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In the 1960's, the term "Op Art" was coined to describe the work of a growing group of abstract 
painters. This movement was led by Vasarely. 
 
 

Preliminary version 

Do not distribute 
 

Range: 
From logic gate to combinatorial arithmetic operators. 
 
Pedagogy: 
Experiment, understand, improve. 
Complement to the lecture notes. 
 
Method: 
Animation of the lecture note figures 
Synthesis, simulation, diagrams, algorithms 
 
Chapter 1 : Full-Adder in CMOS 
Chapter 2 : Adders 
Chapter 3 : Multipliers followed by "CS" Multipliers 
Chapter 4 : Dividers followed by Fast dividers 
Chapter 5 : Square root extractors followed by Fast square root extractors 
Chapter 6 : Floating point Addition 
Chapter 7 : Elementary functions exponential and logarithm followed by sine, cosine and arc tangent 
Chapter 8 : Modular representation 
The entire course is printable.  

http://www.vasarely.org/intro.html
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"FA" function in CMOS 
 

CMOS technology CMOS technology (Complementary Metal Oxide Semiconductor) offers two types 
of transistors called "N-channel" and "P-channel". CMOS is currently the dominant 
technology, at least for digital circuits. Its main advantage with respect to other 
technologies is remarkable low power consumption. Indeed the CMOS circuits 
exhibit a static current (or quiescent current) practically negligible. 
In the figures below : 

• A logic '1' is represented by the supply voltage Vdd (current values for Vdd 
are +5V or +3,3V or +2,8V) and is colored in red.  

• A logic '0' is connected to the ground voltage, or GND, is colored in blue.  
• A connection neither to Vdd nor to GND is in yellow.  

 
The N-channel transistor conducts when it gate is '1' and the P-channel transistor 

conducts when its gate is '0' The keys  change the transistor's outline.  

CMOS inverter 

 

The CMOS inverter is the most popular gate. It is composed of a N-channel and a 
P-channel transistors connected through their drain. The figure below illustrates its 
behavior. 
The colors conventions are still red for logic '1' and blue for logic'0' An input 
voltage in between causes a (mild) short-circuit by maintaining both transistors in 
conduction. Such a voltage is colored in green. Click on input "a" to pass from '0' to 
short (green), then to '1', then to short (green) again then back to '0' and so on. 

 
Please notice that when the input is '0' or '1', only one transistor conducts. 

Delay and We just have seen that the inverter dissipates no energy except during commutation.
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dissipation of the 
CMOS inverter  

 

Indeed if the input is '0' or '1' there is no conduction path between the power supply 
Vdd and the ground GND. In normal conditions, the short circuit current, 
(unavoidable during input commutation) lasts a very short time, typically a few 
picosecondes. 
The contribution of the parasitic capacitances charge or discharge is much more 
significant. The transistor gate G forms a capacitance. Anyway this capacitance is 
necessary to the field effect transistor working. Typically an input capacitance Cg 
may be around 10 fF. If at time t1, this capacitance is connected to Vdd it is charged 
(charge Q = Cg * Vdd). If later on, at time t2, the input is connected to GND the 
capacitance is discharged. This discharge causes a current in the gate I = dQ/dt = 
(Cg * Vdd)/(t2- t1). 
 
Although the gate charge/discharge current is  
Let us take an example : 

• A modern microprocessor may contain 50 million transistors, meaning about 
10 million gates. For each clock cycle, about 1% of those gate commutates.  

• Clock frequency may reach 1 000 MHz (cycle time 1 ns) with a power 
supply Vdd = 3.3V.  

• The wires connecting the gates most of the time exhibit a parasitic 
capacitance Cw much larger than the gate input capacitance Cg. Each a wire 
commutates, all the attached capacitances must be either charged or 
discharged. : Ctotal=Cg+Cw.  

• An average wire capacitance may be around 1 pF  

It is rather difficult to estimate the current due to the short-circuits, it is generally 
small. On the contrary the current due to the commutation activity is important :  
I = (active gates)* (Ctotal*Vdd) / dt = (1% * 1,000,000) * (1pF * 3.3V) /2ns = 16A 

Finally the quiescent current due to the transistors leaks is quite small (for a 
conventional circuitry). A static memory SRAM of 2K*8 bits in CMOS let leak 
1 µA when not active. 

• The figure below shows the current, or electrons  flow in the CMOS inverter. 
Whenever the input stays to '1' or to '0', either the N-channel of the P-channel 
transistor is blocked and there is no current 

• When the input changes, the grid of the two transistors must be charged or 
discharged. This is illustrated by the flow of an electron  (with a negative 
charge) coming from GND or going to Vss. 

• During the input change, the voltage passes through values that let both 
transistors conduct, usually during a very short time. This short-circuit current is 
illustrated by an electron flowing directly from GND to Vss.  

• Finally the output is charged or discharged through the transistors. The output 
capacitance stores two electrons .  
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The power dissipated by a conventional CMOS circuit is consequently directly 
proportional to the clock frequency.  

Electrical 
simulation of the 
CMOS inverter 

 

By clicking or dragging the mouse inside the chronogram below, you control the 
input "a" voltage (plotted in red on the chronogram). The output voltage "y" is then 
computed (plotted in blue). The current flowing through the N-channel transistor if 
drawn in green and the current through the P-channel transistor is in yellow. 
To suspend the applet and freeze the plot, just get the pointer out of the picture. 

 

Basic NOR and 
NAND gates  

 

We are now studying some basic CMOS logic gate: a 2-input NOR, a 2-input 
NAND and finally a full adder cell. 
Colors conventions: They are the same as the inverter's one. Connections to Vdd 
(logic '1' ) are drawn in red, connections to GND (logic '0' ) are in blue, and 
connections to both Vdd and GND are in green. Finally connections neither to Vdd 
nor to GND (floating) are in yellow. The two last colors have no logic image. 

• Click close to an input changes its value and consequently the state of the 
transistors attached to this input.  

• The line in the truth table that corresponds to the input combination is 
highlighted.  

• Clicking in the truth table changes the input according to the highlighted 
line.  
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• Clicking the top of the table highlight the next line.  

