
École Polytechnique

CSC 52064 – Compilation

Jean-Christophe Filliâtre

parsing

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 1

parsing

the goal of parsing is to identify the programs that belong to the syntax of
the language

its input is concrete syntax, that is a sequence of characters, and its
output is abstract syntax

parsing is split into two phases

• lexical analysis, which splits the input in “words” called tokens

• syntax analysis, which recognizes legal sequences of tokens

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 2

example

source = sequence of characters

fun x -> (* my function *)

x+1

↓
lexical analysis

↓

sequence of tokens

fun x -> x + 1
...

...
↓

syntax analysis
↓

abstract syntax

Fun

"x" App

App

Op

+

Var

"x"

Const

1

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 3

lexical analysis

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 4

blanks

blanks (spaces, newlines, tabs, etc.) play a role in lexical analysis; they can
be used to separate two tokens

for instance, funx is understood as a single token (identifier funx) and
fun x is understood as two tokens (keyword fun and identifier x)

yet several blanks are useless (as in x + 1)
and simply ignored

blanks do not appear in the returned sequence of tokens

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 5

blanks

lexical conventions differ according to the languages, and some blanks may
be significant

examples:

• tabs for make

• newlines and indentation in Python or Haskell
(indentation defines the structure of blocks)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 6

comments

comments act as blanks

fun(* go! *)x -> x + (* adding one *) 1

here the comment (* go! *) is a significant blank (splits two tokens)
and the comment (* adding one *) is a useless blank

note: comments are sometimes interpreted by other tools (javadoc,
ocamldoc, etc.), which handle them differently in their own lexical analysis

val length: ’a list -> int

(** Return the length (number of elements) of ...

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 7

which tools?

to implement lexical analysis, we are going to use

• regular expressions to describe tokens

• finite automata to recognize them

we exploit the ability to automatically construct a deterministic finite
automaton recognizing the language described by a regular expression

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 8

regular expressions

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 9

syntax

let A be some alphabet

r ::= ∅ empty language
| ϵ empty word
| a character a ∈ A
| r r concatenation
| r | r alternation
| r⋆ Kleene star

conventions: in forthcoming examples, star has strongest priority, then
concatenation, then alternation

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 10

semantics

the language defined by the regular expression r is the set of words L(r)
defined as follows:

L(∅) = ∅

L(ϵ) = {ϵ}

L(a) = {a}

L(r1 r2) = {w1w2 | w1 ∈ L(r1) ∧ w2 ∈ L(r2)}

L(r1 | r2) = L(r1) ∪ L(r2)

L(r⋆) =
⋃

n≥0 L(r
n) where r0 = ϵ, rn+1 = r rn

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 11

examples

with alphabet {a, b}

• words with exactly three letters

(a|b)(a|b)(a|b)

• words ending with a
(a|b) ⋆ a

• words alternating a and b

(b|ϵ)(ab) ⋆ (a|ϵ)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 12

integer literals

decimal integer literals, possibly with leading zeros

(0|1|2|3|4|5|6|7|8|9) (0|1|2|3|4|5|6|7|8|9)⋆

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 13

identifiers

identifiers composed of letters, digits and underscore, starting with a letter

(a|b| . . . |z |A|B| . . . |Z) (a|b| . . . |z |A|B| . . . |Z | |0|1| . . . |9)⋆

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 14

floating point literals

floating point numbers (3.14 2. 1e-12 6.02e23 etc.)

d d ⋆ (.d ⋆ | (ϵ | .d⋆)(e|E) (ϵ|+ |−)d d⋆)

with d = 0|1| . . . |9

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 15

comments

comments such as (* ... *), not nested, can be described with the
following regular expression

(*
(
* ⋆ r1 | r2

)
⋆ * * ⋆)

where r1 = all characters but * and)

and r2 = all characters but *

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 16

nested comments

regular expressions are not expressive enough to describe nested comments
(we say that the language of balanced parentheses is not regular)

we will explain later how to get around this problem

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 17

finite automata

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 18

finite automaton

Definition

A finite automaton over some A is a tuple (Q,T , I ,F) where

• Q is a finite set of states

• T ⊆ Q × A× Q is a set of transitions

• I ⊆ Q is a set of initial states

• F ⊆ Q is a set of final states

example: Q = {0, 1}, T = {(0, a, 0), (0, b, 0), (0, a, 1)}, I = {0}, F = {1}

0 1
a

a, b

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 19

language

a word a1a2 . . . an ∈ A⋆ is recognized by the automaton (Q,T , I ,F) if
and only if

s0
a1→ s1

a2→ s2 · · · sn−1
an→ sn

with s0 ∈ I , (si−1, ai , si) ∈ T for all i , and sn ∈ F

the language defined by an automaton is the set of words it recognizes

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 20

result

Theorem (Kleene, 1951)

Regular expressions and finite automata define the same languages.

