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"FA" function in CMOS

CMOStechnology CMOS technology (Complementary Metal Oxide Semiconductor) offers two types
of transistors called "N-channel” and "P-channel”. CMOS is currently the dominant
technology, at least for digital circuits. Its main advantage with respect to other
technologies is remarkable low power consumption. Indeed the CMOS circuits
exhibit a static current (or quiescent current) practically negligible.

In the figures below :
* Alogic 'l is represented by the supply voltage Vdd (current values for Vdd
are+5V or +3,3V or +2,8V) and iscolored in red.
* Alogic'0 isconnected to the ground voltage, or GND, is colored in blue.
* A connection neither to Vdd nor to GND isin

Applet of CMOS transistors:
Clik on gate G or source 5 of transistors to change their state

P-channel transistor M-channel transistar
5 D
6 —cH]_I G —|H_‘
44 0 :
The N-channel transistor conducts when it gate is '1' and the P-channel transistor

conducts when its gate is'0"' The keys ﬂ ﬂ change the transistor's outline.

CMOSinverter The CMOS inverter is the most popular gate. It is composed of a N-channel and a
P-channel transistors connected through their drain. The figure below illustrates its

.a_Dﬁ _¥, behavior.

“ The colors conventions are still red for logic '1' and blue for logicO' An input
voltage in between causes a (mild) short-circuit by maintaining both transistors in
conduction. Such avoltageis colored in green. Click on input "a" to pass from '0' to
short (green), thento '1', then to short (green) again then back to ‘0" and so on.

Applet of the CMOS inveter: ¥=3 .a_Dﬁ ¥
Click aninput a to change its valtage

Ydd

—

_|

GHD

44
Please notice that when the input is'0" or '1', only one transistor conducts.

Delav and We iust have seen that the inverter dissinates no enerav excent durina commutation.
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dissipation of the Indeed if the input is'0" or 1’ there is no conduction path between the power supply
CMOSinverter Vdd and the ground GND. In norma conditions, the short circuit current,

>

e (unavoidable during input commutation) lasts a very short time, typically a few

picosecondes.

The contribution of the parasitic capacitances charge or discharge is much more
significant. The transistor gate G forms a capacitance. Anyway this capacitance is
necessary to the field effect transistor working. Typically an input capacitance Cg
may be around 10 fF. If at time ty, this capacitance is connected to Vdd it is charged
(charge Q = Cg * Vdd). If later on, at time t,, the input is connected to GND the
capacitance is discharged. This discharge causes a current in the gate | = dQ/dt =
(Cg * Vdd)/(t2- ta).

Although the gate charge/discharge current is
Let ustake an example:

« A modern microprocessor may contain 50 million transistors, meaning about
10 million gates. For each clock cycle, about 1% of those gate commutates.

« Clock frequency may reach 1 000 MHz (cycle time 1 ns) with a power
supply Vdd = 3.3V.

« The wires connecting the gates most of the time exhibit a parasitic
capacitance Cw much larger than the gate input capacitance Cg. Each awire
commutates, all the attached capacitances must be either charged or
discharged. : Ctotal=Cg+Cw.

« Anaverage wire capacitance may be around 1 pF

It is rather difficult to estimate the current due to the short-circuits, it is generally
small. On the contrary the current due to the commutation activity is important :
| = (active gates)* (Ctotal*Vvdd) / dt = (1% * 1,000,000) * (1pF * 3.3V) /2ns= 16A

Finally the quiescent current due to the transistors leaks is quite small (for a
conventional circuitry). A static memory SRAM of 2K*8 bits in CMOS let leak
1 A when not active.

* The figure below shows the current, or electrons = flow in the CMOS inverter.
Whenever the input stays to '1' or to '0', either the N-channel of the P-channel
transistor is blocked and there is no current

* When the input changes, the grid of the two transistors must be charged or
discharged. This is illustrated by the flow of an electron & (with a negative
charge) coming from GND or going to Vss.

* During the input change, the voltage passes through values that let both
transistors conduct, usually during a very short time. This short-circuit current is
illustrated by an electron flowing directly from GND to Vss.

* Finally the output is charged or discharged through the transistors. The output
capacitance stores two electrons .
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Appletfor inverter delay and power consumption a i
Click on input & to change its voltage '_D” y

vd 5

£y GND 5

The power dissipated by a conventional CMOS circuit is consequently directly
proportional to the clock frequency.

Electrical By clicking or dragging the mouse inside the chronogram below, you control the
simulation of the input "a" voltage (plotted in red on the chronogram). The output voltage "y" is then
CMOSinverter computed (plotted in blue). The current flowing through the N-channel transistor if
a ~_¥, drawn in green and the current through the P-channel transistor is in
- To suspend the applet and freeze the plot, just get the pointer out of the picture.

Applet for inverter electrical simulation.

Click here to start the simulation.

Move the pointer out of the picture to stall the simulation.
Click in the picture ta plat the input valtage "a" {in red?.

autput valtage "y
M-channel transistor current.

FP-channel transistor current.

Basic NOR and We are now studying some basic CMOS logic gate: a 2-input NOR, a 2-input
NAND gates NAND and finally afull adder cell.
Colors conventions: They are the same as the inverter's one. Connections to Vdd
(logic '1' ) are drawn in red, connections to GND (logic '0" ) are in blue, and
connections to both Vdd and GND are in green. Finaly connections neither to Vdd
nor to GND (floating) arein . The two last colors have no logic image.

« Click close to an input changes its value and consequently the state of the
transistors attached to thisinpuit.

« The line in the truth table that corresponds to the input combination is
highlighted.

« Clicking in the truth table changes the input according to the highlighted
line.
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+ Clicking the top of the table highlight the next line.

To ssimplify the applets, only logical '1' and '0" are allowed for the inputs. Therefore
itisnot possible to input a value causing a short-circuit between Vdd and GND

Two-input NOR The two-input "NOR" gate is one of the smplest gates to illustrate the term
gate complementary : the P-channel transistors are connected in serial while the

ot N-channel transistors are in parallel. The P-channel and N-channel network are
¥
b o——e complementary.

Notice that when none of the two P-channel transistors conduct, their common

connection is floating ( ). Thisiis a "non logic" value, however, it does not
cause trouble since it is not connected to any transistor gate.

Applet of the Z-input NOR gate: W=aw

o3 ¥
Click oninput a or b to change its voltage b |
Widd [
a
D 7

== o o|m
o~ o|F
oo o e

]
HlI5]

The 2-input NAND In the two-input NAND gate, the P-channel transistors are connected in paralel
gate whilethetwo N-channel transistors are in serial.

— Applet ofthe 2-input MAND gate: v=a"h 3

b 7 — y
-— Click oninput a or b to change its voltage b Do—-
N ﬂi [f

S == I}
— ool
=N
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Binary adder The "Full Adder" cell ( FA ) is made of two connected complex gates. It realizes an

XY E

C 3

arithmetic equality: the weighted sum of the three inputs "x", "y" et "z" is always
equal to the weighted sum of the two outputs "c" et "s", in other words" x +y + z =
2-c +s". This property can easily be checked thanksto the cell truth table.

Applet of the "FA" cell, click on input ¥, v or Z at left.

id /I [ :_.i
iy y Jaf z /Iz ) — 7T
X 7 ,/I ,fI 7 1[ -1
¥ ¥ ¥
z e
H H
7 ﬁ/
5
W W
L M
i
¥ oM i N, XY E | c s
v — Doo | 11
| ool 10
iy | ¥ y Wtz = ola0 10
W 0ol1l o1l
1l 00 10
GND [ j 1 [ 10101
110 o1l
111 oa

The P-channel transistor network is symmetrical to the N-channel network. A
circuit with this property is called "mirror". All the adders exhibit the property that
follows from an arithmetic link between the logic and arithmetic complements.
Finally the two circuit outputs are inverted. This follows from an electric property
of the CMOS technology, which allows easily non-increasing logical functions
only.
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| Adders

"FA" cell Inthe"FA" cédl, the weighted sum of the output bits equals the weighted sum of
the output bits, i.e. " x + y + z = 2.c + s". The three input bits share the same

YL weight. Let it be "1". The output bit "s" has aso the same weight, while the output
bit "c" weight is double (2).

The"FA" cell conserves the sum just like the node conserves the electric current in
the "Kirchoff's current law".

The "FA" cell is aso called "3 [0 2 compressor” since it reduces the bit number
from 3 to 2 while preserving the numerical value.

- )

[

iy | o = . . ——

Do0 |0 o Check your understanding of the *FA" cell truth table
ool |0 1 :

o1olo 1 Give the ouputs ¢ and & values

o1lgl 0 according to the inputs , v and =

100 |0 1 .

oLl 0 Values are modifier by dn.Lml_ |I| . IE

j10li 0 A

Llllll 1 E akthe table at g

e

1 S |
FA

o 11
P! @

Carry propagate The addition is by far the most common arithmetic operation in digital processors.

adder Addition is itself very frequent and is aso the basis of most other arithmetic
operations like multiplication, division, square root extraction and elementary
functions.
All "consistent” "FA" cells assembling preserves the property: the weighed sum of the
output bits equals the weighted sum of the input bits.
To construct the adder S= A + B, the input bits come from the two numbers A and B
and the output bits form the number S.
The number of "FA" cellsis the same as the number of bits of A and B.

Dielay 3, activity . &

W i T?H?T i TT TT T?

— FA; — FAg —| FA; FA, f— FA; j—]

ol ol ol @ @

EB E? EE ':5 E4 E3 ':2 C1 EI:I
S? SEi 55 54 53 52 51 SEI

‘ A |55 B IEE 3 IT"T Mhb. bits |8 g VHDLI @ ‘
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Performanceof Let us assume that al the possible values for A and B are equiprobable and
thecarry ripple independent:

adder | | minimum | average | maximum |
delay | 0 | log(n) | n ‘
lactivity o BEX

The maximum delay (worst case) is usualy not acceptable. Let us examine the carry
propagation path that causes this delay.

Carry For each "FA" cell, one of the three following case occurs:
propagation * thecarryci.iissetto’0', noted 'K’ if a =Oand b = 0
path ¢ thecaryc.iissetto'l’, noted'G,ifa=1andbi=1
» thecarry ¢+ is propagated, noted 'P, if (g =0andbj = 1) or (g =1 and b = 0).
In this last case ¢i+1 = ¢. Thisisthe unfavorable case, materialized by an horizontal
arrow in the next applet.

CH b? A I:1|Ei a5 bﬁ Ay b4 A, b3 Ay bl2 a I:1|1 A bn
o o o] o] 1 11 1

HA HA HA

P E E P

o ol ol o] ol
B c, Cg cﬁ B By, By £ Cn

5

=1

5

] I

- = [ show
A |55 B |22 5 |?? Mh. hits |8
= the 2 hits

The three case 'K', 'G' and 'P' are encoded onto two 2 hits.

"BK" cell The"BK" cell computes the carry for two binary positions ( two "FA" cells) or more
(Brent & Kung generaly two blocks of "FA" cells.

ed

[P)

~
i

Mfleg=P'ibhens=edglses=ag; =]

Lok &L e [akle

e EREE RS
]

O EomEqgm o
oo =

@

Wal date

[Ee— F &
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Sklansky's To design fast adders, binary trees of "BK" cells will first generate simultaneously all
adder the carries ¢.. The "Sklanski's adder" builds recursively 2-bit adders, 4-bit adders,
8-hit adders, 16-hit adder and so on by abutting each time two smaller adders. The
architecture is simple and regular, but may suffer from fan-out problems. Besides in

most of the casesit is possible to use less "BK" cells for the same del ay.