To simplify the applets, only logical '1' and '0' are allowed for the inputs. Therefore 
it is not possible to input a value causing a short-circuit between Vdd and GND 
 

Two-input NOR 
gate 

 

The two-input "NOR" gate is one of the simplest gates to illustrate the term 
complementary : the P-channel transistors are connected in serial while the 
N-channel transistors are in parallel. The P-channel and N-channel network are 
complementary. 
 
Notice that when none of the two P-channel transistors conduct, their common 
connection is floating (yellow). This is a "non logic" value, however, it does not 
cause trouble since it is not connected to any transistor gate. 

  
The 2-input NAND 

gate 

 

In the two-input NAND gate, the P-channel transistors are connected in parallel 
while the two N-channel transistors are in serial. 
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Binary adder 
 

 

The "Full Adder" cell ( FA ) is made of two connected complex gates. It realizes an 
arithmetic equality: the weighted sum of the three inputs "x", "y" et "z" is always 
equal to the weighted sum of the two outputs "c" et "s", in other words " x + y + z = 
2*c + s ". This property can easily be checked thanks to the cell truth table. 

 
 The P-channel transistor network is symmetrical to the N-channel network. A 

circuit with this property is called "mirror". All the adders exhibit the property that 
follows from an arithmetic link between the logic and arithmetic complements. 
Finally the two circuit outputs are inverted. This follows from an electric property 
of the CMOS technology, which allows easily non-increasing logical functions 
only. 
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Adders 
"FA" cell 

 

 

In the "FA" cell, the weighted sum of the output bits equals the weighted sum of 
the output bits, i.e. " x + y + z = 2*c + s ". The three input bits share the same 
weight. Let it be "1". The output bit "s" has also the same weight, while the output 
bit "c" weight is double (2). 
The "FA" cell conserves the sum just like the node conserves the electric current in 
the "Kirchoff's current law". 
The "FA" cell is also called "3 ⇒ 2 compressor" since it reduces the bit number 
from 3 to 2 while preserving the numerical value. 

 
Carry propagate 

adder  

 

The addition is by far the most common arithmetic operation in digital processors. 
Addition is itself very frequent and is also the basis of most other arithmetic 
operations like multiplication, division, square root extraction and elementary 
functions. 
All "consistent" "FA" cells assembling preserves the property: the weighed sum of the 
output bits equals the weighted sum of the input bits. 
To construct the adder S = A + B, the input bits come from the two numbers A and B 
and the output bits form the number S. 
The number of "FA" cells is the same as the number of bits of A and B.  
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Performance of 
the carry ripple 

adder 

 Let us assume that all the possible values for A and B are equiprobable and 
independent:  

  minimum  average  maximum  
delay 0  log2(n)  n  
activity 0  3n / 4  n2 / 2  

The maximum delay (worst case) is usually not acceptable. Let us examine the carry 
propagation path that causes this delay.  

Carry 
propagation 

path  

 

For each "FA" cell, one of the three following case occurs:  
• the carry ci+1 is set to '0', noted 'K', if ai = 0 and bi = 0  
• the carry ci+1 is set to '1', noted 'G', if ai = 1 and bi = 1 
• the carry ci+1 is propagated, noted 'P', if (ai = 0 and bi = 1) or (ai = 1 and bi = 0). 

In this last case ci+1 = ci. This is the unfavorable case, materialized by an horizontal 
arrow in the next applet.  

 
  The three case 'K', 'G' and 'P' are encoded onto two 2 bits. 

"BK" cell 
(Brent & Kung 

The "BK" cell computes the carry for two binary positions ( two "FA" cells) or more 
generally two blocks of "FA" cells. 

 



Arithmetic operators   Page 9 

 
Sklansky's 

adder  
To design fast adders, binary trees of "BK" cells will first generate simultaneously all 
the carries ci. The "Sklanski's adder" builds recursively 2-bit adders, 4-bit adders, 
8-bit adders, 16-bit adder and so on by abutting each time two smaller adders. The 
architecture is simple and regular, but may suffer from fan-out problems. Besides in 
most of the cases it is possible to use less "BK" cells for the same delay. 

 
Fast adders 

(Brent & Kung)  

 

In a fast adder, all the carries ci are computed simultaneously through a binary tree of 
"BK" cells. To save on complexity, sharable intermediate results are computed once. 
There is only one rule to construct the trees: every output with position i must be 
connected to all inputs of position less than or equal to i by a tree of "BK" cells.  
The rule simplicity usually allows for many correct constructions. 

 
  In the "BK" cell tree, one may trade cells for delay, usually for the same addition the 

less the delay, the more the "BK" cells. 
• change the number of bits and/or the delay 
• check that the trees follow the construction rule by clicking on a signal (a 

line), notice that each signal is named by a pair of integers.  
• simulate the carries computation by clicking on the keys .  
• display the tree construction process by clicking the key "Details" 
• display the adder VHDL description by clicking the key "VHDL". To save 

the VHDL description, select it, then copy and paste it into a text editor.  
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Kogge & Stone 

adders  
The binary trees of "BK" cells in the Kogge et Stone adders are not sharing.  
Consequently the signal fan out is reduced to the minimum at the expense of more 
"BK" cells. Since the delay increases with the fan-out, it is here a bit shorter. 

 
Ling adder  

 

In the Ling's adder, the "BK" trees give a primitive called "pseudo carry". It avoids 
the computation of pi and gi, but on the other hand the carry has to be deduced from 
the "pseudo carry". The trick is that this late computation is overlapped by the "BK" 
cells delays. Consequently this adder is faster (a little bit) than the corresponding 
"BK" adder. The VHDL synthesis from the applet takes advantage of that. 

  
"CS" Cell  

 

In the "CS" cell, the weighted sum of the outputs equals the weighted sum of the 
inputs. In other words "a + b + c + d + e = 2*h + 2*g + f ". The "CS" cell is not only a 
"5⇒ 3 counter", but moreover the output "h" is never dependent on the input "e". 

 
Carry 

propagation
The "CS" cell does not propagate the input carry "e" to the output "h". It makes "carry 
propagation free" adders possible. The number of necessary "CS" cells is precisely 
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free adder  

 

given by the number of digits to be added. 
On the other hand each digit is coded onto 2 bits and the digit value is the sum of those 
2 bits. Therefore the possible digit values are '0', '1' and '2'. 

