• E is the static type of expression e

there are three cases

• C is a super class of E : this is an upcast and the code for (C)e is
that of e (but the cast has some influence anyway, since (C)e has
type C)

• C is a subclass of E : this is a downcast and the code contains
dynamic test to check that D is indeed a subclass of C

• C is neither a subclass nor a super of E : the compiler rejects the
program with a type error

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 71

example (upcast)

class A {

int x = 1;

}

class B extends A {

int x = 2;

}

B b = new B();

System.out.println(b.x); // 2

System.out.println(((A)b).x); // 1

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 72

example (downcast)

void m(Vehicle v, Vehicle w) {

((Car)v).await(w);

}

nothing guarantees that the object passed to m will be a car; in particular,
it could have no method await!

the dynamic test is required

Java raises ClassCastException is the test fails

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 73

testing subtyping dynamically

to allow defensive programming, there exists a Boolean construct

e instanceof C

that checks whether the class of e is indeed a subclass of C

it is idiomatic to do

if (e instanceof C) {

C c = (C)e;

...

}

in this case, the compiler makes an optimization to perform a single test

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 74

overloading
(surcharge en français)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 75

definition

overloading is the ability to reuse the same name of several operations

overloading is handled at compile time, using the number and the
(static) types of arguments

caveat: not to be confused with overriding (see lecture 6)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 76

example

in Java, operation + is overloaded

int n = 40 + 2;

String s = "foo" + "bar";

String t = "foo" + 42;

these are three distinct operations

int +(int , int)

String +(String, String)

String +(String, int)

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 77

be careful!

when we write

int n = ’a’ + 42;

this is subtyping that allows us to consider ’a’ with type char as a value
of type int, and thus the operation is +(int, int)

but when we write

String t = "foo" + 42;

this is not subtyping (int ̸≤ String)

in particular, we cannot write

String t = 42;

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 78

another example

in Java, one cannot overload operators such as +
but one can overload methods/constructors

int f(int n, int m) { ... }

int f(int n) { ... }

int f(String s) { ... }

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 79

overloading resolution

this is exactly as if we had written

int f_int_int(int n, int m) { ... }

int f_int (int n) { ... }

int f_String (String s) { ... }

the compiler uses the static types of f’s arguments to determine which
method to call

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 80

overloading resolution

yet overloading resolution can be tricky

class A {...}

class B extends A {

void m(A a) {...}

void m(B b) {...}

}

with

{ ... B b = new B(); b.m(b); ... }

both methods apply

this is method m(B b) that is called, because it is considered more precise

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 81

ambiguity

some cases are ambiguous

class A {...}

class B extends A {

void m(A a, B b) {...}

void m(B b, A a) {...}

}

{ ... B b = new B(); b.m(b, b); ... }

and reported as such

test.java:13: reference to m is ambiguous,

both method m(A,B) in B and method m(B,A) in B match

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 82

Java’s overloading resolution

to each method defined in class C

τ m(τ1 x1, ..., τn xn)

we set the profile (C, τ1, . . . , τn)

then we order profiles: (τ0, τ1, . . . , τn) ⊑ (τ ′0, τ
′
1, . . . , τ

′
n) if and only if τi is

a subtype of τ ′i for all i

for a call
e.m(e1, . . . , en)

where e has static type τ0 and ei has static type τi , we consider the set of
all minimal elements in the set of all compatible profiles

• no element ⇒ no method applies

• several elements ⇒ ambiguity

• a single element ⇒ this is the method to call

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 83

what about Python

as far as the execution model is concerned, Python is relatively close to
Java, but there is almost no static typing in Python

all the verification is performed dynamically

including the existence of a function, the check of its arity, etc.

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 84

next

• labs 4–9 = the project = a tiny Java to x86-64 compiler
• PDF description on Moodle

• lab 4 = static typing of Mini Java
• the parser is provided

• but no need to run CUP or Menhir

• both parsed and typed AST are provided
• read and understand before you start

• tests are provided
• test as you go

• next lecture
• evaluation strategy
• parameter passing

Jean-Christophe Filliâtre CSC 52064 – Compilation static typing 85

