
Arithmetic operators Page 1

In the 1960's, the term "Op Art" was coined to describe the work of a growing group of abstract
painters. This movement was led by Vasarely.

Preliminary version

Do not distribute

Range:
From logic gate to combinatorial arithmetic operators.

Pedagogy:
Experiment, understand, improve.
Complement to the lecture notes.

Method:
Animation of the lecture note figures
Synthesis, simulation, diagrams, algorithms

Chapter 1 : Full-Adder in CMOS
Chapter 2 : Adders
Chapter 3 : Multipliers followed by "CS" Multipliers
Chapter 4 : Dividers followed by Fast dividers
Chapter 5 : Square root extractors followed by Fast square root extractors
Chapter 6 : Floating point Addition
Chapter 7 : Elementary functions exponential and logarithm followed by sine, cosine and arc tangent
Chapter 8 : Modular representation
The entire course is printable.

http://www.vasarely.org/intro.html

Arithmetic operators Page 2

"FA" function in CMOS

CMOS technology CMOS technology (Complementary Metal Oxide Semiconductor) offers two types
of transistors called "N-channel" and "P-channel". CMOS is currently the dominant
technology, at least for digital circuits. Its main advantage with respect to other
technologies is remarkable low power consumption. Indeed the CMOS circuits
exhibit a static current (or quiescent current) practically negligible.
In the figures below :

• A logic '1' is represented by the supply voltage Vdd (current values for Vdd
are +5V or +3,3V or +2,8V) and is colored in red.

• A logic '0' is connected to the ground voltage, or GND, is colored in blue.
• A connection neither to Vdd nor to GND is in yellow.

The N-channel transistor conducts when it gate is '1' and the P-channel transistor

conducts when its gate is '0' The keys change the transistor's outline.

CMOS inverter

The CMOS inverter is the most popular gate. It is composed of a N-channel and a
P-channel transistors connected through their drain. The figure below illustrates its
behavior.
The colors conventions are still red for logic '1' and blue for logic'0' An input
voltage in between causes a (mild) short-circuit by maintaining both transistors in
conduction. Such a voltage is colored in green. Click on input "a" to pass from '0' to
short (green), then to '1', then to short (green) again then back to '0' and so on.

Please notice that when the input is '0' or '1', only one transistor conducts.

Delay and We just have seen that the inverter dissipates no energy except during commutation.

Arithmetic operators Page 3

dissipation of the
CMOS inverter

Indeed if the input is '0' or '1' there is no conduction path between the power supply
Vdd and the ground GND. In normal conditions, the short circuit current,
(unavoidable during input commutation) lasts a very short time, typically a few
picosecondes.
The contribution of the parasitic capacitances charge or discharge is much more
significant. The transistor gate G forms a capacitance. Anyway this capacitance is
necessary to the field effect transistor working. Typically an input capacitance Cg
may be around 10 fF. If at time t1, this capacitance is connected to Vdd it is charged
(charge Q = Cg * Vdd). If later on, at time t2, the input is connected to GND the
capacitance is discharged. This discharge causes a current in the gate I = dQ/dt =
(Cg * Vdd)/(t2- t1).

Although the gate charge/discharge current is
Let us take an example :

• A modern microprocessor may contain 50 million transistors, meaning about
10 million gates. For each clock cycle, about 1% of those gate commutates.

• Clock frequency may reach 1 000 MHz (cycle time 1 ns) with a power
supply Vdd = 3.3V.

• The wires connecting the gates most of the time exhibit a parasitic
capacitance Cw much larger than the gate input capacitance Cg. Each a wire
commutates, all the attached capacitances must be either charged or
discharged. : Ctotal=Cg+Cw.

• An average wire capacitance may be around 1 pF

It is rather difficult to estimate the current due to the short-circuits, it is generally
small. On the contrary the current due to the commutation activity is important :
I = (active gates)* (Ctotal*Vdd) / dt = (1% * 1,000,000) * (1pF * 3.3V) /2ns = 16A

Finally the quiescent current due to the transistors leaks is quite small (for a
conventional circuitry). A static memory SRAM of 2K*8 bits in CMOS let leak
1 µA when not active.

• The figure below shows the current, or electrons flow in the CMOS inverter.
Whenever the input stays to '1' or to '0', either the N-channel of the P-channel
transistor is blocked and there is no current

• When the input changes, the grid of the two transistors must be charged or
discharged. This is illustrated by the flow of an electron (with a negative
charge) coming from GND or going to Vss.

• During the input change, the voltage passes through values that let both
transistors conduct, usually during a very short time. This short-circuit current is
illustrated by an electron flowing directly from GND to Vss.

• Finally the output is charged or discharged through the transistors. The output
capacitance stores two electrons .

Arithmetic operators Page 4

The power dissipated by a conventional CMOS circuit is consequently directly
proportional to the clock frequency.

Electrical
simulation of the
CMOS inverter

By clicking or dragging the mouse inside the chronogram below, you control the
input "a" voltage (plotted in red on the chronogram). The output voltage "y" is then
computed (plotted in blue). The current flowing through the N-channel transistor if
drawn in green and the current through the P-channel transistor is in yellow.
To suspend the applet and freeze the plot, just get the pointer out of the picture.