 
  This notation system for integer numbers allows addition with a delay both short and 

independent of the digits number. Yet this system demands about twice as many bits as 
the standard binary notation for a comparable range. Consequently the same value may 
have several representations. The vertical arrow  next to the numbers value changes 
the representation without changing the value. Among the representations, the one with 
only '0' or '1' is always unique. 
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Multipliers 
Multiplier  The multiplication comes second for frequency of use. 

AND gate 

 

An "AND" gate multiplies two bits. To multiply two n-bit numbers A and X, n2 
"AND" gates are required. The weighted sum of the n2 gate outputs has indeed the 
same value as P = A * X. However this set of bit is not a number, although its value 
is computed as if it was a number. 
Since A < 2n et X < 2n, the product P < 22n and therefore P is written with 2 n bits. 

Unsigned 
Multiplication  

 

A regular structure of "AND" gates and "FA" cells with a "consistent" assembling 
first produces the partial products and then reduces them to a number P. Since each 
"FA" cell reduces the number of bits by exactly one (while preserving the sum), the 
necessary number of "FA" cells is n2 – 2n (number of input bits – number of output 
bits). Yet in the following applet there are more "FA" than necessary since some '0' 
must also be reduced, to be precise just as many '0' as bits of X. 

 
Fast Multipliers  

 

Many approaches lead to a speed improvement:  
• Divide the number of partial product bits using a higher radix.  
• Use a tree structure for the "FA" cell reduction net.  
• Use "CS" cell, with a reduction power two times the one of "FA" cell. Besides 

this cell allow balanced binary trees (with some difficulties).  

Booth recoding  

 

Using a larger radix automatically reduces the multiplier X digits number.  
Let have a look on radix 4, using two times as less digit as radix 2 for the same range. 
The "Booth Code" ( "BC" for short) is the minimally redundant symmetric radix-4 
code. Digits values ∈ {-2, -1, -0, 0, 1, 2}. The 3-bit code picked below, known as 
"sign/absolute-value", has 2 notations for zero. 
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However the partial products are computed by a cell more complex than a simple 
"AND" gate. 

Cell of the 
binary to "BC" 

converter  

 

Check whether you are acquainted with the logic of the "B2BC" cell, which convert a 
"BC" digit into "sign/absolute-value" for the generation of partial products. The sum is 
preserved, i.e. : -2*x3 + x2 + x1 = (-1)s * ( 2*M2 + M1 ) : 

 
The conversion of X requires half as many "B2BC" as bits in X.  

Multiplication of 
A bits by one 

"BC" digit 

 

The multiplication by one "BC" digit ∈  {-2, -1, -0, 0, 1, 2} adds 2 bits on top of the bits 
of A: one at left to get either A or 2A, another for the input carry in case of subtraction.  
Since A is signed, its sign may have to be extended to the bit added at the left. 

  
The multiplication requires as many "CASS" cells as bits in A plus 1. 
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Partial products 
generation  

 

The multiplication first step generates from A and X a set of bits whose weighted sum 
is the product P. For unsigned multiplication, P most significant bit is positive, while in 
2's complement it is negative. 

 
Partial products 

reduction  
The multiplication second step reduces the partial products from the preceding step 
into two numbers while preserving the weighted sum. The sough after product is the 
sum of those two numbers. The two numbers will be added during the third step. 
The reduction trees synthesis follows the Dadda's algorithm, which assures the 
minimum counter number. If on top of that we impose to reduce as late as (or as soon 
as) possible then the solution is unique. The two binary number that have to be added 
during the third step may also be seen a one number in "CS" notation (2 bits per 
digit). 

 
Example of 

Wallace tree  

 

The following trees reduce 82 partial products (for example the product of two 8-bit 
unsigned integers). The "Wallace trees" reduce "as late as possible" (key "late" on the 
preceding applet). The weighted sum of the 16 output bits equals the weighted sum of 
the 64 input bits. 
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Partial product 

of "CS" 
operands  

Multiplier X and multiplicand A are now both in "CS" notation, i.e. with digits values 
∈  { 0, 1, 2}.  We want to generate a set of bits whose weighted sum equals A * X. To 
make sure that we get bits (easy to add), it is necessary that either in A or in X every 
digit '2' is preceded by a '0' at its left. 
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Partial products 
reduction  

The partial product of two "CS" is a simple bit, reduced in the very same way as for 
conventional fast multiplication. 

"xCS" cell  

 

The "xCS" cell computes the product of two digits a and x in "CS" notation. 
Its arithmetic equation is "2 × b + 2 × y + i = a × x + z + c". Furthermore the outputs 
"b" and "y" does not depend on "c" or "z" (no propagation). 

 
 

Coding circuit 
"CS2CS"  

 

The transcoder "CS2CS" passes from "CS" to "CS" while making sure that in the 
output a '2' is always preceded by a '0'.  

 
This permits to generate the partial product of a multiplicand A by a multiplier X 
both in "CS", with no overflow. 

Coding circuit 
"CS2BC"  

 

The transcoder "CS2BC" passes from "CS" to "BC" , that is from the "carry-save" 
code to the "Booth Code" ( symmetric minimally redundant radix-4 code ). 
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Integer constants multiplications 
Multiplication 

of a variable by 
integer 

constants 

The discrete Fourier transform, the discrete cosine transform or inverse, digital 
filters, and so on, all contain the multiplication of a variable X by several constants 
C1, C2, .. Cn. The factorization of those constants permits a dramatic reduction of the 
number of additions/subtractions demanded by those multiplications. The following 
applet computes 
Y1 = X*C1, Y2 = X*C2, .. Yn = X*Cn. 
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Dividers 
Weighting a 

bread loaf with 
restoration and 

without 
restoration  

We want to computer Q = A ÷ D. By a stroke of luck, we have available a scale, a 
white bread whose weight is actually just A and a set of weights with values D, 2D, 
4D, 8D, .... 2i*D respectively marked with 1, 2, 4, 8, ... 2i.  
In fact D is a binary number, and 2i*D is simply obtained by shifting D. The scale 
compares the sum of the weights on each of the two plates ( ≤≤≤≤ or >>>> ). 