(a|b) ⋆ a 0 1
a

a, b

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 21

integer literals

regular expression

(0|1|2|3|4|5|6|7|8|9) (0|1|2|3|4|5|6|7|8|9)⋆

automaton

0 1
0..9

0..9

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 22

identifiers

regular expression

(a|b| . . . |z |A|B| . . . |Z) (a|b| . . . |z |A|B| . . . |Z | |0|1| . . . |9)⋆

automaton

0 1
a..zA..Z

a..zA..Z 0..9

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 23

floating point literals

regular expression

d d ⋆ (.d ⋆ | (ϵ | .d⋆)(e|E) (ϵ|+ |−)d d⋆)

where d = 0|1| . . . |9

automaton

3 4

0 1 2 5
0..9 .

e,E
e,E

+,-

0..90..9

0..9 0..9 0..9

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 24

comments

regular expression

(*
(
* ⋆ r1 | r2

)
⋆ * * ⋆)

where r1 = all characters but * and)

and r2 = all characters but *

automaton

0 1 2 3 4
(*

*

r1

)

r2 *

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 25

lexical analyzer

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 26

lexical analyzer

a lexical analyzer is a finite automaton for the “union” of all regular
expressions describing the tokens

however, it differs from the mere analysis of a single word by an
automaton, since

• we must split the input into a sequence of words

• there are possible ambiguities

• we have to build tokens (final states contain actions)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 27

ambiguities

the word funx is recognized by the regular expression for identifiers, but
contains a prefix recognized by another regular expression (keyword fun)

⇒ we choose to match the longest token

the word fun is recognized by the regular expression for the keyword fun

but also by that of identifiers

⇒ we order regular expressions using priorities

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 28

no backtracking

with the three regular expressions

a, ab, bc

a lexical analyzer will fail on input

abc

(ab is recognized, as longest, then failure on c)

yet the word abc belongs to the language (a|ab|bc)⋆

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 29

in practice

tokens are output one by one, on demand (from the syntax analyzer)

the lexical analyzer memorizes the position where the analysis will resume

0 n

input ...already analyzed...
↑
current pos

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 30

in practice

when a new token is required, we start from the initial state of the
automaton, from position current pos

as long as a transition exists, we follow it, while memorizing any token
that was recognized (any final state that was reached)

0 n

input ... last recognized token
↑ ↑ ↑
current pos last pos

when there is no transition anymore, there are two cases:

• if a token was recognized, we return it and current pos←last

• otherwise, we signal a lexical error

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 31

building the automaton

one can build the finite automaton corresponding to a regular expression
using an intermediate non deterministic finite automaton (Thompson,
1968)

but one can build a deterministic finite automaton in a single step (Berry,
Sethi, 1986); for (a|b) ⋆ a(a|b) we get

{a1, a2, b1} {a1, a2, a3, b1, b2}

{a1, a2, b1,#} {a1, a2, a3, b1, b2,#}

a

b

a
b

b
a

a

b

see the polycopié sec 3.2

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 32

tools

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 33

tools

in practice, we have tools to build lexical analyzers from a decription with
regular expressions and actions

this is the lex family: lex, flex, jflex, ocamllex, etc.

we illustrate jflex (for Java) and ocamllex (for OCaml)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 34

minimal example

to illustrate these tools, let us write a lexical analyzer for a language of
arithmetic expressions with

• integer literals

• parentheses

• subtraction

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 35

jflex

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 36

syntax

a jflex file has suffix .flex and the following structure

... preamble ...