Basic NOR and
NAND gates

We are now studying some basic CMOS logic gate: a 2-input NOR, a 2-input
NAND and finally a full adder cell.
Colors conventions: They are the same as the inverter's one. Connections to Vdd
(logic '1') are drawn in red, connections to GND (logic '0') are in blue, and
connections to both Vdd and GND are in green. Finally connections neither to Vdd
nor to GND (floating) are in yellow. The two last colors have no logic image.

• Click close to an input changes its value and consequently the state of the
transistors attached to this input.

• The line in the truth table that corresponds to the input combination is
highlighted.

• Clicking in the truth table changes the input according to the highlighted
line.

Arithmetic operators Page 5

• Clicking the top of the table highlight the next line.

To simplify the applets, only logical '1' and '0' are allowed for the inputs. Therefore
it is not possible to input a value causing a short-circuit between Vdd and GND

Two-input NOR
gate

The two-input "NOR" gate is one of the simplest gates to illustrate the term
complementary : the P-channel transistors are connected in serial while the
N-channel transistors are in parallel. The P-channel and N-channel network are
complementary.

Notice that when none of the two P-channel transistors conduct, their common
connection is floating (yellow). This is a "non logic" value, however, it does not
cause trouble since it is not connected to any transistor gate.

The 2-input NAND

gate

In the two-input NAND gate, the P-channel transistors are connected in parallel
while the two N-channel transistors are in serial.

Arithmetic operators Page 6

Binary adder

The "Full Adder" cell (FA) is made of two connected complex gates. It realizes an
arithmetic equality: the weighted sum of the three inputs "x", "y" et "z" is always
equal to the weighted sum of the two outputs "c" et "s", in other words " x + y + z =
2*c + s ". This property can easily be checked thanks to the cell truth table.

 The P-channel transistor network is symmetrical to the N-channel network. A

circuit with this property is called "mirror". All the adders exhibit the property that
follows from an arithmetic link between the logic and arithmetic complements.
Finally the two circuit outputs are inverted. This follows from an electric property
of the CMOS technology, which allows easily non-increasing logical functions
only.

Arithmetic operators Page 7

Adders
"FA" cell

In the "FA" cell, the weighted sum of the output bits equals the weighted sum of
the output bits, i.e. " x + y + z = 2*c + s ". The three input bits share the same
weight. Let it be "1". The output bit "s" has also the same weight, while the output
bit "c" weight is double (2).
The "FA" cell conserves the sum just like the node conserves the electric current in
the "Kirchoff's current law".
The "FA" cell is also called "3 ⇒ 2 compressor" since it reduces the bit number
from 3 to 2 while preserving the numerical value.

Carry propagate

adder

The addition is by far the most common arithmetic operation in digital processors.
Addition is itself very frequent and is also the basis of most other arithmetic
operations like multiplication, division, square root extraction and elementary
functions.
All "consistent" "FA" cells assembling preserves the property: the weighed sum of the
output bits equals the weighted sum of the input bits.
To construct the adder S = A + B, the input bits come from the two numbers A and B
and the output bits form the number S.
The number of "FA" cells is the same as the number of bits of A and B.

Arithmetic operators Page 8

Performance of
the carry ripple

adder

 Let us assume that all the possible values for A and B are equiprobable and
independent:

 minimum average maximum
delay 0 log2(n) n
activity 0 3n / 4 n2 / 2

The maximum delay (worst case) is usually not acceptable. Let us examine the carry
propagation path that causes this delay.

Carry
propagation

path

For each "FA" cell, one of the three following case occurs:
• the carry ci+1 is set to '0', noted 'K', if ai = 0 and bi = 0
• the carry ci+1 is set to '1', noted 'G', if ai = 1 and bi = 1
• the carry ci+1 is propagated, noted 'P', if (ai = 0 and bi = 1) or (ai = 1 and bi = 0).

In this last case ci+1 = ci. This is the unfavorable case, materialized by an horizontal
arrow in the next applet.

 The three case 'K', 'G' and 'P' are encoded onto two 2 bits.

"BK" cell
(Brent & Kung

The "BK" cell computes the carry for two binary positions (two "FA" cells) or more
generally two blocks of "FA" cells.

Arithmetic operators Page 9

Sklansky's

adder
To design fast adders, binary trees of "BK" cells will first generate simultaneously all
the carries ci. The "Sklanski's adder" builds recursively 2-bit adders, 4-bit adders,
8-bit adders, 16-bit adder and so on by abutting each time two smaller adders. The
architecture is simple and regular, but may suffer from fan-out problems. Besides in
most of the cases it is possible to use less "BK" cells for the same delay.

Fast adders

(Brent & Kung)

In a fast adder, all the carries ci are computed simultaneously through a binary tree of
"BK" cells. To save on complexity, sharable intermediate results are computed once.
There is only one rule to construct the trees: every output with position i must be
connected to all inputs of position less than or equal to i by a tree of "BK" cells.
The rule simplicity usually allows for many correct constructions.

 In the "BK" cell tree, one may trade cells for delay, usually for the same addition the

less the delay, the more the "BK" cells.
• change the number of bits and/or the delay
• check that the trees follow the construction rule by clicking on a signal (a

line), notice that each signal is named by a pair of integers.
• simulate the carries computation by clicking on the keys .
• display the tree construction process by clicking the key "Details"
• display the adder VHDL description by clicking the key "VHDL". To save

the VHDL description, select it, then copy and paste it into a text editor.