 
Digit recurrence 

division  

 

Division is not frequent. Nevertheless since its execution delay is far larger than the 
addition or multiplication's one, its contribution to the total execution time is 
substantial, thus it is advisable to design dividers carefully. 
Let say that we want Q = A ÷ D. This is equivalent to Q * D = A. Therefore if Q and 
D are both written onto n bits, A is written onto 2n bits. 
Let us build a series Qn, Qn-1, ... Q2, Q1, Q0 and a series Rn, Rn-1, ... R2, R1, R0 such 
that the invariant A = Qj * D + Rj holds for all j. 
The recurrence is :  

• Qj-1 = Qj + qj-1 * 2j-1  
• Rj-1 = Rj – qj-1

 * D * 2j-1  
with initial conditions:  

• Qn = 0  
• Rn = A.  

When the recurrence stops, we have Q = Q0 = Σi=0
n   qi * 2i. R = R0 is the division 

remainder.  



Arithmetic operators   Page 19 

 
Conditional 

subtractor  
A "conditional subtractor" gives the following result S: 
if R < D then S = R else S = R – D ; 
Each "SC" cell computes both the result and the carry (borrow) of the subtraction 
R – D. If the output carry value (leftmost) is '1' then S is assigned the result of the 
subtraction else S is assigned the value of R. This last case, that seems to "restore" 
R to its previous value before the subtraction is sometimes called "restoration", 
from which the divider's name derives,  

 
  The "conditional subtractor" function: if R < D then S = R else S = R – D, is 

abstracted by its transfer function called "Robertson's diagram". To converge the 
division imposes moreover that 0 ≤ R ≤ 2*D. 
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"SC" cell of the 

conditional 
subtractor 

Check whether you are acquainted with the logic of the "SC" cell : 

if q = 0 then { co = majority ( r, –d, ci ) ; s = r ; } // identity 

else { co = majority ( r, –d, ci ) ; s = r ⊕  –d ⊕  ci ; } // subtraction 

 
 

Restoring 
divider  

A "restoring" divider consists in a series of shifts and attempted subtraction. It is 
made of a regular net of conditional subtraction cell "SC" (subtraction or nothing 
according to a carry out bit). 
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Fast dividers  

 

Three approaches may be combined to realize fast dividers:  
• Utilization of carry-propagation-free addition/subtraction.  
• Preconditioning of the dividend and the divisor in order to simplify the 

division.  
• Use of higher radixes to reduce the number of steps.  

 
Robertson's 

Diagram  
To obtain a square Robertson's diagram, the successive partial remainders are 
normalized: ( Rj * b-j) where b is the numeration radix. 
The black slopes represent the transfer function Rj ⇒  Rj-1, the red line is the identity 
function, that passes to the following step. Pulling the mouse out of the pictures 
suspends the animation. Clicking ends or restarts the animation. Clicking inside the 
square sets another starting point.  
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Radix 10 sounds familiar to us; it is given here just for illustration because it would not 
be very efficient in binary.  

"SRT" division 
or carry 

propagation free 
division  

 

To avoid the delay of the carry propagation, the following applet uses a stack of 
borrow-save "BS" adders/subtractors. The "tail" cell, variant of the "SC" cell, is 
controlled by two bits and executes one of the three following operations:  

• an addition : Rj-1 = Rj + 2j-1 * D 
• a subtraction: Rj-1 = Rj – 2j-1 * D  
• an identity: Rj-1 = Rj  
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 This operation is selected according to the sign of the partial remainders Rj. To always 
know precisely this sign would require the examination of all the remainder's digits. It 
is sufficient to check only three. Moreover, the position of the three digits is known: the 
rightmost one is aligned with the most significant non-zero bits of D. To nail down this 
digit position, D is "normalized", that is the position of its first "1" bit is fixed. For an 
n-bit divider, 2n-2 –1 < D < 2n-1. 

 
Conditional 

carry-
propagation-free 
adder/subtractor  

 

A "conditional adder/subtractor" yields one among the three following outputs:  
• if q = '-1' then S = R + D ;  
• if q = '0'  then S = R ;  
• if q = '1'  then S = R – D ;  

Each "tail" cell executes a one-bit addition/subtraction. The carry is not propagated to 
the "tail" cell at left but fed directly to the "tail" cell below (next line).  

 
 The "conditional adder/subtractor" function sis abstracted by its transfer function 

called "Robertson's diagram". To converge the division imposes moreover that



Arithmetic operators   Page 24 

-2*D ≤ R ≤ 2*D. If -D ≤ R ≤ 2 then S has two possible values.  

 
 

"tail" cell of the 
"SRT" divider  

Check whether you are acquainted with the logic of the "tail" cell. 
• if q = '-1' then 2*s1 – s0 = d0 + r0 ; // addition  
• if q = '0' then 2*s1 – s0 = r0 ; // identity  

• if q = '1' then 2*s1 – s0 = —d0 + r0 ; // subtraction  

 
 
 

"head" cell of the 
"SRT" divider  

 

Let R̂ =  r2* 4 + r1* 2 + r0 and Ŝ = s2* 4 + s1* 2 + s0 be the input and output values of 
the "head" cell. Another output is one quotient digit q . 

• if R̂ > 0  then { Ŝ = R̂ – 2 ; q = '1'; }  

• if R̂ = 0  then { Ŝ = R̂ ; q = '0' ; }  

• if R̂ < 0  then { Ŝ = R̂ + 1 ; q = '-1'; }  

In a real division (without overflow), output s2 will always be 0. .  
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"SRT" division 
with divider 

range reduction  

 

The previous division is simple because the fist bit of the divider D is always "1". It 
may be even further simplified if the two first bits d0 and d1 of the divider D are 
reduced to "1 0" thanks to the following operation: 
if d1 then { D = D * 3/4 ; A = A * 3/4 ; } . 
This multiplication of A and D by the same constant does not alter the quotient Q, but 
on the other hand the final remainder R is also multiplied.  
For an n-bit divider, 2n-1 –1 < D < 2n-1 + 2n-2.  

 
 

Head cell of the "SRT" 
divider with range 

reduction

Let R̂ = r1* 2 + r0 be the "head" cell input value. 