Delay : 3, activity : 4

A by A by

Ay hg Ay hs CH h? EH hﬁ E h5 N h4 Ay h3 N hz CH h1 4 hn
olof ol [olo] Plle] [ofpl [llo] [il ol ol [o 1] [0
HA, HA HA, HA, HA HA, HA, HA HA, HA, HA HA,

i i g

i i

qu”F?(JQS v
R m

‘ A |55 B IEE =] I'."TIr M. bits (12 g @

Fast adders Inafast adder, al the carries ¢; are computed simultaneously through a binary tree of
(Brent & Kung) "BK" cells. To save on complexity, sharable intermediate results are computed once.
There is only one rule to construct the trees. every output with position i must be
connected to all inputs of position less than or equa to i by a tree of "BK" célls.

The rule ssimplicity usually allows for many correct constructions.

KKK EGEREEEERRREEE

215 214213 212 211210 29 28 2? 26 25 24 23 22 21 2[!

i
EE)RN

]

i
C I:'::I.(E Er

Ci5Ce8C14 1309201 Cp g © 5

‘ Details | wHOL| Mb."BK cells  [32 Nb.bits [16 5 Delay [+ 5

In the "BK" cell tree, one may trade cells for delay, usually for the same addition the
less the delay, the more the "BK" célls.
» change the number of bits and/or the delay
» check that the trees follow the construction rule by clicking on a signal (a
line), notice that each signal is named by a pair of integers.
» smulate the carries computation by clicking on the keys K.
» display the tree construction process by clicking the key "Details"
o display the adder VHDL description by clicking the key "VHDL". To save
the VHDL description, select it, then copy and paste it into atext editor.
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Kogge & Stone The binary trees of "BK" cellsin the Kogge et Stone adders are not sharing.
adders Consequently the signa fan out is reduced to the minimum at the expense of more
"BK" cells. Since the delay increases with the fan-out, it is here a bit shorter.

K P E K [P PR EEEEEE R K E

215 214213 212 211 210 29 23 2? 23 25 24 23 22 21 zl:l
|

Cig C1m Calia B2 By Cyp o Cg Cp Cg Cg Ty Cp Cp Oy

VHDLl MNb. "BE" cells |4E| Mb. hits |16 g ‘

Ling adder In the Ling's adder, the "BK" trees give a primitive called "pseudo carry”. It avoids
the computation of p; and g;, but on the other hand the carry has to be deduced from
the "pseudo carry”. The trick is that this late computation is overlapped by the "BK"
cells delays. Consequently this adder is faster (a little bit) than the corresponding
"BK" adder. The VHDL synthesis from the appl et takes advantage of that.

"CS"' Cdll Inthe "CS" cel, the weighted sum of the outputs equals the weighted sum of the
inputs. In other words"a+b+c+d+e=2h+2g+f". The"CS' cel isnot only a
"5 3 counter”, but moreover the output "h" is never dependent on the input "e".

—H—E—H——E—H— Check vour ||:|1.3-_'r:i|;||uliug ol the "CS" cell truth table,
gool|la o '
golLo| D O e i F i
SmEH Crive the values of outpuis h
gloo| g o g and [ by clicking on ihem a b ¢ d =a
olol|lo 1 ’ L . )
01L0|osl 1m aceonding to the inputs a, b, IEI |1| m IE |i|
9 !I' % “él 1#:' ¢, and ¢ and then validate.
Lool|a L
0LOoLo|of 1m0 0o
LoLl|osl lm 3
L1000 150 3 %
1101|071 10
Lllo| L D 1 1
HHER: :
aele D_?l 1}:- s I
gLl |ofl 1 4
10100 |07 10 0
01010l 1m0
glla|lL o H
o1Ll1|L 1 2
SEHEE v T e
1 Li 1 nldale
i0LlL1] Lk L
Higlil o @
1L11o0| L L1 @ h d f
Liiiaile 1 1

L v,

Carry The"CS" cell does not propagate the input carry "€" to the output "h". It makes "carry
pronaaation Propagation free" adders possible. The number of necessary "CS' cells is precisely
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free adder given by the number of digitsto be added.
On the other hand each digit is coded onto 2 bits and the digit value is the sum of those
2 bits. Therefore the possible digit valuesare '0', '1' and '2'.

Delay 1, activity 3

‘ A 55 B[22 s [r7 Mb. bits |s_g WHDL| @

This notation system for integer numbers allows addition with a delay both short and
independent of the digits number. Y et this system demands about twice as many bits as
the standard binary notation for a comparable range. Consequently the same value may
have several representations. The vertical arrow ] next to the numbers value changes

the representation without changing the value. Among the representations, the one with
only '0' or 1" is always unique.
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| Multipliers
Multiplier The multiplication comes second for frequency of use.

AND gate An "AND" gate multiplies two bits. To multiply two n-bit numbers A and X, n?
"AND" gates are required. The weighted sum of the n? gate outputs has indeed the
a samevaueasP = A * X. However this set of bit is not a number, although its value
'X_ B is computed asiif it was a number.
i S Since A < 2" et X < 2", the product P < 22" and therefore P is written with 2 n bits.

Unsigned A regular structure of "AND" gates and "FA" cells with a "consistent” assembling
Multiplication first produces the partial products and then reduces them to a number P. Since each
"FA" cell reduces the number of blts by exactly one (while preserving the sum), the
necessary number of "FA" cellsis n? — 2n (number of input bits — number of output
bits). Yet in the following applet there are more "FA" than necessary since some '0'

must also be reduced, to be precise just as many '0' as bits of X.

:.:-

Dealay- 10, acliity - 16 ' " EainlarulIlaHIIIH.;IaHIIlarDIIl nlan

Ba¥ Hgky 3ﬂ’:| |3‘| d ::I b Ll :'u:‘l
J-ij. l3:':1
|:| fFaf '”i]:‘“
E-_.:v:] a
| i, F ]

A 55 % [0 P 1100 Mo.bits [z = @ ‘

Fast Multipliers Many approaches lead to a speed improvement:
Divide the number of partial product bits using a higher radix.
* Useatree structure for the "FA" cell reduction net.
 Use"CS' cdl, with areduction power two times the one of "FA" cell. Besides
this cell allow balanced binary trees (with some difficulties).

Booth recoding Using a larger radix automatically reduces the multiplier X digits number.
Let have alook on radix 4, using two times as less digit as radix 2 for the same range.
The "Booth Code" ( "BC" for short) is the minimally redundant symmetric radix-4
code. Digits values [1{-2, -1, -0, 0, 1, 2}. The 3-bit code picked below, known as
"sign/absolute-value”, has 2 notations for zero.
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Multiplieur ¥ |55 @ Signed  © Unsigned  Np. bits [3 =

=
signe}{? Heg Mg ¥, Mg Mg X, ¥,
21 - -
1 -1 2 -1
However the partial products are computed by a cell more complex than a simple

"AND" gate.

Cdll of the Check whether you are acquainted with the logic of the "B2BC" cell, which convert a
binary to"BC" "BC" digitinto "sign/absolute-value” for the generation of partial products. The sum is
converter preserved,i.e :-2*x3+x2+x1= (-1)°* (2*M2+ M1):

Look at the table

BN -, ¢ 5 4] =) | 24802 + M) >

o d o o d o

Do 1|loo 1 |-?-| T |-?|
0 ] 1] 0o o 1

b1 1|lo 1o

10 0[1 10

1 0 1 1 O 1 EIBEC
110|101 )

1 1 1]l 10 @ 2 1

000 @

walidake
The conversion of X requires half as many "B2BC" as bhitsin X.

Multiplication of The multiplication by one "BC" digit 0 {-2, -1, -0, 0, 1, 2} adds 2 bits on top of the bits
A bitsby one of A: one a left to get either A or 2A, another for the input carry in case of subtraction.
"BC" digit Since A issigned, its sign may have to be extended to the bit added at the | eft.

=
Wultiplicand A |22 & Signed ¢ Unsigned pb. bits (2
S, aj M1 a2 —I P

EI
signe
QJ? 88800
0 0 0 O 0 1

= 1

o
fri}

= ':'_@Dm

[=]

=lel= =

-—=

& =
The multiplication requires as many "CASS" cellsas bitsin A plus 1.

o Hg Xy

EI? EIE 35 34 33 EI2 El1 Eln
T?? + l@Jr 4@4 Jr!# ¢!¢ 4@4 J,!J, 4!4 4!4

BZBC | |CAsS, | |CASS, | |CASS, | |CAgSy | | CAsS, | |Cadb,| | CASS, | | CASS, cﬁssy

i 0 8 B 0 8 8 & @

o |glalalofaf2] afe P10 nbbits [5 o @ ‘
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Partial products The multiplication first step generates from A and X a set of bits whose weighted sum
generation is the product P. For unsigned multiplication, P most significant bit is positive, whilein
2's complement it is negative.

A [55 % [20 Nb.bits 8 2 VHDL|

& Unsigned " Baugh-Ywolley ¢ mModified Boath ¢ Cananic
Partial products A, A A, 8,8, 35 8, 3y
Mo coding far A or X @@@
H“”@nunnnnnn {0+55+20)
‘Bl oooooooao (0+65+2")
S l|:||:|11c|111 (1+85+2%)
H3@nnnnunnn {0+585+2%)
“Moot11a1 11 (1+85+2%
5@nnnnnuun {0+55+2%)
ﬁ@nnnnnnnu {0+65+25)
?Iﬁlnnnnnnnu {0+55+27)
ooooo011121214900 Product=1100.

'2142132122112“]29 28 2? 26 25 24 23 22 21 ED
[1[2[3l4falelr(alr]le(s]alal2]1]

Partial products The multiplication second step reduces the partia products from the preceding step
reduction into two numbers while preserving the weighted sum. The sough after product is the
sum of those two numbers. The two numbers will be added during the third step.
The reduction trees synthesis follows the Daddas algorithm, which assures the
minimum counter number. If on top of that we impose to reduce as late as (or as soon
as) possible then the solution is unique. The two binary number that have to be added
during the third step may aso be seen a one number in "CS" notation (2 bits per
digit).

Reset | T Early |L

2] o

[T Use cs cell [~ Propag. locally sheet: 1

2142132122112“]29 23 2? 26 25 24 23 22 21 EEI
123|466 |78 T|6E[B/4]3[2]1
FAFAFAHA
HAHA
12/ 3|46 A|B|F AB|G[B|4]3[2]1
FAFAFAFA[FAFAFAHA
FAFAFAFAFAHA
1T(274(4(4/4[4([4/4[4[4/4]3[2]1
FAFAFAFAFAFAFAFAFAHA
1T[313]3 (313 ]3[3/3[3[3/3[3[2]1
FAFAIFAFAFAFAFAFAFAFAFAHA
2222212221222 2]2[2]1

Example of The following trees reduce 8° partial products (for example the product of two 8-bit
Wallacetree unsigned integers). The "Wallace trees’ reduce "as |ate as possible” (key "late" on the
preceding applet). The weighted sum of the 16 output bits equals the weighted sum of

the 64 input bits.
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FHFIEGH gl gk oF b 8 b 1
p {[Z[3[4[sT8[7[A[7 RIS [4[aT3[1]p
FAFAFS HA
HE =
E 1]1 |_1_|2|:r'||_-_r~-'.1|._|EE
F&FAFAFAEAFAFA HA
FAFAFAFaFA H

| TT 1 TT1l fjglajalaiaafafajalajdialz|
. B0 Sl ¥ ! | | FAFAFA FAFRFAFAFAFAHY
S / Ao A i Faem Tt ! il Lal. |

ir L G . 113131 ¥ 31313133313 3}31F|1
i‘l'i = !_'-EF F“! :"li:_"':- :"_"'l'EF" - ;F:| "’:'r; FaFaFaraiarsfsrarsiarss
[ “”| "_"_: |_"_ Al l_“_il "El |"E]E Illf".._".' plpizizlz alziaialaialziziald

P __..-I : Il A0 A | T ] J | I . ||- i
e i - -|-|:' | _i" |*: ! I
[Fa] / |]| l":,'| o /T ‘r'"l o E“rL-' e
PP Ay S A e 7 5 H)
i
|

— ¥
A - ] £
. ..-'.. .I-..-'-.._.- = ..- o
I - !
e -~ 1 _.-' e
+ ' i '

P LAY LT wliz » P k] 1Pl L1 L Lk » Fi » HE u i vl vl vl Fow
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I_-H. Eiis SR | 4 [ﬁ E
F& |l-'r\| Irn Fa i
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-
F
o
1

1

Partial product Multiplier X and multiplicand A are now both in "CS" notation, i.e. with digits values
of"Ccs' 0O{01,2}. Wewant to generate a set of bits whose weighted sum equalsA * X. To
operands make sure that we get bits (easy to add), it is necessary that either in A or in X every

digit '2'ispreceded by a'0' at its | eft.