Arithmetic operators Page 10

Kogge & Stone

adders
The binary trees of "BK" cells in the Kogge et Stone adders are not sharing.
Consequently the signal fan out is reduced to the minimum at the expense of more
"BK" cells. Since the delay increases with the fan-out, it is here a bit shorter.

Ling adder

In the Ling's adder, the "BK" trees give a primitive called "pseudo carry". It avoids
the computation of pi and gi, but on the other hand the carry has to be deduced from
the "pseudo carry". The trick is that this late computation is overlapped by the "BK"
cells delays. Consequently this adder is faster (a little bit) than the corresponding
"BK" adder. The VHDL synthesis from the applet takes advantage of that.

"CS" Cell

In the "CS" cell, the weighted sum of the outputs equals the weighted sum of the
inputs. In other words "a + b + c + d + e = 2*h + 2*g + f ". The "CS" cell is not only a
"5⇒ 3 counter", but moreover the output "h" is never dependent on the input "e".

Carry

propagation
The "CS" cell does not propagate the input carry "e" to the output "h". It makes "carry
propagation free" adders possible. The number of necessary "CS" cells is precisely

Arithmetic operators Page 11

free adder

given by the number of digits to be added.
On the other hand each digit is coded onto 2 bits and the digit value is the sum of those
2 bits. Therefore the possible digit values are '0', '1' and '2'.

 This notation system for integer numbers allows addition with a delay both short and

independent of the digits number. Yet this system demands about twice as many bits as
the standard binary notation for a comparable range. Consequently the same value may
have several representations. The vertical arrow next to the numbers value changes
the representation without changing the value. Among the representations, the one with
only '0' or '1' is always unique.

Arithmetic operators Page 12

Multipliers
Multiplier The multiplication comes second for frequency of use.

AND gate

An "AND" gate multiplies two bits. To multiply two n-bit numbers A and X, n2
"AND" gates are required. The weighted sum of the n2 gate outputs has indeed the
same value as P = A * X. However this set of bit is not a number, although its value
is computed as if it was a number.
Since A < 2n et X < 2n, the product P < 22n and therefore P is written with 2 n bits.

Unsigned
Multiplication

A regular structure of "AND" gates and "FA" cells with a "consistent" assembling
first produces the partial products and then reduces them to a number P. Since each
"FA" cell reduces the number of bits by exactly one (while preserving the sum), the
necessary number of "FA" cells is n2 – 2n (number of input bits – number of output
bits). Yet in the following applet there are more "FA" than necessary since some '0'
must also be reduced, to be precise just as many '0' as bits of X.

Fast Multipliers

Many approaches lead to a speed improvement:
• Divide the number of partial product bits using a higher radix.
• Use a tree structure for the "FA" cell reduction net.
• Use "CS" cell, with a reduction power two times the one of "FA" cell. Besides

this cell allow balanced binary trees (with some difficulties).

Booth recoding

Using a larger radix automatically reduces the multiplier X digits number.
Let have a look on radix 4, using two times as less digit as radix 2 for the same range.
The "Booth Code" ("BC" for short) is the minimally redundant symmetric radix-4
code. Digits values ∈ {-2, -1, -0, 0, 1, 2}. The 3-bit code picked below, known as
"sign/absolute-value", has 2 notations for zero.

Arithmetic operators Page 13

However the partial products are computed by a cell more complex than a simple
"AND" gate.

Cell of the
binary to "BC"

converter

Check whether you are acquainted with the logic of the "B2BC" cell, which convert a
"BC" digit into "sign/absolute-value" for the generation of partial products. The sum is
preserved, i.e. : -2*x3 + x2 + x1 = (-1)s * (2*M2 + M1) :

The conversion of X requires half as many "B2BC" as bits in X.

Multiplication of
A bits by one

"BC" digit

The multiplication by one "BC" digit ∈ {-2, -1, -0, 0, 1, 2} adds 2 bits on top of the bits
of A: one at left to get either A or 2A, another for the input carry in case of subtraction.
Since A is signed, its sign may have to be extended to the bit added at the left.

The multiplication requires as many "CASS" cells as bits in A plus 1.

Arithmetic operators Page 14

Partial products
generation

The multiplication first step generates from A and X a set of bits whose weighted sum
is the product P. For unsigned multiplication, P most significant bit is positive, while in
2's complement it is negative.

Partial products

reduction
The multiplication second step reduces the partial products from the preceding step
into two numbers while preserving the weighted sum. The sough after product is the
sum of those two numbers. The two numbers will be added during the third step.
The reduction trees synthesis follows the Dadda's algorithm, which assures the
minimum counter number. If on top of that we impose to reduce as late as (or as soon
as) possible then the solution is unique. The two binary number that have to be added
during the third step may also be seen a one number in "CS" notation (2 bits per
digit).

Example of

Wallace tree

The following trees reduce 82 partial products (for example the product of two 8-bit
unsigned integers). The "Wallace trees" reduce "as late as possible" (key "late" on the
preceding applet). The weighted sum of the 16 output bits equals the weighted sum of
the 64 input bits.