%{

... some Java code

%}

%%

<YYINITIAL> {

regular expression { action }

...

regular expression { action }

}

where each action is Java code
(returning a token most of the time)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 37

example 1/2

we set up a file Lexer.flex for our language

import static sym.*; /* imports the tokens */

%%

%class Lexer /* our class will be Lexer */

%unicode /* we use unicode characters */

%cup /* syntax analysis using cup */

%line /* activate line numbers */

%column /* and column numbers */

%yylexthrow Exception /* we can raise Exception */

%{

/* no need for a Java preamble here */

%}
...

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 38

example 2/2
...

WhiteSpace = [\t\r\n]+ /* shortcuts */

Integer = [:digit:]+

%%

<YYINITIAL> {

"-" { return new Symbol(MINUS, yyline, yycolumn); }

"(" { return new Symbol(LPAR, yyline, yycolumn); }

")" { return new Symbol(RPAR, yyline, yycolumn); }

{Integer}

{ return new Symbol(INT, yyline, yycolumn,

Integer.parseInt(yytext())); }

{WhiteSpace}

{ /* ignore */ }

. { throw new Exception (String.format (

"Line %d, column %d: illegal character: ’%s’\n",

yyline, yycolumn, yytext())); }

}

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 39

explanations

• tokens are freely implemented;
here, we use the class Symbol that comes with cup (see later)

• MINUS, LPAR, RPAR and INT are integers (token kinds)
built by the tool cup and imported from sym.java

• variables yyline and yycolumn are updated automatically

• yytext() returns the string that was recognized by the regular
expression

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 40

running the tool

we compile file Lexer.flex with jflex

jflex Lexer.flex

we get pure Java code in Lexer.java, with

• a constructor

Lexer(java.io.Reader)

• a method

Symbol next_token()

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 41

jflex regular expressions

. any character
a the character ’a’
"foobar" the string "foobar" (in particular ϵ = "")
[characters] set of characters (e.g. [a-zA-Z])
[^characters] set complement (e.g. [^"])
[:ident:] predefined set of characters (e.g. [:digit:])
{ident} named regular expression

r1 | r2 alternation
r1 r2 concatenation
r * star

r + one or more repetitions of r (
def
= r r⋆)

r ? zero or one occurrence of r (
def
= ϵ | r)

(r) grouping

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 42

ocamllex

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 43

syntax

an ocamllex file has suffix .mll and the following structure

{

... some OCaml code ...

}

rule ident = parse

| regular expression { action }

| regular expression { action }

| ...

{

... some OCaml code ...

}

where each action is some OCaml code

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 44

example
let white_space = [’ ’ ’\t’ ’\n’]+

let integer = [’0’-’9’]+

rule next_token = parse

| white_space

{ next_token lexbuf }

| integer as s

{ INT (int_of_string s) }

| ’-’

{ MINUS }

| ’(’

{ LPAR }

| ’)’

{ RPAR }

| eof

{ EOF }

| _ as c

{ failwith ("illegal character" ^ String.make 1 c) }

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 45

explanations

• we assume the following type for the tokens

type token =

| INT of int

| MINUS

| LPAR

| RPAR

| EOF

(will be built by the syntax analyzer)

• contrary to jflex
• we explicitly call next token to ignore blanks
• we do not handle lines and columns explicitly

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 46

running the tool

we compile the file lexer.mll with ocamllex

ocamllex lexer.mll

it outputs some pure OCaml code in lexer.ml, which provides

val next_token: Lexing.lexbuf -> token

(such an argument can be built with Lexing.from channel)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 47

ocamllex regular expressions

any character
’a’ the character ’a’
"foobar" the string "foobar" (in particular ϵ = "")
[characters] set of characters (e.g. [’a’-’z’ ’A’-’Z’])
[^characters] set complement (e.g. [^ ’"’])

ident named regular expression
r1 | r2 alternation
r1 r2 concatenation
r * star

r + one or more repetitions of r (
def
= r r⋆)

r ? zero or one occurrence of r (
def
= ϵ | r)

(r) grouping

eof end of input

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 48

documentation

for more details, see the documentations of jflex and ocamllex,
available from

• the course website

• lab 3

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 49

recap

• regular expressions are the basis of lexical analysis

• the job is automatized with tools such as jflex and ocamllex

• jflex/ocamllex are more expressive than regular expressions

indeed, actions can call the lexical analyzer recursively
⇒ allows us to recognize nested comments for instance
(poly page 55)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 50

syntax analysis

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 51

goal

sequence of tokens

fun x -> (x + 1)

↓
syntax analysis

↓

abstract syntax
Fun

"x" App

App

Op

+

Var

"x"

Const

1

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 52

syntax errors

syntax analysis must detect syntax errors and

• signal them with a position in the source

• explain them (most often limited to “syntax error” but also “unclosed
parenthesis”, etc.)