A7 Ag Ag A4 A5 Ay Ay Ag

G707l
% |§|3: 0= né nénéné1éué Dé Dz/
y 4: 0= né né1énéné1é 14 7

y |§T= 0= 0404040414 né n/é/ Dz/
y @ﬁ: 1= nénénénén/énénénz/
@?: 1= nénéné né né ,]é é n:/

TG II LI

oo o o 0 o1 1 1 31 4 2 2 1 10

A |55 i Ijj P |121|:| Mb. bits |2 E VHDLl

Reset || Early|| Late | 2] 2] 4] VHDL |
-

[ Use CScell [T Propag. locally sheet: 1

2152152142132122112‘”]29 23 2? 25 25 24 23 22 21 ED
lof2[3fas]afr({slalalr|e]a]4]3([2]1]

Click to add a "HA" cell.
Shift key down to add a "FA" cell.
CTRL key down to suppress a cell.
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Partial products The partia product of two "CS" is a simple bit, reduced in the very same way as for
reduction conventional fast multiplication.

"XCS' cell The "xCS' cell computes the product of two digits a and x in "CS" notation.
Its arithmetic equation is"2 x b + 2 X y +i=axx +z+ c". Furthermore the outputs

"b" and "y" does not depend on "c" or "z" (no propagation).
- Lk &l the 1sbia
(8 & = | B % 1] i TR
§ 00 000 g _Ctiyri=anersc
QO L0 @ o o0 a
O
0 2 1 Ll LU 1| 1
1 O 0 o @ 0.4
I L0 oo 1 b
1 & 0 0 o 1 :a = B
I - T xl-:~4—||
g2 00 0|0 0@ 0 ID
i o-a ¥|D D1 il
T L0o|Lo0o0
2 L .0 I s i) =
HESH B ;
a i i v
ot o|oan 0 0 @
£ & 1 1 |veegfilon |

| Yaldaie

Coding circuit The transcoder "CS2CS" passes from "CS" to "CS" while making sure that in the
"CS2CS' outputa'2 isaways preceded by a'0'.

Multiplieur = |55 M. hits |8 %

This permits to generate the partial product of a muItl plicand A by a multiplier X
both in "CS", with no overflow.

Coding circuit The transcoder "CS2BC" passes from "CS" to "BC" , that is from the "carry-save"
"CS2BC" code to the "Booth Code" ( symmetric minimally redundant radix-4 code ).

multiplieur ¥ |55 Mb. bits |2 E

X }{3 }{2

4
El%l

. i .
Fa FA Fi FA
I A I
[Fs| [[Fs| ||Fs]| |[Fs|
e |l | el | Tl
11 211 211 211 21
] 1 -1 2 -1
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Integer constants multiplications

Multiplication The discrete Fourier transform, the discrete cosine transform or inverse, digital
of avariable by filters, and so on, &l contain the multiplication of a variable X by several constants
integer C1, C2, .. Cn. The factorization of those constants permits a dramatic reduction of the
number of additions/subtractions demanded by those multiplications. The following
applet computes
Y1=X*C1l,Y2=X*C2,..Yn=X*Cn.

constants

Mb.const [3 g [2717 |2726 2723 vHOL |

E v =MDl = H+2F17 = K21 42009 40027 43024 23627 #3027 4320
Y2=H+02= HM+2726 = #2110 #3629 #0027 40029 43027 w2t
YI=Ke 03z K+272F = W2V 02 ® #0027 +202% #3027 42l

Step 0: cost= 16 additions
V1=K Cl= Ha2717 = M2 40029 4327 4025 028 4,20
Y2=H+02= 2726 = M2 4029 43027 43025 2327 Sy 2!
YI=Ke 03z K+272F = W21 #0229 4127 +¥22% 230227 _xe 20
Step 1 :cost=12 additions and 3 subtractions
Y1=H+Cl= Ha271F = - H+22 +4=20 44,25

Y2=H+02= 2726 = M2 4029 43027 43025 2327 Sy 2!
YI=Ke 03z K+272F = W+27 - 320 +yg. 28

V4=H+Cd= M8 = H=x2% +H=x2% +H227 + 62320

Step 2 :cost=9 additions and 3 subtractions
YI=H+Cl= H+271F = - H+22 +4+20 +yg. 28
Y2=H+C2= H+2726 = Y427 +¥5+2]

YI=He 03z H=272F = =27 - =20 4428
Y4=H+Cd= M-85 = H+2% + M2 2% + 8228 4420
YE=H+CH5= H+1023 = ¥«210 .30
Step 3 cost=6 additions and 3 subtractions
VI=H+0l= H+271F = - ¥+22 +%=20 +yq.25
YI=K+Cl= X+2726 = Y4+2% +y5+2"
YI=H+C3= H=2723 = H=27 -H=20 + 7425
Y4=H+C4= H+85 = ¥E-27 +yE+20
YE=H+C5= H+1023 = ¥«210 -5+ 20
YE=K+CH= X+1F = H+2% + 3«20

Step 4 :cost= 5 additions and 3 subtractions
Y1=H+0l= H+271F = Y4 +25 -7+ 20
YI=HeCl= H=2726 = Y427 +y5-2"
YI=H+C3= H+2723 = Y425 +y7 .20
Y4=H+C4= H+85 = ¥E+22 +yE+20
YE=H+C5= H+1023 = ¥«210 -5+ 20
YE=K*CH= X+1F = H+2% + 3«20
YI=H+CT= H+3 = H+28 3«20

Step 5 :cost= 4 additions and 3 subtractions
Y1=H+01= H+271F = Y425 -7+ 20
YI=K+Cl= X+2726 = Y4+2% +y5+2"
YI=H+C3= H+2723 = Y425 + 47420
Y4=H+C4= H+85 = ¥E+22 +yE+20
YE=H+C5= H+1023 = ¥«210 -5+ 20
YE=K*CH= X+1F = H+2% + 3«20
YI=H+CT=H+3 = ¥+21 + 320

Step 6 : cost= 5 additions and 2 subtractions
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Dividers
Weighting a We want to computer Q = A =+ D. By a stroke of luck, we have available a scale, a
bread loaf with Whlte bread whose weight is actually just A and a set of weights with values D, 2D,
restoration and 4P 8D - .. 2*D respectively marked with 1, 2, 4, 8, ... 2.
without In fact D is a binary number, and 2*D is simply obtalned by shifting D. The scale
compares the sum of the weights on each of the two plates ( < or >).

restoration

.‘-u_. g T
’
e .!,g'

- 2 TR T e e b
258 oy | . ST e
i T e, ‘;“ S .-..?' |r .-.',‘rw : o i - '-'fill{. e

@@]@@@@@@@huu I @ Nb. poids [9 .A. [z0o

Digit recurrence Division is not frequent. Nevertheless since its execution delay is far larger than the
division addition or multiplication's one, its contribution to the tota execution time is
substantial, thusit is advisable to design dividers carefully.
Let say that wewant Q = A + D. Thisisequivalentto Q * D = A. Therefore if Q and
D are both written onto n bits, A iswritten onto 2n bits.
Let us build a series Qn, Qn-1, ... Q2, Q1, Qo and a series R, Rn1, ... Ry, R1, Rpsuch
that theinvariant A = Q; * D + R; holdsfor all j.
Therecurrenceis: '
¢ Qu=Q+qgux2"
* Ra=R—ga*D*2"
withinitial conditions:
[ Qn = 0
e Ry=A.

When the recurrence stops, we have Q = Qo = Z{;O g * 2. R = Ry is the division
remainder.

=
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# [D000001000100110] =550

D+ 2% =22+2%  =5632 = 550 (o overfow )
Re=A D000001000100110 =550
Rg2D*27 00010110 4,=0,0,= 0
R.=R, D000001000100110 =550 —
R,<D*28 00010110 g,=0,0,= 00
R,=R, D000001000100110 =550 —
Ry D+2° 00010110 g,=0,0,= 000
R.= R, D000001000100110 =550 —
RezD=24 00010110 g,=1,0,= 0001
R,=R,-D+2% 0000000011000110  =550-352= 198 |
R,zD+2° 00010110 g,=1,0,= 00011
R,=R,-D=2% 0000000000010110  =198-176=22 |
R, D22 00010110 g,=0,Q,= 000110
R,=R, 000000000001 0110 =22 —
R,sD=2' 00010110  g,=0,Q,= 0001100
R, =R, 000000000001 0110 =22 —
R,zD=2" 00010110 g =1,@,= 00011001
R,=R,-D+2" 0000000000000000 =22-22=0 1
RemainderR,= 0000000000000000 =0
Quatiert@,= 00011001 =25

QoD+ R, =26=22+0=550+0=550
A IEEEI DIEE

Conditional A "conditional subtractor” gives the following result S:

¥ Wyith restaration &

M. bits |a =

£ Without restoration

subtractor ifR<DthenS=RdseS=R-D ;
Each "SC" cell computes both the result and the carry (borrow) of the subtraction
R —D. If the output carry value (leftmost) is '1' then S is assigned the result of the
subtraction else S is assigned the value of R. This last case, that seems to "restore”
R to its previous value before the subtraction is sometimes called "restoration”,
from which the divider's name derives,
f, dy fy oy fy ds fy dy fy dy fy dy ryod gy

sl sl o sl sl E ey

1 1 1 1 1 1 1 1 1

SCE=5C5=5C4=5C3=502=5C1=SCD

—
]
L]

i
&

;

;

S

Sg

;

Sq

;

5

;

e

;

5

R |55 D |22 g (33

Mb.bits [8 =

The "conditional subtractor" function: if R < D then S=Redse S=R -D, is
abstracted by its transfer function called "Robertson's diagram”. To converge the
division imposes moreover that 0< R< 2*D.
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new remainder S
45
£

T
F

0 2*D

old rem[ajinder R

" SC" cell of the Check whether you are acquainted with the logic of the "SC" cell :
conditional it q=0then { co=majority (r,d,ci):s=r:} // identity

subtractor . - . - .
else{ co=magority (r,d,ci);s=rodoci;} // subtraction
Look at the table
g r d egif co s r a
0 0 0O 0|0 o
O 0o 1|0 o
00 1 0|0 0o
O 0 1 1|1 o 0 _
o1 0 0|0 1 ofo] Ci
o1 0 1|1 1
o 1 1 0|1 1 @1 <—m
o1 1 1|1 1 S
1 0 0 0|0 o 1 ~
i 0 0 1|0 1 i
i 0 1 0o 1
101 1|1 0 9 0
1 1 0 0o 1
i1 0 1|1 o
1 1 1 0|1 o
11 1 1 [1 1 5

Walidate

Restoring A "restoring” divider consists in a series of shifts and attempted subtraction. It is
divider made of a regular net of conditional subtraction cell "SC" (subtraction or nothing
according to acarry out bit).
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e
[=]
o
| C
o
| &
o
| &
o
| &

= =
/]

]

[aln}

|

[n}

|
[un] (un] o
[ | | &

0w
|
w
|

sc—[scl=sc]

i
[
? sole—[ocl—scl~{scl—[sc~—]scl=—fac}
To S
MICE
5C 50 5C 5C 5C 50 1
Delay : 33, activity - 27 ??_I M e ?4_' I—?L: ?: ?1_' ?:

[ A [550 D [22 a [25 R [0 Nb.bits [5~ = vHOL| @]

Fast dividers Three approaches may be combined to realize fast dividers:
e Utilization of carry-propagation-free addition/subtraction.
» Preconditioning of the dividend and the divisor in order to simplify the
division.
» Useof higher radixes to reduce the number of steps.