Arithmetic operators Page 15

Partial product

of "CS"
operands

Multiplier X and multiplicand A are now both in "CS" notation, i.e. with digits values
∈ { 0, 1, 2}. We want to generate a set of bits whose weighted sum equals A * X. To
make sure that we get bits (easy to add), it is necessary that either in A or in X every
digit '2' is preceded by a '0' at its left.

Arithmetic operators Page 16

Partial products
reduction

The partial product of two "CS" is a simple bit, reduced in the very same way as for
conventional fast multiplication.

"xCS" cell

The "xCS" cell computes the product of two digits a and x in "CS" notation.
Its arithmetic equation is "2 × b + 2 × y + i = a × x + z + c". Furthermore the outputs
"b" and "y" does not depend on "c" or "z" (no propagation).

Coding circuit
"CS2CS"

The transcoder "CS2CS" passes from "CS" to "CS" while making sure that in the
output a '2' is always preceded by a '0'.

This permits to generate the partial product of a multiplicand A by a multiplier X
both in "CS", with no overflow.

Coding circuit
"CS2BC"

The transcoder "CS2BC" passes from "CS" to "BC" , that is from the "carry-save"
code to the "Booth Code" (symmetric minimally redundant radix-4 code).

Arithmetic operators Page 17

Integer constants multiplications
Multiplication

of a variable by
integer

constants

The discrete Fourier transform, the discrete cosine transform or inverse, digital
filters, and so on, all contain the multiplication of a variable X by several constants
C1, C2, .. Cn. The factorization of those constants permits a dramatic reduction of the
number of additions/subtractions demanded by those multiplications. The following
applet computes
Y1 = X*C1, Y2 = X*C2, .. Yn = X*Cn.

Arithmetic operators Page 18

Dividers
Weighting a

bread loaf with
restoration and

without
restoration

We want to computer Q = A ÷ D. By a stroke of luck, we have available a scale, a
white bread whose weight is actually just A and a set of weights with values D, 2D,
4D, 8D, 2i*D respectively marked with 1, 2, 4, 8, ... 2i.
In fact D is a binary number, and 2i*D is simply obtained by shifting D. The scale
compares the sum of the weights on each of the two plates (≤≤≤≤ or >>>>).

Digit recurrence

division

Division is not frequent. Nevertheless since its execution delay is far larger than the
addition or multiplication's one, its contribution to the total execution time is
substantial, thus it is advisable to design dividers carefully.
Let say that we want Q = A ÷ D. This is equivalent to Q * D = A. Therefore if Q and
D are both written onto n bits, A is written onto 2n bits.
Let us build a series Qn, Qn-1, ... Q2, Q1, Q0 and a series Rn, Rn-1, ... R2, R1, R0 such
that the invariant A = Qj * D + Rj holds for all j.
The recurrence is :

• Qj-1 = Qj + qj-1 * 2j-1
• Rj-1 = Rj – qj-1

 * D * 2j-1
with initial conditions:

• Qn = 0
• Rn = A.

When the recurrence stops, we have Q = Q0 = Σi=0
n qi * 2i. R = R0 is the division

remainder.

Arithmetic operators Page 19

Conditional

subtractor
A "conditional subtractor" gives the following result S:
if R < D then S = R else S = R – D ;
Each "SC" cell computes both the result and the carry (borrow) of the subtraction
R – D. If the output carry value (leftmost) is '1' then S is assigned the result of the
subtraction else S is assigned the value of R. This last case, that seems to "restore"
R to its previous value before the subtraction is sometimes called "restoration",
from which the divider's name derives,

 The "conditional subtractor" function: if R < D then S = R else S = R – D, is

abstracted by its transfer function called "Robertson's diagram". To converge the
division imposes moreover that 0 ≤ R ≤ 2*D.

Arithmetic operators Page 20

"SC" cell of the

conditional
subtractor

Check whether you are acquainted with the logic of the "SC" cell :

if q = 0 then { co = majority (r, –d, ci) ; s = r ; } // identity

else { co = majority (r, –d, ci) ; s = r ⊕ –d ⊕ ci ; } // subtraction

Restoring
divider

A "restoring" divider consists in a series of shifts and attempted subtraction. It is
made of a regular net of conditional subtraction cell "SC" (subtraction or nothing
according to a carry out bit).

Arithmetic operators Page 21

Fast dividers

Three approaches may be combined to realize fast dividers:
• Utilization of carry-propagation-free addition/subtraction.
• Preconditioning of the dividend and the divisor in order to simplify the

division.
• Use of higher radixes to reduce the number of steps.

Robertson's

Diagram
To obtain a square Robertson's diagram, the successive partial remainders are
normalized: (Rj * b-j) where b is the numeration radix.
The black slopes represent the transfer function Rj ⇒ Rj-1, the red line is the identity
function, that passes to the following step. Pulling the mouse out of the pictures
suspends the animation. Clicking ends or restarts the animation. Clicking inside the
square sets another starting point.

Arithmetic operators Page 22

Radix 10 sounds familiar to us; it is given here just for illustration because it would not
be very efficient in binary.