• if R̂> 1  then { s0 = R̂ – 3 ; q = +1; }  
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reduction  

 

• if R̂= 1  then { s0 = 0 ; q = - 0 ; }  

• if R̂= 0  then { s0 = 0 ; q = + 0 ; } or { s0 = -1 ; q = - 0 ; }  

• if R̂= -1  then { s0 = -1 ; q = + 0 ; }  

• if R̂< -1  then { s0 = R̂ + 2 ; q = -1 ; }  
Here the difference between the two 0 representations for q : "- 0" and 
"+ 0" matters.  

 
Quotient 

converter  

 

The quotient Q is in redundant notation. The conversion into a conventional binary 
representation is obtained thank to an adder (in fact a subtractor). Since the digits q 
are obtained sequentially, most significant digit first, the conversion can be carried out 
in parallel with the quotient digits obtaining. Let "ratio" be the "head" cell and "BK" 
cell delays ratio. The higher the ratio, the simpler the converter. 
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Divider design  

 

The quotient Q digits are redundant and symmetrical. Therefore they are completely 
defined by the radix and the maximum digit value. This applet let you choose the 
quotient digit values and then the necessary number of bits from divider D and digit 
from partial remainder R that must be taken into account for the selection of the 
quotient digit value. 
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The leftmost button moves to the next or to the previous step. 

• 1- Robertson's diagram, plotting the next partial remainder according to the current partial remainder. 
The boundaries take divisor D into account.  

• 2- Symmetrical PD-plot for D in the range [ 1/2 , 1 [  
• 3- Half PD-plot, upper part of the preceding one. The lower part is obtained by changing the sign.  
• 4- Discretised half PD-plot. The number of D bits taken into account gives the abscissa discretisation, 

while the number of P digits gives the ordinate discretization. Fixing this number of bits/digits will 
determine whether a continuous frontier can separate the different values of q.  

• 5- Half truth table for the half PD-plot.  



Arithmetic operators   Page 29 

 

Square root extractor 
Square root 

extraction  

 

The square-root extraction is relatively rare. Nevertheless, it is used among other 
things for Euclidean distance and least square and is included in the floating-point 
standard. The square-root operator is similar to the one for division, therefore most of 
what we already know about division may apply as well to square root. Often the 
same operator is used either for division or for extraction, collision of the two 
operations being too rare to justify two operators, moreover each very costly. 

Square root 
extraction 
algorithm  

 

In the drawing below, the area of each red rectangle represents one bit weight. Only 
the '1' are drawn. Therefore the total area is the weighted sum of all the bits.  
The goal of the game is to find a square with an area equal to a given argument, 
represented by the area of a blue circle, just by observing one test bit ( ≤≤≤≤ or >>>> ) and by 
clicking the square side bits. After convergence the sough after number is the side of 
the square. 

 

Square root 
extractor  

 

We want to get Q = A . This is equivalent to Q = A ÷ Q. Therefore if Q is written 
on n bits, A is written on 2n bits.  
Let us build a series Qn, Qn-1, ... Q2, Q1, Q0 and a series R2n, R2n-2, ... R4, R2, R0 such 
that the invariant A = Qj * Qj + R2j holds for all j. 
The recurrence is:  

• Qj-1 = Qj + qj-1 * 2j-1  
• R2j-2 = R2j – qj-1 * 2j-1 * ( 2 * Qj + 2j-1)  

with the initial conditions:  
• Qn = 0  
• R2n = A.  

When the recurrence ends, we have Q = Q0 = Σi=0
n   qi * 2i. 

R = R0 is the final remainder of the square root extraction. 
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Realization  The restoring square-root extractor utilizes the same conditional subtractor "SC" 

cells as the non-restoring divider. 

 
Fast square-root We want to get rid of the carry propagation by the use of the "BS" notation, the same 
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extractor  "head" and "tail" cell and architecture similar to the fast division. We bump into three 
difficulties when trying to use the fast divider for extraction of square roots. 

 
Square root 

converter  

 

The first difficulty is the root feedback. In a similar way as the division, the extractor 
supplies a partial root Qj in "BS" notation. On the other hand, the "head" and "tail" 
cell of the divider accepts a partial root in conventional binary representation. A 
subtractor could be used to convert each Qj from "BS" to conventional, but that 
would be both slow and expansive. The converter below use a 4-input, 2-output "trc" 
cell, derived from the "BK" cell. 

 

Square root 
conversion cell  

Check whether you are acquainted with the logic of "trc" cell, which convert from 
"BS" notation into standard binary notation. 
Input "si" is a bit from Qj, input "ci" indicates whether the carry propagates in this 
cell's position. The carry is used in case of subtraction of 1. This signal corresponds 
to the value 'P' of the "BK" cell. 

• if qj = -1 then { so = si ⊕  ci ; co = 0 }//subtraction (sum - carry), carry killed  
• if qj = 0 then { so = si ; co = ci } //sum unchanged, carry propagated 
• if qj = 1 then { so = si ; co = 0 } //sum unchanged, carry killed 
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Carry-
propagation free 

square root 

The fast square-root extractor utilizes the same cell as the fast divider to execute at 
each step one of the three following arithmetic operations:  

• if qj = '-1' then R2j-2 = R2j + 2j * Qj – 22j-1 // addition  
• if qj = '0' then R2j-2 = R2j // identity  
• if qj = '1' then R2j-2 = R2j – 2j * Qj – 22j-1 //subtraction  

Each "head" cell selects the value of one qj thanks to the sign of an approximate 2j 
of the current remainder R2j.  
The second difficulty with respect to division lies in the subtraction of 22j-1 whenever 
qj = -1 or qj = 1. For the bit subtraction, a negative input of the least significant tail 
cell of each line is used. 
The third difficulty lies in the range of Q. Indeed each Qj must start with a "1" in the 
most significant position (implicit). This condition is fulfilled if the two most 
significant bits of the radicand A are not both zero. This "1" is subtracted from A in 
the first line thanks to a negative "head" input 
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Floating-point addition 
Floating-point 

numbers format  
The binary code of floating point real numbers is composed of three fields. The sign 
S (1 bit), the exponent E (8 bits) and the mantissa M, or significand (23 bits). 
The number value is (-1)S * 2(E - 127) * (1 + M / 8388608 ) . However if E = 0, the 
number value is (-1)S * 2(-126) * ( M / 8388608 ) and if E = 255, the value is infinite. 
Check your understanding of this format by entering the code (32 bits) of the 
proposed numbers. 