Robertson's To obtain a square Robertson's diagram, the successive partia remainders are
Diagram normalized: (R;* b?) where b is the numeration radix.
The black slopes represent the transfer function R; ' Rj_1, the red line is the identity
function, that passes to the following step. Pulling the mouse out of the pictures
suspends the animation. Clicking ends or restarts the animation. Clicking inside the
sguare sets another starting point.
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A IEIIZID
D |3
Nb.steplg_g

&« Radix 2
= Radix 4

" Radix &8
" Radix10

" nonresto.

i RET

7 1 ? 4 f i] 3 kil
=1 5,=0 5,=0 5,=1 5,=0 5,=1 g=1 =10
Radix 10 sounds familiar to us; it is given here just for illustration because it would not
be very efficient in binary.

"SRT" division To avoid the delay of the carry propagation, the following applet uses a stack of
or carry borrow-save "BS' adders/subtractors. The "tail" cell, variant of the "SC" cell, is
propagation free controlled by two bits and executes one of the three following operations:
division an addition : Rj_l = Rj + 21__1* D
« asubtraction: Ry =R —27"* D
e anidentity: Ri.1 = R
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a4 dpap dyay dpay dya; dgay

, W 55 35 53 i
/ Wt %

tall tall

H= —
[ head [t | (i | (i | tail

o] rs o] Mg o] r7 o] Iy o] Iy
A [550 D |22 a 25 R o . bits [ = VHDL| @l

This operation is selected according to the sign of the partial remainders R;. To aways
know precisely this sign would require the examination of all the remainder's digits. It
is sufficient to check only three. Moreover, the position of the three digitsis known: the
rightmost one is aligned with the most significant non-zero bits of D. To nail down this
digit position, D is "normalized”, that is the position of its first "1" bit is fixed. For an
n-bit divider, 2"* -1 <D < 2",

Conditional A "conditional adder/subtractor" yields one among the three following outputs:
carry- e ifg="-1thenS=R+D;
propagation-free ¢ ifq="0 thenS=R;

adder/subtractor _ * ifa="1thenS=R-D; _ .
Each "tail" cell executes a one-bit addition/subtraction. The carry is not propagated to
the "tail” cell at |eft but fed directly to the "tail” cell below (next line).
do I dg Iy d, d, I d,
B8 8 95 3 B9 6 86 g
bl
tail.|  [taily| [tailg| [taily| [taily| [taily|  [tail,]|  [tail,
0 0 1 0 ) - 0 0
58 S? SE 55 54 53 52 51 SEI

[R [55 D |22 5 [s5 Mb.bits [5 = @

The "conditional adder/subtractor” function sis abstracted by its transfer function
called "Rohertson's diaaram". To converae the division imnoses moreover that
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-2*D<R<2*D. If -D £ R < 2 then S hastwo possible values.

A
D

new remainder 8 <
.'1)
.
NG
@

b
)
[ ]
)

old rem‘::]inder R

"tail" cell of the Check whether you are acquainted with the logic of the "tail" cell.
"SRT" divider o ifg="1then 2*s;—s =dp+ ro; // addition
o ifg='0"then 2*s; —s9 =19 ; // identity

o ifg="1"then 2*s, —so = do + ro; // subtraction

g di 0 |51 s0 1 | hok at the table

1 0-1] o0 1

-1 1-1]| 0 0

1 00|l o0 o dy o

-1 1 0| 1 1

1 oD+l | 1 1

1 1+ ]| 1 0 0

o o-1|0 1 g

0 1-1]|0 1 1

0 0 0|0 0 @ > .

o1 0| 0 0 tail

O o0+l 1 1 5

0 1+1] 1 1

+1 0D-1]| 0 0 1

+1 1-1] 0 1

+1 0 o 1 1 @
+1 1 0| o o

+1 1 +1 1 i Validate

" h?ad" Ce” Of the | &t R= s 4+ rx 2+ rpand S= s+ 4+ 5% 2 + 5, be the input and output values of
SRT" divider e head" cell. Another output is one quotient digit q .

N N N
e ifR>0then{S=R-2;q9="1,}
N N N
e IfR=0then{S=R;q='0;}
LA AN
e ifR<Othen{S=R+1;q="1;}

In areal division (without overflow), output s, will always be 0. .
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.'|:. ﬂﬂ .T. f{ ET 41[ Lok at e table ’
el #1 0| 41 0O 0+l =]
1 +1 -1 41 @ -1 41
bl 0 #l| 41 0 =L &1 I3 Iy In
+1 0 0 +#1 0+
H1 0 -1 £l -1 4
bl =1 +L *l =1 #
1 -1 0| 0 o0 0+l
bl =1 =L| 0 0 =L %1 4
+1 +1 +1 -1 *+ q
+#1 0 o o=+ 4 1 1
+1 =1 Bl 44 @ = — —
0 O+l 0 0 -1+l —:l:l
0 0 0] 0 0 0 0 haad
o -1 ooo-
=1 +l o on- 4 ) 1
=1 0 0=L=
0-1-1] 0-1 0-1 0
=l #l+l| 0 0 @ =1
-1 +1 D o-L-
-1 +1 -1 -1 0 -
=1 0+l =1 0~
el teit i e
- - - - Ty L
-1 -1+L| -1 0 0 - g - : Walidale
-1 -1 0| -1 @-i- <
=1 ~-1-1|-1-1 @~

"SRT" division The previous division is simple because the fist bit of the divider D is aways "1". It
with divider may be even further simplified if the two first bits dy and d; of the divider D are
; reduced to "1 0" thanks to the following operation:
range reduction e I D=Dx34: A=Ax34:)
This multiplication of A and D by the same constant does not alter the quotient Q, but
on the other hand the final remainder R is also multiplied.
For an n-bit divider, 2" -1 <D < 2™ + 2"2,

! @’ IEJ IE] Ell
TR
L

Oz g
ﬁ I head

tall tall tall tall
O3

3
@‘ head tail tall tall tall
04
o ”ﬁ :
OR— T
head tall tall tall tall i
Qs
@ = f S an
T head tall tall tall tall i
O
Eli :J 1 1 1 1
head tall tall tall tail tail

E Fe E] f7 Fg E fy E] Mo I 11
A Irnr D |m a 111 = |r Nb.bitslr_g VHDLl @ ‘

Head Ce” of th_e "SRT" | etR=r 2+r,bethe"head" cell input value.
divider with range A A
e ] m e ifR>1then{ss=R-3;q9=+1;}
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reduction . jfR=1 then{ %=0;q=-0;}
. ifﬁ:Othen{so:O;q:+O;}or{so:-l;q:-o;}
. ifR=-1then{s=-1;q=+0;}

o if ﬁ<-1 then { 30:§+2;q:-1;}
Here the difference between the two O representations for g : - 0" and

"+ 0" matters.

Lok at the tahla e
1 0 |0 =& R
+1 41 o £ My My
+1 gl -1 +1
1 -1 o
0 +1 d =0 2
0 o o ; ', g
0 =1 |-1 +0 :’,@
-1 41 | -1 =4 head
-1 0 Al =
=] =i | =i =i

aldale

Quotient The quotient Q is in redundant notation. The conversion into a conventional binary

converter representation is obtained thank to an adder (in fact a subtractor). Since the digits q
are obtained sequentially, most significant digit first, the conversion can be carried out
in paralel with the quotient digits obtaining. Let "ratio" be the "head" cell and "BK"
cell delaysratio. The higher the ratio, the simpler the converter.
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il

il
i f

minjuinjnisjnnieysiusy

o o o o o o i o
ﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬁﬂﬁﬁ
M Nb."awcensﬁ Mb. bits [23 g Ratio [0 g

Divider design The quotient Q digits are redundant and symmetrical. Therefore they are completely
defined by the radix and the maximum digit value. This applet let you choose the
quotient digit values and then the necessary number of bits from divider D and digit
from partial remainder R that must be taken into account for the selection of the
quotient digit value.
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il - —
rul |
oL -~
0] o

178 -

(L] o

158 -

118 -
120 -

118
1iE

in

] ] id 11 13 il id 15 |='
16 L1} 3 -] 16 [} Ik [ [

s e S mem [0 B ruseen [ 5 smagrf o

The leftmost button moves to the next or to the previous step.

+ 1- Robertson's diagram, plotting the next partial remainder according to the current partial remainder.
The boundaries take divisor D into account.

+ 2- Symmetrical PD-plot for D intherange[ /2, 1]

« 3- Half PD-plot, upper part of the preceding one. The lower part is obtained by changing the sign.

+ 4- Discretised half PD-plot. The number of D bits taken into account gives the abscissa discretisation,
while the number of P digits gives the ordinate discretization. Fixing this number of bits/digits will
determine whether a continuous frontier can separate the different values of g.

« 5- Half truth table for the half PD-plot.
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Square root extractor

Squareroot The square-root extraction is relatively rare. Nevertheless, it is used among other
extraction things for Euclidean distance and least square and is included in the floating-point
standard. The sguare-root operator is similar to the one for division, therefore most of
what we already know about division may apply as well to sguare root. Often the
same operator is used either for division or for extraction, collision of the two

operations being too rare to justify two operators, moreover each very costly.

Squareroot In the drawing below, the area of each red rectangle represents one bit weight. Only
extraction the'l aredrawn. Thereforethetotal areais the weighted sum of all the bits.
algorithm The goal of the game is to find a square with an area equal to a given argument,

represented by the area of a blue circle, just by observing one test bit ( < or >) and by
clicking the square side bits. After convergence the sough after number is the side of

the square.
the red squares surface is smaller than or equal to the hlue circle surface
G4 <
the blue circle surface is 2025
the red squares surface is 1600
40
-|:|' T 140 G4

click on the bits (rectangles) below to change the root value

77 h R [%":4":2"1:

Yalidate Showy

@ @&

Squareroot We want to get Q = \/K . Thisis equivalent to Q = A + Q. Therefore if Q is written
extractor onnbits, A iswritten on 2n bits.

Let us build a series Qp, Qn.1, ... Q2, Q1, Qo and a series Ron, Ron-z, ... Ra, R, Rg such
that theinvariant A = Q; » Q; + Ry holds for al j.

The recurrenceis: _
© Qu=Q+qgax2?
* Ry2=Ry—gax 27 (25 Q+27
with theinitial conditions:
e Qu=0
b R2n =A.
When the recurrence ends, we have Q = Qp = Z{;o q* 2.
R = Ry isthefinal remainder of the square root extraction.

Arithmetic operators Page 29



lbo100111000100]

Ri4=A oo100111000100 =2500
Subf—cohdition.  Of Hp=0Qg= 10
Ri;=Fg ooq100111000100 = 2500
Subtr. condition. oot q5:1,£;15: 01
Rig=Fqp- Q5 ooot1o0111000100 = 2500 - 1024 = 1476
Subtr. condition. 01af q4:1,£;14: 011
Rg=R,- 3, gooooot1o000100 = 1476 - 1280 = 196
Subt—cohdition. 01104 q,=0Q,= 0110
Rg=Rg gooooot1o000100 = 196
Subt—cohdition. 011004 q,=0,Q,= 01100
R4=Rg gooooot1o000100 = 196
Suhbtr. condition. 0110009 q,=1,@,= 011001
R,=R,-0Q, goopoooQoooooon =196-196=0
Subt—cohdition. o11001079 q,=0Q,= 0110010
R,=R, goopooooQoooooon =0 —-
RootQ, = ofi40010 =50
Femainder R, = 00000000 =0
Qg+RD:5l]*5l]+l]:25l]l]+l]:25l]l]
AIW &+ Wiith restoration " Without restoration  Nb. bits [7 g @

Realization The restoring square-root extractor utilizes the same conditional subtractor "SC"
cells as the non-restoring divider.