"SRT" division
or carry

propagation free
division

To avoid the delay of the carry propagation, the following applet uses a stack of
borrow-save "BS" adders/subtractors. The "tail" cell, variant of the "SC" cell, is
controlled by two bits and executes one of the three following operations:

• an addition : Rj-1 = Rj + 2j-1 * D
• a subtraction: Rj-1 = Rj – 2j-1 * D
• an identity: Rj-1 = Rj

Arithmetic operators Page 23

 This operation is selected according to the sign of the partial remainders Rj. To always
know precisely this sign would require the examination of all the remainder's digits. It
is sufficient to check only three. Moreover, the position of the three digits is known: the
rightmost one is aligned with the most significant non-zero bits of D. To nail down this
digit position, D is "normalized", that is the position of its first "1" bit is fixed. For an
n-bit divider, 2n-2 –1 < D < 2n-1.

Conditional

carry-
propagation-free
adder/subtractor

A "conditional adder/subtractor" yields one among the three following outputs:
• if q = '-1' then S = R + D ;
• if q = '0' then S = R ;
• if q = '1' then S = R – D ;

Each "tail" cell executes a one-bit addition/subtraction. The carry is not propagated to
the "tail" cell at left but fed directly to the "tail" cell below (next line).

 The "conditional adder/subtractor" function sis abstracted by its transfer function

called "Robertson's diagram". To converge the division imposes moreover that

Arithmetic operators Page 24

-2*D ≤ R ≤ 2*D. If -D ≤ R ≤ 2 then S has two possible values.

"tail" cell of the
"SRT" divider

Check whether you are acquainted with the logic of the "tail" cell.
• if q = '-1' then 2*s1 – s0 = d0 + r0 ; // addition
• if q = '0' then 2*s1 – s0 = r0 ; // identity

• if q = '1' then 2*s1 – s0 = —d0 + r0 ; // subtraction

"head" cell of the
"SRT" divider

Let R̂ = r2* 4 + r1* 2 + r0 and Ŝ = s2* 4 + s1* 2 + s0 be the input and output values of
the "head" cell. Another output is one quotient digit q .

• if R̂ > 0 then { Ŝ = R̂ – 2 ; q = '1'; }

• if R̂ = 0 then { Ŝ = R̂ ; q = '0' ; }

• if R̂ < 0 then { Ŝ = R̂ + 1 ; q = '-1'; }

In a real division (without overflow), output s2 will always be 0. .

Arithmetic operators Page 25

"SRT" division
with divider

range reduction

The previous division is simple because the fist bit of the divider D is always "1". It
may be even further simplified if the two first bits d0 and d1 of the divider D are
reduced to "1 0" thanks to the following operation:
if d1 then { D = D * 3/4 ; A = A * 3/4 ; } .
This multiplication of A and D by the same constant does not alter the quotient Q, but
on the other hand the final remainder R is also multiplied.
For an n-bit divider, 2n-1 –1 < D < 2n-1 + 2n-2.

Head cell of the "SRT"
divider with range

reduction

Let R̂ = r1* 2 + r0 be the "head" cell input value.

• if R̂> 1 then { s0 = R̂ – 3 ; q = +1; }

Arithmetic operators Page 26

reduction

• if R̂= 1 then { s0 = 0 ; q = - 0 ; }

• if R̂= 0 then { s0 = 0 ; q = + 0 ; } or { s0 = -1 ; q = - 0 ; }

• if R̂= -1 then { s0 = -1 ; q = + 0 ; }

• if R̂< -1 then { s0 = R̂ + 2 ; q = -1 ; }
Here the difference between the two 0 representations for q : "- 0" and
"+ 0" matters.

Quotient

converter

The quotient Q is in redundant notation. The conversion into a conventional binary
representation is obtained thank to an adder (in fact a subtractor). Since the digits q
are obtained sequentially, most significant digit first, the conversion can be carried out
in parallel with the quotient digits obtaining. Let "ratio" be the "head" cell and "BK"
cell delays ratio. The higher the ratio, the simpler the converter.

Arithmetic operators Page 27

Divider design

The quotient Q digits are redundant and symmetrical. Therefore they are completely
defined by the radix and the maximum digit value. This applet let you choose the
quotient digit values and then the necessary number of bits from divider D and digit
from partial remainder R that must be taken into account for the selection of the
quotient digit value.

Arithmetic operators Page 28

The leftmost button moves to the next or to the previous step.

• 1- Robertson's diagram, plotting the next partial remainder according to the current partial remainder.
The boundaries take divisor D into account.

• 2- Symmetrical PD-plot for D in the range [1/2 , 1 [
• 3- Half PD-plot, upper part of the preceding one. The lower part is obtained by changing the sign.
• 4- Discretised half PD-plot. The number of D bits taken into account gives the abscissa discretisation,

while the number of P digits gives the ordinate discretization. Fixing this number of bits/digits will
determine whether a continuous frontier can separate the different values of q.

• 5- Half truth table for the half PD-plot.

Arithmetic operators Page 29

Square root extractor
Square root

extraction

The square-root extraction is relatively rare. Nevertheless, it is used among other
things for Euclidean distance and least square and is included in the floating-point
standard. The square-root operator is similar to the one for division, therefore most of
what we already know about division may apply as well to square root. Often the
same operator is used either for division or for extraction, collision of the two
operations being too rare to justify two operators, moreover each very costly.