 
Addition and 

subtraction  
Since real numbers are coded as "sign/absolute-value", toggling the sign-bit inverses 
the sign. Consequently the same operator performs as well either addition or 
subtraction according to the operand's sign.  
Addition/subtraction of two real numbers S = A + B is more complex than 
multiplication or division or real numbers. 
Floating-point addition progresses in 4 steps:  

• Mantissa alignment if A and B exponents are different, 
• Addition/subtraction of the aligned mantissas, 
• Postnormalization of the mantissas sum S if not already normalized, 
• Rounding of sum S. 

The alignment step yields a guard bit and a sticky bit for the rounding step .  
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Adder/ 

subtractor  

 

A floating-point adder is made of the following blocks: 
Bloc 1: outputs the larger of the two exponents (8 bits), outputs the exponent distance 
(5 bits), outputs the implicit bit of both operands. 
Bloc 2: outputs at left the smaller operand mantissa (23 bits), outputs at right the 
larger operand mantissa (23 bits). 
Shifter 1: shifts to the right the smaller operand mantissa, adds the guard bit and the 
sticky bit, totaling 26 bits. 
Complementer: on request, does the logic complement for a subtraction.  
Adder 1: adds the two inputs and the carry in. outputs the rounded sum and a carry 
out. 
Zero-leading-counter: the ZLC output gives the number of leading '0' if the result is 
not normalized, and "1" otherwise. 
Shifter 2: shifts to the left ( ZLC – 1 ) positions. The fist bit is lost ( implicit '1' ). 
Adder 2: subtracts ( ZLC – 1 ) from the greater of the two exponents. 

 
Real numbers 

fast addition  
A floating-point numbers addition requires some integer additions, parametrised 
shifts (to the right for alignment, to the left for renormalization) and a counting of the 
leading zeroes of the result. Addition can be completed with delay log2(n). 
Parametrised shift delay is log2(n) as well. 
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Zero leading 
counter ( ZLC )  

A binary tree counts up the number of '0' in the most significant positions by 
dichotomy. If the size of the sub-strings is a power of two, then there is no need for 
adders but multiplexors can be used instead. Indeed only the size of the left subsrting 
has to be a power of two. The substring at right must simply be shorter than or of the 
same size as the left subsrting. 

 
 

Zero leading 
counter cell 

This cell combines the number of leading '0' of two 16-bit strings to obtain the 
number of leading '0' of the concatenation of the two strings. 

. if X < 16 then S = X else S = 16 + Y 
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Zero leading 
prediction  

 

From the mantissas A and B, one can construct in constant time a string P with the 
same number of leading zeroes, but for at most one, as the result of the difference  
D = A – B with no need to wait for the subtraction completion. When fed to a ZLC, 
this string predicts the number of positions required by the shifter. If the result of the 
shift still exhibits a leading zero, then a shift of one more position is necessary to 
normalize the result. Otherwise the shifted value is normalized. 
The prediction is valid if A is normalized and B less than or equal to A. This is the 
always the case in a significand subtraction. The leading zero(es) result from a carry 
string 'P'* 'G' 'K'* , made up with a number (possibly null) of 'P' followed by an 
unique 'G' followed by a number (possibly null) of 'K' . The predictor cell outputs a 
'0' for every pair of symbols in: 'P' 'P' ; 'P' 'G' ; 'G' 'K' et 'K' 'K' and outputs a '1' for 
every other pair. 
This predictor does not take into account the carry propagation that may lead to an 
error of one position in the predicted bitstring. Since only one bit in 'P'* 'G' 'K'* 
might be incorrectly predicted, the error is tolerable. 
 

 
 

Zero leading 
prediction 

adjustment  

The prediction is incorrect only if the carry string starts with 'P'* 'G' 'K'* 'P'* 'K'. 
The following circuit output 'Y' whenever the prediction is incorrect, in other words 
too small by one. 

 
  Z indicates a string 'K'* 'P'* 
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Q indicates a string 'P'* 'G' 'K'* 'P'* (containing only one 'G') 
N indicates a string starting with 'P'* 'K' 
Y indicates a string starting with 'P'* 'G' 'K'* 'P'* 'K', that is Q followed by N. 
U indicates any other string. 

Prediction cell  The leading '0' prediction cell output a '1' at the end of the string 'P'* 'G' 'K'* and '0' 
inside the string (and don’t care neither inside nor at the end). Check whether you are 
acquainted with the truth table of this cell.  

  
 



Arithmetic operators   Page 38 

 

Elementary Functions 
Elementary 

functions  
Realization of operators for Exponential, Logarithm, Sine, Cosine, arcTangent 
relying on addition/subtraction and fixed shift. The cost and delay of fixed shits are 
negligible when they are wired. 

From a bread 
loaf weighting to 

the exponential 
computation  

 

We want to compute exp ( Y ), we have available a scale, a white bread whose 
weight is actually just Y and a set of weights with values log(1 + 2-i ). The 
weighting gives the sought-after result in the form of a product of rationals 
(2i + 1) / 2i . The multiplication by each rational amount to a mere addition and 
shift.  
A weight put down on the right plate (the bread's one) has it value changed into 
-log(1 – 2-i ). Thank to this trick, the weighting can be restoring, non-restoring or 
"SRT". 

 
 

Carry 
propagation free 

division for 
exponential  

The scale is replaced by a "SRT" divider whose "Robertson's diagram" is drawn 
below  

 
 The applet gives all the successive partial remainders.  
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The dividend Y (top) must be within ] -1 , +1 [  . 
 

"SRT" divider 
for exponential  

The constants log(1 + 2-i ) and -log(1 – 2-i ) fed into the "tail" cells are wired . Thus 
there are 4 variants for the cell according to the values of the two bits. 

 
Operations of a 
slice of "SRT" 

divider for 
exponential  

The value of each qj is selected by a "head" cell according to R̂j , the weighted 
sum of the two most significant digits r1 and r0 of the representation of Rj.  