1 9a dg
0 1
:H'\ 137 g
sl —Jscl<fscl—fsck-1 o
0 1
N
scl*—[sclfscl=fscl—scj-12s 34
i |y k J;i‘\ _1;1'\ D ;
Bl {scr—{scl~scl~sc~[sck—[scj+1
1|y k k k ;
r Jr Jr Jr
[+ fscl—sclscl{scl*{scl*scC
i i | | | 3 }
scl—scP—[scl—{scP<{scP~—sc | 5C-1
Delay © 4, activity : 9 Fe ts (7 Fa rz r1 fo

A [z500 afs0

50

Mh. hits |5 % @

Fast snuare-root We want to get rid of the carry propagation by the use of the "BS" notation, the same
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extractor

Squar e root
converter

"head" and "tail" cell and architecture similar to the fast division. We bump into three
difficulties when trying to use the fast divider for extraction of square roots.

The first difficulty is the root feedback. In asimilar way as the division, the extractor
supplies a partial root Q; in "BS" notation. On the other hand, the "head" and "tail"
cell of the divider accepts a partial root in conventional binary representation. A
subtractor could be used to convert each Q; from "BS" to conventional, but that
would be both slow and expansive. The converter below use a 4-input, 2-output "trc"
cell, derived from the "BK" cell.

Op
g [=]
M. hits |8 =

Racine Q IE,;l_—

" Signed

& Unsigned

1]

If

il ﬁ A

REEEE
RiREE

NIEEERE
SR

1]

1]

Squareroot Check whether you are acquainted with the logic of "trc" cell, which convert from

conversion cell

"BS" notation into standard binary notation.
Input "si" is a bit from Q;, input "ci" indicates whether the carry propagates in this
cell's position. The carry is used in case of subtraction of 1. This signal corresponds
to the value 'P of the "BK" cell.
« ifg=-1then{so=s Oci;co=0}//subtraction (sum - carry), carry killed
« ifg=0then{so=s;co=ci} //sumunchanged, carry propagated
 ifg=1then{so=s;co=0} //sumunchanged, carry killed
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6 aa|lo o

g g 31lo 1

i 10] 1o .
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-1..a-0] 39

-1 O 1 1

-1 1 gl 30

-1 11l0 @8

i) @

Maldar

Carry- The fast square-root extractor utilizes the same cell as the fast divider to execute at
propagation free €ach step one of the three following arithmetic operations:
squareroot  ° if G ="1"then Ryp=Ry+2'x Q —2%"/ addition

» if g ="0"then Ry.» = Ry // identity

« if g ="1"then Ry, =Ry -2+ Q —23" //subtraction
Each "head" cell selects the value of one ¢ thanks to the sign of an approximate fizj
of the current remainder Ry;. _
The second difficulty with respect to division liesin the subtraction of 22 whenever
g =-1 or g = 1. For the bit subtraction, a negative input of the least significant tail
cell of each lineis used.
The third difficulty liesin the range of Q. Indeed each Q; must start with a"1" in the
most significant position (implicit). This condition is fulfilled if the two most
significant bits of the radicand A are not both zero. This "1" is subtracted from A in
thefirst line thanks to a negative "head" input

Hp =1 a.q ap Ay a7

0 B @ @

E‘E‘_ A A % o

i head i 1@ _@@1 0
%:2_ i l/“ -/ Il/ 1r‘l‘lu:l“(_g_/ }_L( A ag
E =

& [2500 a 50 R [o No. bits [ = VHDL| @]
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Floating-point addition

Floating-point The binary code of floating point real numbers is composed of three fields. The sign
numbersformat S (1bit), the exponent E (8 bits) and the mantissa M, or significand (23 bits).
The number value is (-12S x 2E-120 % (1 + M / 8388608 ) . However if E = 0, the
number valueis (-1)5* 20129 * (\m / 8388608 ) and if E = 255, the value isinfinite.
Check your understanding of this format by entering the code (32 bits) of the
proposed numbers.

Fepresentation of the largest number (2128 - 21']4)
340282 346 638 528 859 811 704 183 484 516 925 440

Plus  Exponent12¥ =127 Mantissa=1 + (B388607/3388608) @

31 30 g Validate ,

o 11111102 A1 11111111 1111111111 11]

Addition and Since real numbers are coded as "sign/absolute-value", toggling the sign-bit inverses
subtraction the sign. Consequently the same operator performs as well either addition or
subtraction according to the operand's sign.
Addition/subtraction of two real numbers S = A + B is more complex than
multiplication or division or real numbers.
Floating-point addition progressesin 4 steps.
* Mantissaalignment if A and B exponents are different,
» Addition/subtraction of the aligned mantissas,
» Postnormalization of the mantissas sum Sif not aready normalized,
* Rounding of sum S.

The alignment step yields aguard bit and a sticky bit for the rounding step .

A |55 B |55
3130 312 1] 31 30 2322 0
» [0] [foooo100] [10111000000000000000000] & [0] [{0000001] [01100000000000000000000
L= +110111000000000000000000 +25 = 550
B= +101100000000000000000000 =22 =85

T-4 and B mantissas alignment
A=+ 1.1I:I111DDDDDDDDDDDDDDDDDD,‘DD*25
B= + III.EIEI1IZI‘HDDDDDDDDDDDDDDDDD,‘DD*EE

2- Alighed mantissas godition
S=+EI1.111EIEI1DDDDDDDDDDDDDDDDD,‘DD*Eﬁ = 60.5

2- Renonmalisation of 5 rmantissa
S5= + 1.111IIII:|1I:II:IIIII:IIIIIIIIZIIZII:II:IIIII:II:IEIEIEII:I,'IZIIII*25 = 60.5

4 - Rounding of 5 mantissa

5= +111100100000000000000000 =23 = 60.5
31 30 2382 1]
5 [0] [fooo07100] [11100100000000000000000

H6.0 (A Unchahged Ih alighimend]
8.5 (B shiffed 2 positions to the right)
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Adder/ A floating-point adder is made of the following blocks:

subtractor Bloc 1: outputs the larger of the two exponents (8 bits), outputs the exponent distance
(5 bits), outputs the implicit bit of both operands.
Bloc 2: outputs at left the smaller operand mantissa (23 bits), outputs at right the
larger operand mantissa (23 bits).
Shifter 1: shifts to the right the smaller operand mantissa, adds the guard bit and the
sticky bit, totaling 26 bits.
Complementer: on request, does the logic complement for a subtraction.
Adder 1: adds the two inputs and the carry in. outputs the rounded sum and a carry
out.
Zero-leading-counter: the ZLC output gives the number of leading ‘0" if the result is
not normalized, and "1" otherwise.
Shifter 2: shiftsto theleft (ZLC — 1) positions. The fist bit islost (implicit '1").
Adder 2: subtracts ( ZLC — 1) from the greater of the two exponents.

331 a0 23 30 312 o 2z 0
[][] Moooo100] 1oooooo1] [10111000000000000000000] [01100000000000000000000]

A Ay gy yr s By r gy Ay T Y YT IV Yy P YT Y Y YYYYIYYIYYY

B re-alignment A B:mantissas swap
Als normalised
B iz normalized

smaller larger

L]
=>\ shifi 3 positions
N, "sticky bit'=10

o= ! |

o

Fe—

1
Ty
|_J smaller ‘\.f’f larger
| t? addition : 63438848 = 5767168 + aTEY1680 + 0

1 hits"0" mos

—

significant

-____h_h_“'“—“——h

S "

=" zhift {1 - 1) positions
p | ._.'=;'=?Jl /
b b e i

\ 132=1§2-(1 -1 / implicit ———
'1‘***4‘"*w*w*u*w*w*w*"***
11100

100000000000000000|

ol I

Real numbers A floating-point numbers addition requires some integer additions, parametrised
fast addition shifts (to the right for alignment, to the left for renormalization) and a counting of the
leading zeroes of the result. Addition can be completed with delay logx(n).

Parametrised shift delay islogy(n) aswell.

Arithmetic operators Page 34



1% o 20 7R e T
1 position I I I I I I I I I I I I I I I [ I'J_
T T L L O L O R L R L }_H L L L R L R L L
1

0 ou I E_[ i Pl Tl T E_[ i i i

I nositiohs I_DO'* |m H ||J H m H ||J H |m H ||J H m " |IJ " |m H ||J H m H ||J H |m H ||J H m " |IJ_
P L O T O O O O O L L L

EDESMDHS rDOI[ |m I": |m I": |m I[ |IJI h': |m I": |m I": |m ”: |IJI “: |m h': |m I": |m I[ |IJI h': |m I": |m I": |m I[ nJ_
P L Ly Ly .y S .y L W LT L L T L .y L

0 ou |m m m |m | m m B[ | m |m | m m n

2 nositions l_[:;'Ou. e L e I T T L s T L I I T nJ_
13 LI L e

Zeroleading A binary tree counts up the number of ‘0" in the most significant positions by
counter (ZLC ) dichotomy. If the size of the sub-strings is a power of two, then there is no need for
adders but multiplexors can be used instead. Indeed only the size of the left subsrting
has to be a power of two. The substring at right must simply be shorter than or of the

same size as the |eft subsrting.

- o1 2 2 4 & 6 7 2 9 40 41 12 12 14 15 16 ¥ 18 19 20 21 22 23 24 25 26 27
o el e e e e B S D e
11 11 11 11 11 11 T 10 10 1[0 1 1 1 1 1 1 0] (1 1
2 2 2 2 2 2 2 u] u] u] 2 2 1 2
2 2 2 2 2 2 2 0 o o 2z 1T 2
4 4 4 2 u] 4 1

iy
— B
o
]
oo
— +
=
o

=0
I
— [}
oo
-

~k
==
==

Zero leading This cell combines the number of leading ‘0" of two 16-bit strings to obtain the
counter cell number of leading ‘0" of the concatenation of the two strings.

if X <16then S=X elseS=16+Y

. s R
vl S Y
s [ 2
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Zeroleading From the mantissas A and B, one can construct in constant time a string P with the
prediction Same number of leading zeroes, but for at most one, as the result of the difference

D = A —B with no need to wait for the subtraction completion. When fed to a ZLC,
this string predicts the number of positions required by the shifter. If the result of the
shift still exhibits a leading zero, then a shift of one more position is necessary to
normalize the result. Otherwise the shifted value is normalized.
The prediction is valid if A is normalized and B less than or equal to A. Thisis the
always the case in a significand subtraction. The leading zero(es) result from a carry
string 'P* 'G' 'K™* , made up with a number (possibly null) of 'P followed by an
unique 'G' followed by a number (possibly null) of 'K' . The predictor cell outputs a
'0' for every pair of symbolsin: 'P 'P ; 'P 'G'"; 'G 'K' et 'K' 'K" and outputs a '1' for
every other pair.
This predictor does not take into account the carry propagation that may lead to an
error of one position in the predicted bitstring. Since only one bit in 'P* 'G' 'K™*
might be incorrectly predicted, the error is tolerable.

B [4424704 « A |445544E P |35840 O [31744

[1]{1] [olo] oljo] olie] pIfi] el [liel el olie] pile] il il [ilie] plie] plie] pife] i) pile] Bil] Bli] pile] pil] Blo]
WIW WYY Y Y Y Y Y Y Y Y Y Y Y Y Y WY
o] (] () ) ) o [ [ [ [

P

I=
H

Pl B P Pl Bl PP

¥ ¥ Y Y Y Y YYYY¥YYYYYFYTERYREY ¥

HEEE NN EEEEEEEEEEIEIEIEn Fast carry look ahead adder finput carry= 13 -

L]
1
FTTT T P P Tttt et vt vy
pooooo0ooOo1TO0O0O01MT1TO0O0QCO0OCO0OOCQCOOQOOO0OOQOOOOOO0OOYTYT1M11T0O00O0D0O0OO0CO0OO0DN
Predicted ZLC ;¥ (ncorrect prediction) Exact LG ;8

Zeroleading The prediction is incorrect only if the carry string starts with 'P* 'G' 'K™* 'P* 'K".
prediction Thefollowing circuit output "Y" whenever the prediction is incorrect, in other words

adjustment too small by one.