Square root
extraction
algorithm

In the drawing below, the area of each red rectangle represents one bit weight. Only
the '1' are drawn. Therefore the total area is the weighted sum of all the bits.
The goal of the game is to find a square with an area equal to a given argument,
represented by the area of a blue circle, just by observing one test bit (≤≤≤≤ or >>>>) and by
clicking the square side bits. After convergence the sough after number is the side of
the square.

Square root
extractor

We want to get Q = A . This is equivalent to Q = A ÷ Q. Therefore if Q is written
on n bits, A is written on 2n bits.
Let us build a series Qn, Qn-1, ... Q2, Q1, Q0 and a series R2n, R2n-2, ... R4, R2, R0 such
that the invariant A = Qj * Qj + R2j holds for all j.
The recurrence is:

• Qj-1 = Qj + qj-1 * 2j-1
• R2j-2 = R2j – qj-1 * 2j-1 * (2 * Qj + 2j-1)

with the initial conditions:
• Qn = 0
• R2n = A.

When the recurrence ends, we have Q = Q0 = Σi=0
n qi * 2i.

R = R0 is the final remainder of the square root extraction.

Arithmetic operators Page 30

Realization The restoring square-root extractor utilizes the same conditional subtractor "SC"

cells as the non-restoring divider.

Fast square-root We want to get rid of the carry propagation by the use of the "BS" notation, the same

Arithmetic operators Page 31

extractor "head" and "tail" cell and architecture similar to the fast division. We bump into three
difficulties when trying to use the fast divider for extraction of square roots.

Square root

converter

The first difficulty is the root feedback. In a similar way as the division, the extractor
supplies a partial root Qj in "BS" notation. On the other hand, the "head" and "tail"
cell of the divider accepts a partial root in conventional binary representation. A
subtractor could be used to convert each Qj from "BS" to conventional, but that
would be both slow and expansive. The converter below use a 4-input, 2-output "trc"
cell, derived from the "BK" cell.

Square root
conversion cell

Check whether you are acquainted with the logic of "trc" cell, which convert from
"BS" notation into standard binary notation.
Input "si" is a bit from Qj, input "ci" indicates whether the carry propagates in this
cell's position. The carry is used in case of subtraction of 1. This signal corresponds
to the value 'P' of the "BK" cell.

• if qj = -1 then { so = si ⊕ ci ; co = 0 }//subtraction (sum - carry), carry killed
• if qj = 0 then { so = si ; co = ci } //sum unchanged, carry propagated
• if qj = 1 then { so = si ; co = 0 } //sum unchanged, carry killed

Arithmetic operators Page 32

Carry-
propagation free

square root

The fast square-root extractor utilizes the same cell as the fast divider to execute at
each step one of the three following arithmetic operations:

• if qj = '-1' then R2j-2 = R2j + 2j * Qj – 22j-1 // addition
• if qj = '0' then R2j-2 = R2j // identity
• if qj = '1' then R2j-2 = R2j – 2j * Qj – 22j-1 //subtraction

Each "head" cell selects the value of one qj thanks to the sign of an approximate 2j
of the current remainder R2j.
The second difficulty with respect to division lies in the subtraction of 22j-1 whenever
qj = -1 or qj = 1. For the bit subtraction, a negative input of the least significant tail
cell of each line is used.
The third difficulty lies in the range of Q. Indeed each Qj must start with a "1" in the
most significant position (implicit). This condition is fulfilled if the two most
significant bits of the radicand A are not both zero. This "1" is subtracted from A in
the first line thanks to a negative "head" input

Arithmetic operators Page 33

Floating-point addition
Floating-point

numbers format
The binary code of floating point real numbers is composed of three fields. The sign
S (1 bit), the exponent E (8 bits) and the mantissa M, or significand (23 bits).
The number value is (-1)S * 2(E - 127) * (1 + M / 8388608) . However if E = 0, the
number value is (-1)S * 2(-126) * (M / 8388608) and if E = 255, the value is infinite.
Check your understanding of this format by entering the code (32 bits) of the
proposed numbers.

Addition and

subtraction
Since real numbers are coded as "sign/absolute-value", toggling the sign-bit inverses
the sign. Consequently the same operator performs as well either addition or
subtraction according to the operand's sign.
Addition/subtraction of two real numbers S = A + B is more complex than
multiplication or division or real numbers.
Floating-point addition progresses in 4 steps:

• Mantissa alignment if A and B exponents are different,
• Addition/subtraction of the aligned mantissas,
• Postnormalization of the mantissas sum S if not already normalized,
• Rounding of sum S.

The alignment step yields a guard bit and a sticky bit for the rounding step .

Arithmetic operators Page 34

Adder/

subtractor

A floating-point adder is made of the following blocks:
Bloc 1: outputs the larger of the two exponents (8 bits), outputs the exponent distance
(5 bits), outputs the implicit bit of both operands.
Bloc 2: outputs at left the smaller operand mantissa (23 bits), outputs at right the
larger operand mantissa (23 bits).
Shifter 1: shifts to the right the smaller operand mantissa, adds the guard bit and the
sticky bit, totaling 26 bits.
Complementer: on request, does the logic complement for a subtraction.
Adder 1: adds the two inputs and the carry in. outputs the rounded sum and a carry
out.
Zero-leading-counter: the ZLC output gives the number of leading '0' if the result is
not normalized, and "1" otherwise.
Shifter 2: shifts to the left (ZLC – 1) positions. The fist bit is lost (implicit '1').
Adder 2: subtracts (ZLC – 1) from the greater of the two exponents.