• possibly resume the analysis to discover further errors

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 53

which tools?

to implement syntax analysis, we are using

• a context-free grammar to define the syntax

• a pushdown automaton to recognize it

similar to regular expressions / finite automata used in lexical analysis

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 54

context-free grammar

Definition

A context-free grammar is a tuple (N,T , S ,R) where

• N is a finite set of nonterminal symbols

• T is a finite set of terminal symbols

• S ∈ N is the start symbol (the axiom)

• R ⊆ N × (N ∪ T)⋆ is a finite set of production rules

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 55

example: arithmetic expressions

N = {E}, T = {+, *, (,), int}, S = E ,
and R = { (E ,E+E), (E ,E*E), (E , (E)), (E , int) }

in practice, we write production rules as follows:

E → E + E
| E * E
| (E)

| int

the terminals are the tokens produced by the lexical analysis

here int stands for an integer literal token (i.e. its nature, not its value)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 56

derivation tree

Definition

A derivation tree is a tree whose nodes are labeled with grammar
symbols, such that

• the root is the axiom S

• any internal node X is a nonterminal whose subnodes are labeled by
β ∈ (N ∪ T)⋆ with X → β a production rule

• leaves are terminal symbols

example: E

E

int

+ E

E

int

* E

int

careful: this is different from the abstract syntax tree

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 57

language

Definition

The language L(G) defined by a context-free grammar G = (N,T , S ,R)
is the set of words w ∈ T ⋆ for which there is a derivation tree whose
leaves form the word w.

in our example

int + int * int ∈ L(G)

E

E

int

+ E

E

int

* E

int

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 58

ambiguity

Definition

A context-free grammar is ambiguous if at least one word accepts several
derivation trees.

example: the word int + int * int accepts two derivation trees

E

E

int

+ E

E

int

* E

int

E

E

E

int

+ E

int

* E

int

and thus our grammar is ambiguous

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 59

non-ambiguous grammar

it is possible to propose another grammar, that is not ambiguous and that
defines the same language

E → E + T
| T

T → T * F
| F

F → (E)

| int

this new grammar reflects the priority of multiplication over addition, and
the choice of a left associativity for these two operations

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 60

non-ambiguous grammar

now, the word int + int * int * int has a single derivation tree,

E

E

T

F

int

+ T

T

T

F

int

* F

int

* F

int

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 61

negative result

whether a context-free grammar is ambiguous is not decidable

(reminder: decidable means that we can write a program that, for any
input, terminates and outputs yes or no)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 62

approach

we are going to us decidable sufficient criteria to ensure that a grammar
is not ambiguous, and for which we know how to decide membership
efficiently (using a pushdown automaton)

the corresponding grammar classes are called
LR(0), SLR(1), LALR(1), LR(1), LL(1), etc.

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 63

bottom-up parsing

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 64

main idea

scan the input from left to right, and look for right-hand sides of
production rules to build the derivation tree from bottom to top
(bottom-up parsing)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 65

principle

the parser uses a stack that is a word of (T ∪ N)⋆

at each step, two actions can be performed

• a shift operation: we read a terminal from the input and we push it
on the stack

• a reduce operation: the top of the stack is the right-hand side β of a
production X → β, and we replace β with X on the stack

initially, the stack is empty

when no more action can be performed, the input is recognized if it was
read entirely and if the stack is limited to the axiom S

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 66

example

E → E + E
| (E)

| int

stack input action

ϵ int+int+int shift
int +int+int reduce E → int

E +int+int shift
E+ int+int shift
E+int +int reduce E → int

E+E +int reduce E → E+E
E +int shift
E+ int shift
E+int reduce E → int

E+E reduce E → E+E
E success

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 67

LR parser (Knuth, 1965)

how to choose between shift and reduce?