I 3 T 3 T O i

o

Qe [ 1 LNy U
=N Z|Z oMY LU

b KIZ 7 U Qe Ly e
FlM 7 o S I

Y El7z Fou YV YW
Lo

Yes, the prediction is false
Z indicates astring 'K™ 'P*
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Qindicatesastring 'P* 'G' 'K™ 'P* (containing only one 'G’)

N indicates a string starting with 'P* 'K"

Y indicates a string starting with 'P* 'G' '’K™ 'P* 'K", that is Q followed by N.
U indicates any other string.

Prediction cell The leading ‘0" prediction cell output a ‘1" at the end of the string 'P* 'G' 'K™* and 'O’
inside the string (and don’'t care neither inside nor at the end). Check whether you are
acquainted with the truth table of this cell.

ook at the table ' ed
T Pl (¢
EE [0 l
O H
E & 1
PFE |-
P ]_.’ o
; : ; Fred
o F 1
[

—
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Elementary Functions

Elementary Redization of operators for Exponential, Logarithm, Sine, Cosine, arcTangent
functions relying on addition/subtraction and fixed shift. The cost and delay of fixed shits are
negligible when they are wired.

From abread We want to compute exp (Y ), we have available a scale, a white breao_l whose
loaf weighting to Weight is actually just Y and a set of weights with values log(1+2"). The
the exponential weighting gives the sought-after result in the form of a product of rationals
(2'+1) / 2" . The multiplication by each rational amount to a mere addition and

computation shift.

A weight put down on the right plate (the bread's one) has it value changed into
-log(1—-2"). Thank to this trick, the weighting can be restoring, non-restoring or

"SRT".

NQU2aTIEE — '
ﬁ l@l@@ll@mnmamsaanem b, poids |3 % 'f|c|55

38 B5 129 513
exp(0.5434556908738298) = 1.730630323290825 = ~ 5 B4 138 512

Carry Thescaleis replaced by a "SRT" divider whose "Robertson’s diagram” is drawn
propagation free below
division for A
exponential

2k,

kN

nowvelle valeur 2
@
¥

-1 -1 | +1 +2
= aticienne valear E
=i=1; log-=-1.3862944  |log+=+0.8109302

The applet gives al the successive partial remainders.

Arithmetic operators Page 38



Thedividend Y (top) must bewithin] -1, +1[ .

"SRT" divider The constants log(1+2") and -log(1—2") fed into the "tail" cells are wired . Thus
for exponenti al thereare4 variantsfor the cell according to the values of the two bits.

head tall
head tall tall tall tall tall tall tall tall tall tall tall tall tall
hiead tall tall tall tall tall tall tall tall tall tall tall tall
head tall tall tall tall tall tall tall tall tall tall tall
head tall tall tall tall tall tall tall tall tall tall
head tall tall tall tall tall tall tall tall tall
hiead tall tall tall tall tall tall tall tall

Mb.pits[a = v [a7 P [0.5078125 R [00031280518  VHOL| ‘

Operations of & The yalue of each q is selected by a "head” cell according to RJ , the weighted
siceof " SRT"  sym of the two most significant di glts r1 and ro of the representation of R;.

divider for .. RJ>0then{q,—1 S = R, —2: RJ+1_RJ+|og(1 21} I/ subtraction

exponential
o if RJ Oor R,—-l then{q,—'O"so R,,R,+1—R,+O} Il identity
o if RJ- <-lthen{g="-1;5%= R,- +2; R =R +log(1+27)} //addition
vl x0 | a0 g Lok at the tabla -
+1  +1 guecflow R

#1 0 0 *1

'y ry
#] =1 [ =1 -1
o +1 ( -1 +1
6 o o 0 |
i i i

o -1 —1 8]

=1 #1}1-=1 [ ::|I|
-1 0 o -1 head

=1 =1 /{-1 -1

i @

Walidar

Suite de The stack of conditional multipliers by 1 or by (1+2") or by (1-2") needs only
multiplications onefinal carry propagation thanksto "CS" adders and wired shifts.

Additions are truncated to 2 n digits, of which two before the point. The third most

significant digit ( fully left) is the sign. Despite the fact that al partial results are

positive, the execution of subtraction in "CS" sometimes brings about an unresolved

sian. The final result (bottom line) must be converted from "CS" to hinarv bv one
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addition (with carry propagation).
La fenétre du bas permet de comparer le produit "vraie" des multiplications (sans
troncature) au produit avec troncature.

4+ + 4 % 4
F +
B [cal—(cal—[cal—(cs
F + x I! Il
B [cal|cal—|cal—{cal—{cal—|ca
e e S =
-——-.-——-.-——-.-——-.-——-.-—-—-.-—-—-.-—-—-.-—-—-.-——-.
's's's's's's's
T e e e e e e e
—_—— e ——
33 331 11 ri 11 31 31 3141 33
T ———— |
P ——— |
R T T T ST e T NI T
-—_‘—EEEEE‘—:EE%——_
-
'-'l'_‘l'_‘l'_‘l'_‘l'_‘l
@ -
o [0

_ 291531 63 129 267 _
2.0351619960274547 178 16 32 54 126 256 °

M. bits [ |_E'
Numerical The tables below shows the partial remainders ("BS') and the partia products ("CS").
example of The windows at the tables bottom gives the actual value of the function, the product

division ©f rationas (1+2') or (1-2").and finally the truncated product of rationals to
exhibit the errors introduced by the method

2.0351409912109375
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T 09

1
0
]
0
0

]
1
1

i
113
1

[

T 09 ]

il

0
a

T 7
1

1]
a

il

T 7T 7 7 o

o

T 7

0

2. M1 ETH2T0V0ET 453

—
"
=

P
[
=
(=
W
r=

'r3
3
—_
5
—
e
—

[

1=
-

=
L]
—
=3
—

e
u
=3
(=]
-
—
—

12 4086 2193 22TEE 131072 1048578 20971462

2.013T5IEEBEEEZ00] ;

wap(d. 7]

S = E S ESE - = — — o
= e R =R = o= = =N N e
= — e — R i N — R B —

[ = = I = I i — I e i — B

L N e = I s I = R i o B

[ — A s i B — T e ]

L= == = = == = R I =

L= = A i I I i e I — I — T — B o =]

=Rl ol o ol il =

L= = e el — I = I == B = o B e |

[ e e — I o I — B

L = o = R B S i B ]

[ — A i e I — N — O ]

HE@ s e e e i @ NN B

el i o — B — B
S e BN - —— -

= e D0 == D00 = D000

s e B B

Lol Sl S il — B = = S o =]

il i B B — R e — = B —

el e B - I R

el S = = RN = e = = R = L = B B =]

L I e B — R e — I B — I — I

Lol Sl S =R = == == R S e =R N = e

L B — B — B e — IR — R — ]

Ll el B B I I S I R ]

Ll I = = B I = = R e R =
N I R i Il

Lol B = e e R B T b e e e ]

Ll — I — R — R — N e — e N ]
SO Q et N - D0

e e o S = e B e

[ e — B e o N

(= S = R i i ol B = e R e ]

[ — R — I — B s B
EeHdo@E N Q@ oo G N

L= e = I e — I — I — B — I — e — =

ME -, fME S — —

=N R R i = B et b = = e B ]
—mrEEE S e S S

L =l S S S = == = ]

e i e - = N - N N B
- R W =T~ IR — R — T — I I =~

o e D e e D D D e D DD D e D
- NN -l I B — I — I — T — I — O
Ll =10 =N i = = === == e e R R B =]
i — R N i = B I = O — R — B i =
Rl B e i — T — B — o T i e |
D= DO NOD0M- M~ =0+ =+ =+ = =
E= I R e — I — B I — I I I T ]
Do O D e e e O O e D O e
H B =T —— -
[=R=1 o =R =N =R=N L =R = == == == =]
e e e e s R = I e I I )
(== I — O = I I = B — N — |
Lo e B e B i == o B Y e B S = R B I |
(=== R o B et — IE I i e B e
Do R T et e

e - - e R e i

I el — I — I I I I T O I T T ]

oo DO 0,00 0= 0 0= 0= 0000000

siggki i5d

- = z R z 2

Hop1z000001 91000010107 00Q11 Q0001700110011 00100Q@111 0100007019101

12111111211 0911 202020121041 1201121 01200210914 20411110210310111

y 201 ITHIFOSN 19952

g
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=
=
=
-
Ll
o
=
(-
=
=
e
-
@
=
=
-
=
=
=
[
L
=
=
[
=
g ]
-
[
&=
m
-
=
b
T
e
=i

4 256 512 4096 192 I2TEE 131072 1042578 2097152 4194304

ZO1ATSITOTOE 7453
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The series of rational products is given by the concatenation of the quotient Q
(left ) and the fina remainder R (‘bottom). Actually for high values of i, 2' «
log(1+ 2" ) becomes very close to 1. If the divider is close 1, then the remainder
becomes an acceptable approximation for the quotient.

Range extension The previous circuit works with Y intherange] -1, +1[ . For the exponential of any

L ogarithm and
exponential

number Y, Y is written Y = Q:log(8) + R, where Q is the integer quotient of the
division of Y by log(8) and R < log(8) < 1. Then exp(Y) = 82 * exp(R) = 2°Q *
exp(R). Since exp(R) < 1, it is acceptable by the above circuit.

s n .
X = ﬁl a+2)" S o= T pj log(1+ 27)
i= i=

Ii TE _?l Tﬁf
exponentielle n

1 . ; .
Io (1+ 27 }pJ =i ¥ p; log(l1+ 27)

1=1 loganithme ;=1
The same operator computes either the Logarithm or the Exponentia with
additions/subtractions (it is the same operation), shifts and constants. The constants
arelog(1+2") and -log (1-2") and the digits O{ *-1', '0", '1' }. The slack selection
of the digit value, which unfortunately will be lacking later on for Sine and Cosine,
allowsto avoid al but one carry propagation
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| _Logarittm 6o | _Exponential ¢y | _ Reset |mwnmits:[12 3 |

Xg =[ossz6m1 | Yo =0

X —1 ¥i — log (X;)
[pi70110100700] o
ED”:EH1EI11D1DEI1DD=EI.EIEIEIEIEIDDDEIEIEIEI

|§1|‘=EI.11EI11D1DD1DD=D.DDDDDDDDDDDD
+ —

n110110100100(=0000000000000

+ 1

+ 1
= 2e
| T
= |la—=
- |lao
| ==
ol =—
el =T =
=0 || = =
— || ==

o100
0101
1010

A
Lo I o
[ I Y e |
[ I Y e |
S22
ZiI==
Z1==
Z==
Lo I s e
Lo I s e
Lo I o
222
[ I Y e |

+ 1

+ i
==
Sla=x
N (=
N (=
o=
e =T=
— — —
o ==
— —
ol = —
- oo
ol ==
| R

|
o|=es
[=1=1="
o||loo
- oo
of|o—
==
Sl o
af =
o ==
o ==
=1 y="
ol ==
[=1=1=

+ 1l

+ 1
S| as
ZI==
==
==
==
==
— D—'ﬁ.
— _'A.D
— C._'n.
[ I e e |
Zl==
[ I e e |
2==

|
o|oo
Lo I o
[ I Y e |
Zl==
[ I Y e |
—_ ||
o o=
=122
Lo I s e
Lo I s e
Lo I o
[ I Y e |
[ I Y e |

+ 1l

4+ 1l
==

[P =1 P I =1 Y e P =1 P = P =1

0.
0.
0.