Real numbers

fast addition
A floating-point numbers addition requires some integer additions, parametrised
shifts (to the right for alignment, to the left for renormalization) and a counting of the
leading zeroes of the result. Addition can be completed with delay log2(n).
Parametrised shift delay is log2(n) as well.

Arithmetic operators Page 35

Zero leading
counter (ZLC)

A binary tree counts up the number of '0' in the most significant positions by
dichotomy. If the size of the sub-strings is a power of two, then there is no need for
adders but multiplexors can be used instead. Indeed only the size of the left subsrting
has to be a power of two. The substring at right must simply be shorter than or of the
same size as the left subsrting.

Zero leading
counter cell

This cell combines the number of leading '0' of two 16-bit strings to obtain the
number of leading '0' of the concatenation of the two strings.

. if X < 16 then S = X else S = 16 + Y

Arithmetic operators Page 36

Zero leading
prediction

From the mantissas A and B, one can construct in constant time a string P with the
same number of leading zeroes, but for at most one, as the result of the difference
D = A – B with no need to wait for the subtraction completion. When fed to a ZLC,
this string predicts the number of positions required by the shifter. If the result of the
shift still exhibits a leading zero, then a shift of one more position is necessary to
normalize the result. Otherwise the shifted value is normalized.
The prediction is valid if A is normalized and B less than or equal to A. This is the
always the case in a significand subtraction. The leading zero(es) result from a carry
string 'P'* 'G' 'K'* , made up with a number (possibly null) of 'P' followed by an
unique 'G' followed by a number (possibly null) of 'K' . The predictor cell outputs a
'0' for every pair of symbols in: 'P' 'P' ; 'P' 'G' ; 'G' 'K' et 'K' 'K' and outputs a '1' for
every other pair.
This predictor does not take into account the carry propagation that may lead to an
error of one position in the predicted bitstring. Since only one bit in 'P'* 'G' 'K'*
might be incorrectly predicted, the error is tolerable.

Zero leading
prediction

adjustment

The prediction is incorrect only if the carry string starts with 'P'* 'G' 'K'* 'P'* 'K'.
The following circuit output 'Y' whenever the prediction is incorrect, in other words
too small by one.

 Z indicates a string 'K'* 'P'*

Arithmetic operators Page 37

Q indicates a string 'P'* 'G' 'K'* 'P'* (containing only one 'G')
N indicates a string starting with 'P'* 'K'
Y indicates a string starting with 'P'* 'G' 'K'* 'P'* 'K', that is Q followed by N.
U indicates any other string.

Prediction cell The leading '0' prediction cell output a '1' at the end of the string 'P'* 'G' 'K'* and '0'
inside the string (and don’t care neither inside nor at the end). Check whether you are
acquainted with the truth table of this cell.

Arithmetic operators Page 38

Elementary Functions
Elementary

functions
Realization of operators for Exponential, Logarithm, Sine, Cosine, arcTangent
relying on addition/subtraction and fixed shift. The cost and delay of fixed shits are
negligible when they are wired.

From a bread
loaf weighting to

the exponential
computation

We want to compute exp (Y), we have available a scale, a white bread whose
weight is actually just Y and a set of weights with values log(1 + 2-i). The
weighting gives the sought-after result in the form of a product of rationals
(2i + 1) / 2i . The multiplication by each rational amount to a mere addition and
shift.
A weight put down on the right plate (the bread's one) has it value changed into
-log(1 – 2-i). Thank to this trick, the weighting can be restoring, non-restoring or
"SRT".

Carry
propagation free

division for
exponential

The scale is replaced by a "SRT" divider whose "Robertson's diagram" is drawn
below

 The applet gives all the successive partial remainders.

Arithmetic operators Page 39

The dividend Y (top) must be within] -1 , +1 [.

"SRT" divider
for exponential

The constants log(1 + 2-i) and -log(1 – 2-i) fed into the "tail" cells are wired . Thus
there are 4 variants for the cell according to the values of the two bits.

Operations of a
slice of "SRT"

divider for
exponential

The value of each qj is selected by a "head" cell according to R̂j , the weighted
sum of the two most significant digits r1 and r0 of the representation of Rj.

• if R̂j > 0 then { qj = '1' ; s0 = R̂j –2 ; Rj+1 = Rj + log(1 – 2-j) } // subtraction

• if R̂j = 0 or R̂j = -1 then { qj = '0' ; s0 = R̂j ; Rj+1 = Rj + 0 } // identity

• if R̂j < -1 then { qj = '-1' ; s0 = R̂j + 2 ; Rj+1 = Rj + log(1 + 2-j) } //addition

Suite de

multiplications
The stack of conditional multipliers by 1 or by (1 + 2-i) or by (1 – 2-i) needs only
one final carry propagation thanks to "CS" adders and wired shifts.
Additions are truncated to 2 n digits, of which two before the point. The third most
significant digit (fully left) is the sign. Despite the fact that all partial results are
positive, the execution of subtraction in "CS" sometimes brings about an unresolved
sign. The final result (bottom line) must be converted from "CS" to binary by one

Arithmetic operators Page 40

addition (with carry propagation).
La fenêtre du bas permet de comparer le produit "vraie" des multiplications (sans
troncature) au produit avec troncature.