using an automaton and considering the first k tokens of the input; this is
called LR(k) analysis

(LR means “Left to right scanning, Rightmost derivation”)

in practice k = 1
i.e. we only consider the first token to take the decision

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 68

example

the automaton is implemented as follows:

action goto

state () + int # E

1 shift 4 shift 2 3

2 reduce E → int

3 shift 6 success

4 shift 4 shift 2 5

5 shift 7 shift 6

6 shift 4 shift 2 8

7 reduce E → (E)

8 reduce E → E+E

(we show later how to built it)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 69

LR analysis

the stack looks like
s0 x1 s1 x2 . . . xn sn

where si is a state of the automaton and xi ∈ T ∪ N as before

let a be the first token from the input; we look in the action table for
state sn and character a
• if success or failure, we stop
• if shift, we push a and then the target state of the transition on the

stack
• if reduce rule X → α, with α of length p, then we have α on top of

the stack
s0 x1 s1 . . . xn−p sn−p |α1 sn−p+1 . . . αp sn

we pop it and we push X s, where s is the target state of the goto
table for sn−p and X , i.e.

s0 x1 s1 . . . xn−p sn−p X s

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 70

execution example

() + int # E

1 s4 s2 3

2 reduce E → int

3 s6 ok

4 s4 s2 5

5 s7 s6

6 s4 s2 8

7 reduce E → (E)

8 reduce E → E+E

stack input action

1 int+int+int s2

1 int 2 +int+int E → int, g3

1 E 3 +int+int s6

1 E 3 + 6 int+int s2

1 E 3 + 6 int 2 +int E → int, g8

1 E 3 + 6 E 8 +int E → E+E , g3

1 E 3 +int s6

1 E 3 + 6 int s2

1 E 3 + 6 int 2 # E → int, g8

1 E 3 + 6 E 8 # E → E+E , g3

1 E 3 # success

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 71

tools

bottom-up parsing is powerful but computing the tables is complex

we have tools to automate the process

this is the big family of yacc, bison, ocamlyacc, cup, menhir, . . .
(YACC means Yet Another Compiler Compiler)

here we illustrate cup (for Java) and menhir (for OCaml)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 72

example

we keep using the language of arithmetic expressions with

• integer literals

• parentheses

• subtraction

we assume that abstract syntax and lexical analysis are already
implemented

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 73

CUP (Java)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 74

syntax

in a file Parser.cup, we start with a prelude where we declare terminals
and nonterminals

terminal Integer INT;

terminal LPAR, RPAR, MINUS;

non terminal Expr file;

non terminal Expr expr;

...

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 75

syntax

then we declare the production rules and the corresponding actions

start with file;

file ::=

expr:e

{: RESULT = e; :}

;

expr ::=

INT:n

{: RESULT = new Ecst(n); :}

| expr:e1 MINUS expr:e2

{: RESULT = new Esub(e1, e2); :}

| LPAR expr:e RPAR

{: RESULT = e; :}

;

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 76

running CUP

we compile file Parser.cup with

java -jar java-cup-11a.jar -parser Parser Parser.cup

which signals an error:

Warning : *** Shift/Reduce conflict found in state #6

between expr ::= expr MINUS expr (*)

and expr ::= expr (*) MINUS expr

under symbol MINUS

Resolved in favor of shifting.

Error : *** More conflicts encountered than expected

-- parser generation aborted

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 77

conflict resolution

we can declare MINUS to be left associative

precedence left MINUS;

(which favors reduction)

if there are more operators, we list them in increasing priorities

precedence left PLUS, MINUS;

precedence left TIMES, DIV, MOD;

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 78

running CUP

now CUP successfully terminates and produces two Java files:

• sym.java contains the declarations of tokens
(INT, LPAR, RPAR, etc.)

• Parser.java contains the syntax analyzer, with a constructor

Parser(Scanner scanner)

and a method

Symbol parse()

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 79

connecting jflex and CUP

we combine the code generated by jflex and CUP as follows:

Reader reader = new FileReader(file);

Lexer lexer = new Lexer(reader);

Parser parser = new Parser(lexer);

Expr e = (Expr)parser.parse().value;

try {

System.out.println(e.eval());

} catch (Error err) {

System.out.println("error: " + err.toString());

System.exit(1);

}

the program must include the library java-cup-11a-runtime.jar

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 80

Menhir (OCaml)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 81

syntax

in a file parser.mly, we first declare terminals and nonterminals

%{

... arbitrary OCaml code ...