—|lo—=
—|lo—=
- o=
- |lO—=
= (o=
o=
o=
| =
o=
Lo | o

1
1]
1

=
|

o202
o || oo
o | oo
~l|la=
o | oo
~l|la=
o|loo
o| oo
o| oo
—_— —
o || oo
o | oo
o oo

+
=0111111111101|=0001010001000
+0000000000010(-0000000000010
log{,j found = 000101000101 0000 =-0.15869140625
log( ) exact= 0.001010001100110= -0.15938150342898558
From abread We want to compute sing( A ) and/or cosine ( A ); we have available a scale, a white
loaf weighting to bread whose weight is actually just A and a set of weights with values arctg ( 2').All
sineand cosine the weights must go on the scale plates, either side.

arct%(ﬂz)

éHE 111 28y 5
i

[

0
1

[
o0
[

=l

arctgl)

OOHH <

arctg{1 M1 6)
Hinls

——— - x ——

1] LA LI L ST I " Te
(1] [ [ ) (7] F] E ] [o-6 9227 11 8958 Mb. poids |a_% afo7

sin(0.69882715) | _ f0.6433202 % _ [ 1 200 [ 2N P22 i 23 P e g 28 28l Ty 27 Tk
coS(0BEBE2TIS)) | 07685972 | 29 10020 17022 1)) 2 F 10zt 2 ® a2 12T )0
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Sineand Cosine Let V; be a vector, with extremity (x;, yi ). A "pseudoRotation” of an angle arctg (2)
computation applied to Vi gives Viug : X1 = Xi—Yi * 2" and yig = i + X * 27, After theangle A is
broken down into a weighted sum of arctg (2" ), a series of "pseudoRotations" yields
the coordinates of the vector of angle A, those coordinate are the values sin(A) and
cos(A) searched for. All the "pseudoRotations’ require only addition/subtraction and

shift.

[
g |

L

k

The constant k Each "pseudoRotation” of the angle arctg(2”') brings about a vector lengthening of
N 1+272 for it is not exactly arotation but rather a displacement of the vector extremity
on a perpendicular vector. In order to compensate in advance the product of all the
lengthening of a series of "pseudoRotations’, the starting vector is ( Xo =k ,yo=0) .
For n large enough, K is approximately equal to 0,60725. In order for k to be a constant,
the representation with arctg(2”" ) use digits Of -1', '1'}.

SIx

I =

1
M7

A_n_gle What is the domain of the angles A = Zir;o a * arctg (2') and what precision can be
decomposition expected from this notation ? A is the angle value to reach, and T is the value attained
by the series of pseudoRotations. To change the value of A, click in the figure. All
values are expressed in radiant. The key "Mise a zéro" allow to 'manually' control the

convergence into the notation arctg (2") by clicking the digit values.
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-\_\_-\_\_\-\-\1‘.1"-\-\_\_ .Jﬁ',l bl I_ .\'.

= |1a|u;|r_-a.- 0.852435

= 3
| - 10
{ H;’*:% ',r,r'-‘ angle T= 0.852435
) b,
) . Reset
f A
lII "
{ / ,

K K 1o e ot o ) H::H . E*"

" Robertson's The "Robertson's diagram” shows that the iteration to convert into basis arctan(2" )
diagram" for may be as follows:
CORDIC fR20then{ S=R- arctan(2') ;& ="1'} else{ S=R+actan(2');a="1}.

A
+1
vl
:
E >
&
g
=
-2 -1 0, +1 £7

= old remainder R
Fli=1—= 2l sarctyi 27y=09272952

"non restoring" TheangleY (divider'stop) isintheinterval [ -1.743.. +1.743...]. The constant bits at
divider for LAS' cellginputs are wired. The operations are selected according to the previous
CORDIC Partial remainder R or by yo for thefirst iteration ..
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Yo Ya Vq ¥y Y Y7 Vg Ya Yoo Y1 iz Yz Va4

B%LLLEEEEEEEEEEE
i T g TR e R i T

E?' AS L AS e AS | AS |l AS la] AS | AS ] AT [ AS ] AT fa| AS [+ AS | AS [+ { AS
Ei' AS e {AS | AS | AS | AS | AS|a{ AS | AS e AS|a AS | AS || AS|a ] AS

EEI ASt] AS |l AS e AS e AS|a AS || AS || AS|a{ AS | ASl{ AS | AS

EE' A5 ] A5l Al AS fa{ AS ] AS |l AS fe] AS [ AS || AS e AS

Ef' AS L AS e AS |l AS ] AS la] AS | AS ] AT e AS | AT

EE' AS e {AS | AS | AS e ASla AS | ATl AS|a AS

EE' ASh AS e AS | AS e AS | AS | AS|{AS

r? fs rg r1|]r11r12r13r14

Mb. hits |3_E ¥ Josrs A [0.77734375 R |7.9345703E-4 VHDLl ‘

" double It u% an approximation R of the partial remainder R to determine the rotation:

rotation"

corbiC" I R>0then{a="1};ifR=0then{a="0};ifR<Othen{a="1}

Robertson's The diagram shows that the approximation can be coarse.

' A

Diagramme” +1
oA
B
k|
g cf’%ﬂ >
g
=
_él E old rem%indarR 1 +2

Fi=0—= 2ixarcty(271= 07853952

" double This divider uses the same ['head"| and ['tall"| cells as the "SRT" divider. To put up
rotation" With the 'O, the angle is first halved then the "pseudoRotation” are doubled. Thanks
CORDIC tothat, the lengthening stays the same ( 2+1[1+ 4" ) whatever the value of 3 .

* if g="-1"then { rotation of (arctan(2"i )) then rotation of (arctan(2‘i')) };
« if & ='0"then { rotation of (arctan(2" )) then rotation of (-arctan(2")) } ;
« if 3 ='1'then { rotation of (-arctan(2")) then rotation of (-arctan(2")) } ;
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Y1 Yz

oo o888 8 .8 688 6.58.¢5.¢58¢8§

dn

@ 1 1 1 1 1 1 1 1 1 1 1

z head tail tail tail tail tail tail tail tail tail tail tail tail

1

EL_I.‘ 1 1 I | 1 1 1 1 1 1 I | 1 1 1 1 1 1 I | 1 1 1 1

z head tail tail tail tail tail tail tail tail tail tail tail

2

Eli 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1

= head tail tail tail tail tail tail tail tail tail tail

3

@ 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1

z head tail tail tail tail tail tail tail tail tail

4

@ T 1 1 1 T 1 1 1 1 1 1 1 T 1 1 1 1 1

z head tail tail tail tail tail tail tail tail

]

@L_I: 1 1 [ 1 1 1 1 1 1 1 [ 1 1 1 1 1

head tail tail tail tail tail tail tail

EH

Eﬁ 1 1 1 1 1 1 1 1

head tall tall tall tail tail tail

a7

rs rg rm rn ru r13 r14 rlﬁ

Mb. bits |e_g v [0675 A [0.828125 R [4.272461E-4 VHDL | ‘

"double The "double rotation” has a cost: it doubles the rotation hardware and probably the
delay as well. The "double division" is more ingenious. It makes use of two dividers

division" / &SV eayv _
CORDI|C unning simultaneously with dightly different "head" cells..
"head" of dividerl "head" of divider2
N N N N N N\
ifR>0 then{ S=R-2;a="1;} ifR>0 then{ S=R-2;a="1;}
ifR<0 then{ S=R+l;a="1;} if R<0 then{ S=R+1:a="1:}

It is clear that whenever R— 0, dividerl speculates that R < 0 and lelderZ that R > Q.
At most one of them will eventually overflow, before the occurrence of the next E
= 0. An overflow indicates that the correct output is the other divider's one.
Only dividerl is shown by the following applet.

Yo Y Y s Yqa ¥s ¥ ¥ ¥z Ya Yo ¥ Yaz Yizo Y4

NN v > U Y Yr g Yr e A Y Yr g e e i Y Yrg

3 o
E@ 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 1
= head tail tail tail tail tail tail tail tail tail tail tail tail
1
E 1 L_I‘ 1 1 1 1 1 1 T 1 1 1 1 1 1 1 T 1 1 T 1 1 1 1 1 1
z hiead tail tail tail tail tail tail tail tail tail tail tail
2
@ 1 L_I| I 1 1 1 I | 1 1 1 1 1 1 I | 1 I 1 1 1 1 1 |
3 e ] theaad tail tail tail tail tail tail tail tail tail tail
3
E -1IJ 1 1 I 1 1 1 1 1 1 1 I 1 1 I 1 1 1 1 1 1
z head tail tail tail tail tail tail tail tail tail
4

E 1 I._i| 1 1 1 1 1 1 1 1 T 1 1 T 1 1 1 1 1 1

head tail tail tail tail tail tail tail tail
l IJ 1 1 1 1 1 1 T 1 1 T 1 1 1 1 1 1

hiead tail tail tail tail tail tail tail

l[:l:ll I 1 1 1 I | 1 I 1 1 1 1 1 |
head tail tail tail tail tail tail

e
rs rg rm r11 r12 r13 r14 r15

, 5
Mb. bits [5 2 v [0a7s A |1.2??3438 R |D.DD1159558 VHDL|
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=10
' —w SingA)

Reset |Nh.bi15:|ﬁ% ]

#y = K (wired)
Ki—r CDS{AD}

D110110700071] cioot1otio111

Arcty )

0.852435

—= ]

gings Cosi) |

l'B"I:I
A,

|

number of steps. Clicking the vertical arrow [§| changes the representation. Again, the

'K" the output digit is correct (either dividerl and divider2 give the same value, or
key "Mise a zéro" alows to control 'manually' the convergence.

divider2 overflows), 'G' the output digit is incorrect and must be complemented

(dividerl overflows), 'P propagate the next indicator's value (values differ, no
overflow). Whenever a divider overflows, it carries on with the other divider's partial

The two heads detect the overflow to produce together a 3-valued indicator :
remainder R.

The propagation is similar to the carry propagation|of addition..
Numerical The "Nb. bits" selects simultaneously the number of bits of the calculations and the

application

O—|—Of——||o0|o—|—O||—2||—— | 00| O—|——| So—
O—|—o|l——||oo|o—||oo||o—|—o|——| oD ——| —=
O—|——|o—||—o|—o|oo|loo|lao—|—o|——||—2| oo
oo||o—|(oo||l—o|—O|——|o—||—o|o—| —O|oo|—o
O ||| —— | oo|o—|oco|lo—|—o| oo |(|oo| oo
o—|—o|flo—|loco|o—|—o||lo—|—o|oo|oo|loo| oo
oo|o—|(oo|l—o | —o|o—||oo|loo|oo|oo|oo| oo
O—|——|—o|loo|o—|—o||oo|loo|oo|oo||oo| oo
oO—|—o|flo—||l—|oo|—o||loo|loo|oo|oo||loo| oo
oo|oo||l—o|loo|oo||—o||loo|loo|oo|oo|oo| oo
oo||o—|(—o||l—o|—o||oo||—o||l—o|—o| —o||—o|| —o
o—|—o|fl—o||l—o|—o||—o||l—o||l—o| —o| —o||—o|| —=
oo|od||oo|loo | oo|ad||loo|loc | oo | oo ||oo | oo

0.6581518233129365

fol e el e Bl | e e | Il Bl | e s | e o e e e e ol
—O|l|l—O||—S|oo|IoD|IoD||oD ||| DD || D || —— || ——
—O||— O || O || O ||~ O —O || —— || O || — O DD
DO || D= || =0 || D || —O || D= || DO || D ||| — O — 3| —3D
— Ol || = || oS || DO ||| D —a| oD || oD DO
—O||—O||DO—|D—|—O0O|—O0O|D—|—O|—O|oo | oo oo
DO || D—||—O || oD || —— || DD —D || —OD || oD || oD DO
0| |2 || a2
—O||l—O|DO—|DO— ||| oD |oD|oD| oo | oo | oo | oo
oo || O— || 00| —0O|—0O|—0|—0O|—0O|—0O|—O0O|—O3
oo ||lo—||—O|oco|oo|Ioo|Ioo||Ioo| oD oD | oD S
— Ol —D|| DS —S2 || —S || —2| =S| DO D =T =3
i i i ki ki i i

|
——|[—— Y e == EE EE =G EE EE EE
—_ || — 2 Yo Po|loo|oo|Po|Po|loo| oo o—
oojfloo||Po||——|Po|oco|oo|fao|Po|oo|o—|—o
cojflo—|——||T—||Po|lco|lco|Pao|PFo|lo—| o oo
o—|—o|lTo|P=|To| o —o|To|T— | oo | oo | oo
—oflao—|Ff—|T=|To|oco|loo|T—|Po|oo|oco| oo
cojflo—|T—|T—|To|lco|lo—||fo|Po|oco|oco| oo
—_—oo|2— |2 || fa|——|oo|Po| Po|oo|oo| oo
O | P || P || P || oo oo||fo|Po|oo| oo | oo
cojflo—|——|To|Po|lco|loco||Pao|Po|oo| oo oo
—_—_—ao—|To||Po|Po|loo|oo|Po| Po|oo|oo| oo
—_—loo| 2o 2o Bo|loo|oo|Bo | Bo|oo| oo oo
n+ n+ I+ I+ I+ I+ I+ I+ I+ I+ I+ I+

0101010001001 000 =0.658447265625

o101010000111110
0110000001011 000=0.752685546875

0110000001011110 =0.7528852352582411
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Sin(AD]l found
Sin(AD]l exact

CDS(AD) found
CDS(AD) exact



Bipartite Table

10l %) £ E l']%l
The values of a function can be precomputed and stored into a table (a ROM).