• if R̂j > 0  then { qj = '1' ; s0 = R̂j –2 ; Rj+1 = Rj + log(1 – 2-j ) } // subtraction  

• if R̂j = 0 or R̂j = -1  then { qj = '0' ; s0 = R̂j ; Rj+1 = Rj + 0 }  // identity  

• if R̂j < -1  then { qj = '-1' ; s0 = R̂j + 2 ; Rj+1 = Rj + log(1 + 2-j ) } //addition  

 
Suite de 

multiplications  
The stack of conditional multipliers by 1 or by (1 + 2-i ) or by (1 – 2-i ) needs only 
one final carry propagation thanks to "CS" adders and wired shifts. 
Additions are truncated to 2 n digits, of which two before the point. The third most 
significant digit ( fully left) is the sign. Despite the fact that all partial results are 
positive, the execution of subtraction in "CS" sometimes brings about an unresolved 
sign. The final result (bottom line) must be converted from "CS" to binary by one
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addition (with carry propagation). 
La fenêtre du bas permet de comparer le produit "vraie" des multiplications (sans 
troncature) au produit avec troncature. 

 
Numerical 
example of 

division  

The tables below shows the partial remainders ("BS") and the partial products ("CS"). 
The windows at the tables bottom gives the actual value of the function, the product 
of rationals (1 + 2-i ) or (1 - 2-i ).and finally the truncated product of rationals to 
exhibit the errors introduced by the method 
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The series of rational products is given by the concatenation of the quotient Q 
( left ) and the final remainder R ( bottom). Actually for high values of i, 2i 

*
 

log(1 + 2-i ) becomes very close to 1. If the divider is close 1, then the remainder 
becomes an acceptable approximation for the quotient.  

 
Range extension  The previous circuit works with Y in the range ] -1 , +1 [ . For the exponential of any 

number Y, Y is written Y = Q*log(8) + R, where Q is the integer quotient of the 
division of Y by log(8) and R < log(8) < 1. Then exp(Y) = 8Q * exp(R) = 23Q * 
exp(R). Since exp(R) < 1, it is acceptable by the above circuit. 

 
Logarithm and 

exponential  

 

 
The same operator computes either the Logarithm or the Exponential with 
additions/subtractions (it is the same operation), shifts and constants. The constants 
are log(1 + 2-i ) and -log (1 – 2-i ) and the digits ∈ { '-1' , '0' , '1' }. The slack selection 
of the digit value, which unfortunately will be lacking later on for Sine and Cosine, 
allows to avoid all but one carry propagation 

 



Arithmetic operators   Page 43 

 
From a bread 

loaf weighting to 
sine and cosine 

We want to compute sine( A ) and/or cosine ( A ); we have available a scale, a white 
bread whose weight is actually just A and a set of weights with values arctg ( 2-i ). All 
the weights must go on the scale plates, either side. 
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Sine and Cosine 

computation  
Let Vi be a vector, with extremity (xi, yi ). A "pseudoRotation" of an angle arctg (2-i ) 
applied to Vi gives Vi+1 : xi+1 =  xi – yi * 2-i and yi+1 =  yi + xi * 2-i. After the angle A is 
broken down into a weighted sum of arctg (2-i ), a series of "pseudoRotations" yields 
the coordinates of the vector of angle A, those coordinate are the values sin(A) and 
cos(A) searched for. All the "pseudoRotations" require only addition/subtraction and 
shift. 

 
The constant k  Each "pseudoRotation" of the angle arctg(2-i ) brings about a vector lengthening of 

1+2-2i, for it is not exactly a rotation but rather a displacement of the vector extremity 
on a perpendicular vector. In order to compensate in advance the product of all the 
lengthening of a series of "pseudoRotations", the starting vector is ( x0 = k , y0 = 0 ) . 
For n large enough, k is approximately equal to 0,60725. In order for k to be a constant, 
the representation with arctg(2-i ) use digits ∈ { '-1' , '1' }. 

 

Angle 
decomposition  

 

What is the domain of the angles A = Σi=0
n   ai * arctg (2-i) and what precision can be 

expected from this notation ? A is the angle value to reach, and T is the value attained 
by the series of pseudoRotations. To change the value of A, click in the figure. All 
values are expressed in radiant. The key "Mise à zéro" allow to 'manually' control the 
convergence into the notation arctg (2-i) by clicking the digit values.  
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"Robertson's 
diagram" for 

CORDIC  

 

The "Robertson's diagram" shows that the iteration to convert into basis arctan(2-i ) 
may be as follows: 
 if R ≥ 0 then { S = R – arctan(2-i ) ; ai = '1' } else { S = R + arctan(2-i ) ; ai = '-1' }.  

  

"non restoring" 
divider for 

CORDIC  

 

The angle Y (divider's top) is in the interval [ -1.743..  +1.743...]. The constant bits at 
"AS" cells inputs are wired. The operations are selected according to the previous 
partial remainder R or by y0 for the first iteration .. 
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"double 

rotation" 
CORDIC " 
Robertson's 

Diagramme"  

It uses an approximation R̂ of the partial remainder R to determine the rotation: 

if R̂ > 0 then { ai = '1' }; if R̂ = 0 then { ai = '0' }; if R̂ < 0 then { ai = '-1' } 
The diagram shows that the approximation can be coarse. 

 

"double 
rotation" 
CORDIC  

This divider uses the same "head" and "tail" cells as the "SRT" divider. To put up 
with the '0', the angle is first halved then the "pseudoRotation" are doubled. Thanks 
to that, the lengthening stays the same ( 2* 1+ 4-i ) whatever the value of ai .  