%}

%token MINUS LPAR RPAR EOF

%token <int> INT

%start <expr> file

...

note: contrary to CUP, one has to declare EOF

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 82

syntax

then we give the grammar production rules and the corresponding actions

%%

file:

e = expr; EOF { e }

;

expr:

| i = INT { Cte i }

| e1 = expr; MINUS; e2 = expr { Sub (e1, e2) }

| LPAR; e = expr; RPAR { e }

;

%%

note: contrary to CUP, one has to add EOF

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 83

running Menhir

we compile file arith.mly as follows:

menhir -v arith.mly

it emits a warning

Warning: one state has shift/reduce conflicts.

Warning: one shift/reduce conflict was arbitrarily resolved.

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 84

conflicts

when the grammar is not LR(1), Menhir shows the conflicts to the user

• the file .automaton contains the LR(1) automaton (more later), with
conflicts listed

• the file .conflicts contains an explanation for each conflict, as a
sequence of tokens leading to two distinct derivation trees

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 85

conflict resolution

we can declare MINUS to be left associative

%left MINUS

(which favors reduction)

if there are more operators, we list them in increasing priorities

%left PLUS MINUS

%left TIMES DIV MOD

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 86

running Menhir

now menhir successfully terminates and outputs two OCaml files
arith.ml(i) that contain

• a data type token

type token = RPAR | MINUS | LPAR | INT of int | EOF

• a function

val file: (Lexing.lexbuf -> token) -> Lexing.lexbuf -> int

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 87

connecting ocamllex and Menhir

we combine ocamllex and menhir as follows:

let c = open_in file in

let lb = Lexing.from_file c in

let e = Parser.file Lexer.next_token lb in

...

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 88

building the automaton

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 89

definitions

Definition (null)

Le α ∈ (T ∪ N)⋆. null(α) holds if and only if we can derive ϵ from α i.e.
α→⋆ ϵ.

Definition (first)

Let α ∈ (T ∪ N)⋆. first(α) is the set of all terminals starting words
derived from α, i.e. {a ∈ T | ∃w . α→⋆ aw}.

Definition (follow)

Let X ∈ N. follow(X) is the set of all terminals that may appear after
X in a derivation, i.e. {a ∈ T | ∃u,w . S →⋆ uXaw}.

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 90

computing null, first, and follow

to compute null(α), we simply need to compute null(X) for X ∈ N

null(X) holds if and only if

• there exists a production X → ϵ,

• or there exists a production X → Y1 . . .Ym where null(Yi) for all i

issue: this is a set of mutually recursive equations

said otherwise, if N = {X1, . . . ,Xn} and if
V⃗ = (null(X1), . . . ,null(Xn)), we look for the least fixpoint to an
equation such as

V⃗ = F (V⃗)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 91

two examples

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 92

fixpoint computation

Theorem (existence of a least fixpoint (Tarski))

Let A be a finite set with an order relation ≤ and a least element ε. Any
monotonically increasing function f : A→ A, i.e. such that
∀x , y . x ≤ y ⇒ f (x) ≤ f (y), has a least fixpoint.

proof: since ε is a least element, we have ε ≤ f (ε)
f being increasing, we have f k(ε) ≤ f k+1(ε) for any k
A being finite, there exists a least k0 such that f k0(ε) = f k0+1(ε)
a0 = f k0(ε) is thus a fixpoint of f

let b another fixpoint of f
we have ε ≤ b and thus f k(ε) ≤ f k(b) for any k
in particular a0 = f k0(ε) ≤ f k0(b) = b
a0 is thus a least fixpoint of f □

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 93

computing null

to compute null, we have
A = Bool× · · · ×Bool avec Bool = {false, true}

we can equip Bool with order false ≤ true and A with point-wise order

(x1, . . . , xn) ≤ (y1, . . . , yn) if and only if ∀i . xi ≤ yi

the theorem applies with

ε = (false, . . . , false)

since computing null(X) from null(Xi) is monotonic

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 94

computing null

to compute null(Xi), we thus start with

null(X1) = false, . . . , null(Xn) = false

and we use the equations until we get a fixpoint i.e. until the values
null(Xi) do not change anymore

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 95

example

E → T E ′

E ′ → + T E ′

| ϵ
T → F T ′

T ′ → * F T ′

| ϵ
F → (E)

| int

E E ′ T T ′ F

false false false false false

false true false true false

false true false true false

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 96

explanation

why do we seek for a least fixpoint?