; T
sinfs) -z [0 ?[ Nevertheless, the table size grows very quickly with the precision. This practically
2*-1 =e[0.1] |imits this approach. For continuous functions, one may store only a few values in a
% xe[1,2] table named "TIV", and the function slope, in order to interpolate within the stored
1.1 ze[12] points, in another table named "TO". . . .
* 2 ' In the applet below, start by selecting a function, then fix WI and then explore
We=-1 ==[1.4] golutions varying the values of TIV and TO around 2/3 of WI.

L_E_;é z«[1,4] Addingafunction to the list impliesthe modification of the source.
E-1 =xe[1,8]

Plot the values of

TV : 16 words, TO : 16 words ¥ actual fuction
TIV : 8 hits, TO : 5 hits W segmented function
Cost: 208 bits v discretised function

TMDY =13 TO{0)=-9
00000100
f{}{]:TIW}{ﬁ }{4}{3}{2} +T0 (}{5}{4}{1 }{D}
= = =] =] : T |=
wile 2 owols 2 T[4 2 TD|4 = MHDL sin(x) xze [D’E[ -
I Toom 41 C 24m =
Do 4 e, key CTRL dorsm B nevart 3 2 imss —
— i
e
--""E\'..“.‘l
e
7
E b3
Funchion. =¥y X £ |':- J| The . 16 veord®, T |16 wonds, Max Ermar 00013901643
= LI
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Modular Arithmetic

Modular Let betheset{ m;, my, mg, ... mp} of ninteger constant pairwise prime called moduli
representation andlet M be the product of this constants, M = myx mx mgx ... * M,

Let A be an integer smaller than M.
A can be written ( a0 a0 agl....0 &, )rns Where g = A modulo m; (residue).
This definition tells how to get the g from A. On the other hand it is possible to get
back A from the g using another set of precomputed constants { imy, imy, ims, ... imy}
called inverse modulo M of the former.
A=Oa*xim+a*ximy+ag*img+....a* iMy Omodulo M
Thisresult is proved in the "Chinese remainder theorem". Check if you are acquainted
with this representation by converting A from "decimal to RNS" or from "RNS to

decimal".
Conwert A from decimal to EMS (enter the 3 residus g; then "Walidate™)
Moduli m, [3 m, [+ m, [5 m, [7 mg [11
Residues a, IEI a, |3 a, |3 A, |3 A, IEI—
Inverses im, ifm i, iy im g

1540 3465 36496 2640 2520

& |1n h |4azn DecimaltnRNSl Mb. moduli |5 g ‘
WValidate

Modular Modular addition uses n small adders computing simultaneously al the sums
addition S =0a * bi Omoguio M.

Moduli  m, |3 m, |4 my |7 m, |8 mg |11 mg 13
A a0 a, |0 a, |0 a, |0 ag |0 ag |0
L L L
B b0 b, |2 b, |4 b, |6 by |2 by |1
RV T SN ¥ S Y I 1Y N 1T I 11
HELES + + + + + +
L ¥ y y y y
S=A+B s, |0 5, |2 5, |8 5, |6 55 |2 5 |1

S=(010101010(0) 5, (01215161211 ),,=(01215(81211 )5
S=|D*EDDED+2*QEDQE+5*858EIEI+E*1I351I35+2*?544EI+1*35950|12mm=222

a o B[22z 5 [222 Nb.mndulilﬁ_g

Modular Modular subtraction uses n small subtractors computing simultaneously al the
Subtraction differencesd =0a +m; - bi Omoduo M.
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Moduli  m, |3 m, |5 my [7 m, |8 mg |11 mg |13

| | | | |

A oa a, |0 a, |4 a, |6 ag |0 ag |4
L L L L L

B b0 b, |2 b, |5 b, |6 by |2 by |1

S 7 N TY SN 1Y S ¥ P SN 71

subtractars _ _ _ _ _ _

L L L L L L
D=A-B d, |1 d, |3 d, |6 d, [0 dy (4 dg |3

D=(110[41810]4) ~(01215[6]2]1)0,=(11316]019]3 ),
D=|1*EEIEIEEHS*BEDEIE+E*ESEEID+EI*1EIS1EIS+EI*TE44D+S*EEQED|12mm=328

A |55|J B |222 O |328 Mb. moduli |6 E

Modular Modular multiplication uses n smal multipliers computing simultaneously all the
Multiplication Productspi=0a * bi O moduo M.

Moduli - m, |3 m, |5 my |7 m, |8 mg |11 mg |13
A oAy 2 a, |0 a, |3 a, |4 ag |5 ag |6
| | | | | |
B byt b, |2 b, |6 by |2 by [4 by |7
moswar 444 b bk bbb 4
multipliers " " " " " "
¥ ¥ ¥ ¥ ¥ ¥
P=A*B p, |2 Py |0 Py 4 Py 0 Py 9 ME

P=(2|0]3[4]5]8) g =(11216]2]14]7 ) =(210]4]0]9]3),,
P=|2+80080+0+960596 + 4+ 85800 + 0+ 105105 + 9+ 76440 + 3 » 36960 |12012D=1I]1l]I]l]

A 500 B [z0z P [101000 Nh.mudulilﬁ—g

Conversion into The conversion of a binary variable A into RNS consistsin finding all & = A modulo
RNS mi i.e. the remainders of the division of A by m;. But the division is not the best
approach.
 therest modulo 2" isimmediate,
+ therest modulo 2" — 1 requires only additions,
+ therest modulo 2" + 1 requires some additions and some subtractions.
In other cases we resort to the one of the two last expressions with the smallest n.
Trees of adders (Wallace trees) reduce A to the sum of two n-bit numbers while

respecting the rest modulo m.
The graphical conventions are the same as for partial products reduction).
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21029 23 2? 26 25 24 23 22 21 2I:I
10 (11
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
T(8|8|8|8(8|8[8|8|8 /8 |Feedhbackof 3 hits
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
5|6 |6 |G |6[A|A|F |6 |E|F |Feedhackof2 hits
HAFA[FAFAIFAIFAFA[FAIFAIFAIFA
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
4 (414 |44 ([4]4]44]4[4|Feedhbackof hits
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
3[3 13|33 [3[3]3]|3]|3[3]|Feedbackof? hit
FAFA[FAIFAIFAIFAFA[FAIFAIFAIFA
22022222222 (2 ]|Feedbackof hit

| carry end around adder |

Reduction modulo 211 -1 = 2047 { since 2047 =23+ 897
The wallace trees reduct from 120 to 22 bits while preserving the value modulo 23 .

: I (=] ; =]
i (23 = b, bits 120 = "v"HDLl

Exampleof The following applet reduces 64 bits into 6 bits whereas preserving the value
modulo modulo 63 (63 = 2° — 1) . At the output, zero has two notations: either 000 000" or

reduction "111111"

=]
=]
[]
[]
[]

frz’z’z’z‘l

e =LK Wt
S 0 [# [0 [ 1]
R e T FAFAFAEAEAEA

i
&
|

e ~ AFAFAFAFAFAFA
:-_,-g-# E T NFAFAFAFAFAFA

i

'?.EH-‘

P 7 (7 88 8 8

L FAFAIFAFAIFAFA
£ EAEAEAEAES ES
S 1556668
™ M HAFA FA FA FA
AFAFAFAFAFAFA

4444 4 2
Fa| FAFAFAFAFAFA
= FAFAFAFAFAFA

i — ST
FiFirFirariri
FAFAFAFAFAFA

—

Y- -

Délal : 28, activid : 45 141621 50T 0G525T 89133 mod 63 = 13
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modulo 2"-1 The "end-around-carry" adder offers two advantages : it works fine modulo 2" — 1
adder andissimple, and two disadvantages as well : it is slow and difficult to test, both for
the sameraison i.e. for the value zero are two stable cases.
An adder delivers spontaneously a modulo 2" sum. With a slight modification, the
Sklanskil's adder deliversamodulo 2" —1 sum S.
e ifA+B<2"-1thenS=A +B;
« ifA+B=2"-1then S=0A +B + 1 Omodulo2n
The condition is given by the carry out ¢,: if ¢, ='K'thenA+B <2"-1,if ¢, = 'P
then A+B =2" -1, if ¢, = 'G then A+B > 2" — 1. The "feed-back" signal that
controlsthe"+1" is'K" if ¢, ='K" and 'G' otherwise.
Delay: 3, activity . 8

3 by 35 by 4 a; by 3 by a by 3 Py
o ol ol o
Ha, Ha, Ha, [Ha | [Ha | [Ha |
[ ]
feed-hack : :
by " cEtrJr cﬁlir/ " cEj( EET/ cEj(Jr c, ¥
Sz %5 S5 4 5y S5 % S
& [1o0 B [200 5 [45 Mb."BK cells [ra nb. bits [8 g @ ‘

modulo 2" +1 We now want an adder modulo 2" + 1.
adder e ifA+B<2"+1thenS=A+B;
e fA+B22"+1then S=0A +B —1 Omoguio2n
The previous adder is used with two numbers X and Y suchthat X +Y = A + B + 2"
— 1. A row of HA' cells carries on this addition propagation-free. HA' is the dual of
HA.
o ifX+Y <2 then S=0OX +Y + 1 0 moduo2n;
o ifX+Y22"then S=OX + Y Omoduo2n;
The "feed-back" signal that controls the "+1" is the "nand" of x, and (c, = 'K'). The
result bit s, isthe "and" of x, and (c, = 'P).
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Delay : 4, activity . 8
2

3 by

o] o
Ha' HA'
'

HA

feed-back L":r’ ["’j" tr’ Ej"
C L C C LL C LI E L C L C L
a 5] l' 5 4 l' 3 2 l' 1 l'
= 55 3 Sg 5a = = 5, =

& |z00 B |1nn 5 |43 Nhb. "BK cells |19 MNh. hits |2 E @

Conversion The "Mixed Radix System” is a positional number system with weights (1) (m;,)
from " RNS' (mmg) (Mimams) (MiMems.....Mp1) .
into mixed-radix N this system X iswritten ( z10zo0 z30....0 Zy )mrs With 0 < z < m;. Note that the digit
system "MRS" set have the same range as the RNS digits, but the digits themselves are different.
Thevalueof X =z;+ my* (zo+ my* (zz+ mz* ( ..... ).

E m, |5 my |7 m, [8
}{1|1 }{2|3 }{3|2 }{4|4
|i ¢'.| |i ¥

b b "
z1|1 22|4 zg|3

Z=(1|4]|3|2)pe=1+3+(8+5=(3+7+2)) = 268

% [z88 Mb. moduli [4 g
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