• if ai= '-1' then { rotation of (arctan(2-i )) then rotation of (arctan(2-i )) };  
• if ai = '0' then { rotation of (arctan(2-i )) then rotation of (-arctan(2-i )) } ;  
• if ai = '1' then { rotation of (-arctan(2-i )) then rotation of (-arctan(2-i )) } ;  
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"double 

division" 
CORDIC  

 

The "double rotation" has a cost: it doubles the rotation hardware and probably the 
delay as well. The "double division" is more ingenious. It makes use of two dividers 
running simultaneously with slightly different "head" cells.. 
"head" of divider1 

if R̂ > 0  then { Ŝ = R̂– 2 ; ai = '1' ; } 

if R̂ ≤ 0  then { Ŝ = R̂+1 ; ai = '-1' ; } 

 "head" of divider2 

  if R̂ ≥ 0  then { Ŝ = R̂– 2 ; ai = '1' ; } 

  if R̂ < 0  then { Ŝ = R̂+1 ; ai = '-1' ; } 
It is clear that whenever = 0, divider1 speculates that R < 0 and divider2 that R > 0. 
At most one of them will eventually overflow, before the occurrence of the next 
 = 0. An overflow indicates that the correct output is the other divider's one. 
Only divider1 is shown by the following applet. 
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  The two heads detect the overflow to produce together a 3-valued indicator : 
'K' the output digit is correct (either divider1 and divider2 give the same value, or 
divider2 overflows), 'G' the output digit is incorrect and must be complemented 
(divider1 overflows), 'P' propagate the next indicator's value (values differ, no 
overflow). Whenever a divider overflows, it carries on with the other divider's partial 
remainder R. 
The propagation is similar to the carry propagation of addition.. 

 
Numerical 

application  
The "Nb. bits" selects simultaneously the number of bits of the calculations and the 
number of steps. Clicking the vertical arrow      changes the representation. Again, the 
key "Mise à zéro" allows to control 'manually' the convergence. 
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Bipartite Table 
 
The values of a function can be precomputed and stored into a table (a ROM). 
Nevertheless, the table size grows very quickly with the precision. This practically 
limits this approach. For continuous functions, one may store only a few values in a 
table named "TIV", and the function slope, in order to interpolate within the stored 
points, in another table named "TO". 
In the applet below, start by selecting a function, then fix WI and then explore 
solutions varying the values of TIV and TO around 2/3 of WI. 
Adding a function to the list implies the modification of the source. 

 

 
 



Arithmetic operators   Page 50 

 

Modular Arithmetic 
Modular 

representation  

 

Let be the set { m1, m2, m3, ... mn} of n integer constant pairwise prime called moduli 
and let M be the product of this constants, M = m1* m2* m3* ... * mn. 
Let A be an integer smaller than M. 
A can be written ( a1 a2  a3 ....  an )RNS where ai = A modulo mi (residue). 
This definition tells how to get the ai from A. On the other hand it is possible to get 
back A from the ai using another set of precomputed constants { im1, im2, im3, ... imn} 
called inverse modulo M of the former. 
A =   a1 * im1 + a2 * im2 + a3 * im3 + ..... an * imn   modulo M 

This result is proved in the "Chinese remainder theorem". Check if you are acquainted 
with this representation by converting A from "decimal to RNS" or from "RNS to 
decimal". 

 
Modular 
addition  

 Modular addition uses n small adders computing simultaneously all the sums 
si =   ai + bi   modulo  mi. 

 
Modular 

Subtraction  
 Modular subtraction uses n small subtractors computing simultaneously all the 
differences di =   ai + mi - bi   modulo  mi. 
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Modular 

Multiplication  
Modular multiplication uses n small multipliers computing simultaneously all the 
products pi =   ai * bi   modulo  mi. 

 
Conversion into 

RNS  
The conversion of a binary variable A into RNS consists in finding all ai = A modulo 
mi i.e. the remainders of the division of A by mi. But the division is not the best 
approach. 

• the rest modulo 2n is immediate,  
• the rest modulo 2n – 1 requires only additions,  
• the rest modulo 2n + 1 requires some additions and some subtractions.  

In other cases we resort to the one of the two last expressions with the smallest n. 
Trees of adders (Wallace trees) reduce A to the sum of two n-bit numbers while 
respecting the rest modulo mi. 
The graphical conventions are the same as for partial products reduction .  
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Example of 

modulo 
reduction 

The following applet reduces 64 bits into 6 bits whereas preserving the value 
modulo 63 (63 = 26 – 1) . At the output, zero has two notations: either "000 000" or 
"111 111"  
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modulo 2n–1 
adder  

The "end-around-carry" adder offers two advantages : it works fine modulo 2n – 1 
and is simple, and two disadvantages as well : it is slow and difficult to test, both for 
the same raison i.e. for the value zero are two stable cases. 
An adder delivers spontaneously a modulo 2n sum. With a slight modification, the 
Sklanski's adder delivers a modulo 2n – 1 sum S. 

• if A + B < 2n – 1 then S = A + B ;  
• if A + B ≥ 2n – 1 then S =  A + B + 1   modulo 2 n  

The condition is given by the carry out cn: if cn = 'K' then A + B < 2n – 1, if cn = 'P' 
then A + B = 2n – 1, if cn = 'G' then A + B > 2n – 1. The "feed-back" signal that 
controls the "+1" is 'K' if cn = 'K' and 'G' otherwise.  

 
modulo 2n +1 

adder  
We now want an adder modulo 2n + 1.  

• if A + B < 2n + 1 then S = A + B ;  
• if A + B ≥ 2n + 1 then S =  A + B – 1   modulo 2 n  

The previous adder is used with two numbers X and Y such that X + Y = A + B + 2n 
– 1. A row of HA' cells carries on this addition propagation-free. HA' is the dual of 
HA.  

• if X + Y < 2n+1 then S = X + Y + 1   modulo 2n ;  
• if X + Y ≥ 2n+1 then S =  X + Y   modulo 2n ;  

The "feed-back" signal that controls the "+1" is the "nand" of xn and (cn = 'K'). The 
result bit sn is the "and" of xn and (cn = 'P').  
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Conversion 

from "RNS" 
into mixed-radix 

system "MRS"  

 The "Mixed Radix System" is a positional number system with weights (1) (m1) 
(m1m2) (m1m2m3) (m1m2m3.....mn-1 ) . 
In this system X is written ( z1 z2  z3 ....  zn )MRS with 0 ≤ zi < mi. Note that the digit 
set have the same range as the RNS digits, but the digits themselves are different. 
The value of X = z1 + m1 * (z2 + m2 * (z3 + m3 * ( ..... ))). 

 


	"FA" function in CMOS
	Adders
	Multipliers
	Integer constants multiplications
	Dividers
	Floating-point addition
	Elementary Functions
	Bipartite Table
	Modular Arithmetic