⇒ by induction on the number of steps of the fixpoint
computation, we show that if null(X) = true then X →⋆ ϵ

⇐ by induction on the number of steps of derivation X →⋆ ϵ,
we show that null(X) = true in the previous computation

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 97

computing first

similarly, the equations defining first are mutually recursive

first(X) =
⋃

X→β

first(β)

and

first(ϵ) = ∅
first(aβ) = {a}
first(Xβ) = first(X), if ¬null(X)

first(Xβ) = first(X) ∪ first(β), if null(X)

again, we compute a least fixpoint using Tarski’s theorem, with
A = P(T)× · · · × P(T), point-wise ordered with ⊆, and with
ε = (∅, . . . , ∅)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 98

example

E → T E ′

E ′ → + T E ′

| ϵ
T → F T ′

T ′ → * F T ′

| ϵ
F → (E)

| int

null

E E ′ T T ′ F

false true false true false

first

E E ′ T T ′ F

∅ ∅ ∅ ∅ ∅
∅ {+} ∅ {*} {(, int}
∅ {+} {(, int} {*} {(, int}
{(, int} {+} {(, int} {*} {(, int}
{(, int} {+} {(, int} {*} {(, int}

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 99

computing follow

again, the equations defining follow are mutually recursive

follow(X) =
⋃

Y→αXβ

first(β) ∪
⋃

Y→αXβ,null(β)

follow(Y)

we compute a least fixpoint, using the same domain as for first

we add a special symbol # in follow(S)
(which we can do directly, or by adding a rule S ′ → S#)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 100

example

E → T E ′

E ′ → + T E ′

| ϵ
T → F T ′

T ′ → * F T ′

| ϵ
F → (E)

| int

null

E E ′ T T ′ F

false true false true false

first

E E ′ T T ′ F

{(, int} {+} {(, int} {*} {(, int}

follow

E E ′ T T ′ F

{#} ∅ ∅ ∅ ∅
{#,)} {#} {+,#} ∅ {*}
{#,)} {#,)} {+,#,)} {+,#} {*, +,#}
{#,)} {#,)} {+,#,)} {+,#,)} {*, +,#,)}
{#,)} {#,)} {+,#,)} {+,#,)} {*, +,#,)}

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 101

LR(0) automaton

let us use k = 0 for the moment

we consider the following grammar:

S → E

E → E+E
| (E)
| int

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 102

LR(0) automaton

states are sets of items of the shape

[X → α • β]

where X → αβ is a grammar production rule; interpretation is “we want
to recognize X , we have already seen α and we still need to see β”

the initial state is that containing S → •E#

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 103

LR(0) automaton

each state s is closed under

if Y → α • Xβ ∈ s
and if X → γ is a production
then X → •γ ∈ s

example:

E → E+ • E
E → •E+E
E → •(E)
E → •int

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 104

LR(0) automaton

transitions are labeled with T ∪ N and are as follows:

[Y → α • aβ] a→ [Y → αa • β]
[Y → α • Xβ]

X→ [Y → αX • β]

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 105

example

S → E

E → E+E
| (E)
| int

S → •E#
E → •E+E
E → •(E)
E → •int

E → int• S → E •#
E → E • +E

E → (• E)
E → •E+E
E → •(E)
E → •int

E → (E •)
E → E • +E

E → E+ • E
E → •E+E
E → •(E)
E → •int

E → (E)• E → E+E•
E → E • +E

E

(
(

int

int int +

+

E +

E

)
(

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 106

building the tables

the action table is built as follows:

• action(s,#) = success if [S → E •#] ∈ s

• action(s, a) = shift s ′ if we have s
a→ s ′

• action(s, a) = reduce X → β if [X → β•] ∈ s, for all a

• failure otherwise

the goto table is built as follows:

• goto(s,X) = s ′ if and only if we have s
X→ s ′

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 107

example

on our example, we get

action goto

state () + int # E

1 shift 4 shift 2 3

2 reduce E → int

3 shift 6 success

4 shift 4 shift 2 5

5 shift 7 shift 6

6 shift 4 shift 2 8

7 reduce E → (E)

8 shift 6
reduce E → E+E

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 108

conflicts

the LR(0) table may contain two kinds of conflicts

• a shift/reduce conflict, if we can do both a shift and a reduce action

• a reduce/reduce conflict, if we can do two different reduce actions

Definition (LR(0) grammar)

A grammar is said to be LR(0) if the table contains no conflict.

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 109

conflict

we have a shift/reduce conflict in state 8

E → E+E•
E → E • +E

it illustrates the ambiguity of the grammar on input int+int+int

we can remove the conflict in two different ways:

• if we favor shift, we make + right associative

• if we favor reduce, we make + left associative
(and we get the table we used earlier)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 110

SLR(1) analysis

LR(0) tables quickly contain conflicts,
so let us try to remove some reduce actions

a simple idea is to set action(s, a) = reduce X → β if and only if

[X → β•] ∈ s and a ∈ follow(X)

Definition (SLR(1) grammar)

A grammar is said to be SLR(1) if the resulting table contains no conflict.

(SLR means Simple LR)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 111

example

the grammar
S → E#

E → E + T
| T

T → T * F
| F

F → (E)

| int

is SLR(1)

exercise: check it (the automaton has 12 states)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 112

limits of SLR(1) analysis

in practice, SLR(1) grammars are not powerful enough

example:
S → E#

E → G =D
| D

G → *D
| id

D → G

=

1

2 shift 3 . . .
reduce D → G

3
...

. . .

S → •E#
E → •G=D
E → •D
G → •*D
G → •id
D → •G

E → G • =D
D → G•

E → G= • D
D → •G
G → •*D
G → •id

G =

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 113

LR(1) analysis

we introduce a larger class of grammars, LR(1), with larger tables

items now look like
[X → α • β, a]

and the meaning is “we want to recognize X , we have already seen α, we
still need to see β and then to check that the next token is a”

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 114

LR(1) analysis

the LR(1) automaton has transitions

[Y → α • aβ, b] a→ [Y → αa • β, b]
[Y → α • Xβ, b]

X→ [Y → αX • β, b]

and in a state containing [Y → α • Xβ, b] we only include

[X → •γ, c] for all c ∈ first(βb)

the initial state is that containing [S → •α,#]

there is a reduce action for (s, a) only when s contains an item [X → α•, a]

Definition (LR(1) grammar)

A grammar is said to be LR(1) if the resulting table contains no conflict.

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 115

example

S → E#

E → G =D
| D

G → *D
| id

D → G

=

1

2 reduce D → G shift 3 . . .

3
...

...
. . .

S → •E#,#
E → •G=D,#
E → •D,#
D → •G ,#
G → •*D,#
G → •id,#
G → •*D, =
G → •id, =

E → G • =D,#
D → G•,#

E → G= • D,#
D → •G ,#
G → •*D,#
G → •id,#

G =

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 116

LALR(1)

the LR(1) tables can be large, so we introduced approximations

the class LALR(1) (lookahead LR) is such an approximation, used in tools
of the yacc family

for more details, see Compilers (“the dragon book”) by A. Aho, R. Sethi,
J. Ullman, section 4.7

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 117

other approach

one can also use a recursive descent parser = successive expansions of
the leftmost nonterminals, starting from S , using an expansion table

defines the LL(k) classes of grammars; cf poly chapter 4

LL(1) analyzers are rather simple to implement
but they require grammars that are less natural

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 118

grammar hierarchies

grammars

context-free grammars

non-ambiguous grammars

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(1)

languages

SLR(1) = LALR(1) = LR(1)

LR(0)

LL(1)

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 119

next

• lab 3
• syntax analysis of mini-Turtle
• (interpreter is given)
• Java or OCaml

• poly chapters 3 and 4

• next lecture
• typing
• lab: project start

Jean-Christophe Filliâtre CSC 52064 – Compilation parsing 120