Numerical
example of

division

The tables below shows the partial remainders ("BS") and the partial products ("CS").
The windows at the tables bottom gives the actual value of the function, the product
of rationals (1 + 2-i) or (1 - 2-i).and finally the truncated product of rationals to
exhibit the errors introduced by the method

Arithmetic operators Page 41

Arithmetic operators Page 42

The series of rational products is given by the concatenation of the quotient Q
(left) and the final remainder R (bottom). Actually for high values of i, 2i

*

log(1 + 2-i) becomes very close to 1. If the divider is close 1, then the remainder
becomes an acceptable approximation for the quotient.

Range extension The previous circuit works with Y in the range] -1 , +1 [. For the exponential of any

number Y, Y is written Y = Q*log(8) + R, where Q is the integer quotient of the
division of Y by log(8) and R < log(8) < 1. Then exp(Y) = 8Q * exp(R) = 23Q *
exp(R). Since exp(R) < 1, it is acceptable by the above circuit.

Logarithm and

exponential

The same operator computes either the Logarithm or the Exponential with
additions/subtractions (it is the same operation), shifts and constants. The constants
are log(1 + 2-i) and -log (1 – 2-i) and the digits ∈ { '-1' , '0' , '1' }. The slack selection
of the digit value, which unfortunately will be lacking later on for Sine and Cosine,
allows to avoid all but one carry propagation

Arithmetic operators Page 43

From a bread

loaf weighting to
sine and cosine

We want to compute sine(A) and/or cosine (A); we have available a scale, a white
bread whose weight is actually just A and a set of weights with values arctg (2-i). All
the weights must go on the scale plates, either side.

Arithmetic operators Page 44

Sine and Cosine

computation
Let Vi be a vector, with extremity (xi, yi). A "pseudoRotation" of an angle arctg (2-i)
applied to Vi gives Vi+1 : xi+1 = xi – yi * 2-i and yi+1 = yi + xi * 2-i. After the angle A is
broken down into a weighted sum of arctg (2-i), a series of "pseudoRotations" yields
the coordinates of the vector of angle A, those coordinate are the values sin(A) and
cos(A) searched for. All the "pseudoRotations" require only addition/subtraction and
shift.

The constant k Each "pseudoRotation" of the angle arctg(2-i) brings about a vector lengthening of

1+2-2i, for it is not exactly a rotation but rather a displacement of the vector extremity
on a perpendicular vector. In order to compensate in advance the product of all the
lengthening of a series of "pseudoRotations", the starting vector is (x0 = k , y0 = 0) .
For n large enough, k is approximately equal to 0,60725. In order for k to be a constant,
the representation with arctg(2-i) use digits ∈ { '-1' , '1' }.

Angle
decomposition

What is the domain of the angles A = Σi=0
n ai * arctg (2-i) and what precision can be

expected from this notation ? A is the angle value to reach, and T is the value attained
by the series of pseudoRotations. To change the value of A, click in the figure. All
values are expressed in radiant. The key "Mise à zéro" allow to 'manually' control the
convergence into the notation arctg (2-i) by clicking the digit values.

Arithmetic operators Page 45

"Robertson's
diagram" for

CORDIC

The "Robertson's diagram" shows that the iteration to convert into basis arctan(2-i)
may be as follows:
 if R ≥ 0 then { S = R – arctan(2-i) ; ai = '1' } else { S = R + arctan(2-i) ; ai = '-1' }.

"non restoring"
divider for

CORDIC

The angle Y (divider's top) is in the interval [-1.743.. +1.743...]. The constant bits at
"AS" cells inputs are wired. The operations are selected according to the previous
partial remainder R or by y0 for the first iteration ..

Arithmetic operators Page 46

"double

rotation"
CORDIC "
Robertson's

Diagramme"

It uses an approximation R̂ of the partial remainder R to determine the rotation:

if R̂ > 0 then { ai = '1' }; if R̂ = 0 then { ai = '0' }; if R̂ < 0 then { ai = '-1' }
The diagram shows that the approximation can be coarse.

"double
rotation"
CORDIC

This divider uses the same "head" and "tail" cells as the "SRT" divider. To put up
with the '0', the angle is first halved then the "pseudoRotation" are doubled. Thanks
to that, the lengthening stays the same (2* 1+ 4-i) whatever the value of ai .

• if ai= '-1' then { rotation of (arctan(2-i)) then rotation of (arctan(2-i)) };
• if ai = '0' then { rotation of (arctan(2-i)) then rotation of (-arctan(2-i)) } ;
• if ai = '1' then { rotation of (-arctan(2-i)) then rotation of (-arctan(2-i)) } ;

Arithmetic operators Page 47

"double

division"
CORDIC

The "double rotation" has a cost: it doubles the rotation hardware and probably the
delay as well. The "double division" is more ingenious. It makes use of two dividers
running simultaneously with slightly different "head" cells..
"head" of divider1

if R̂ > 0 then { Ŝ = R̂– 2 ; ai = '1' ; }

if R̂ ≤ 0 then { Ŝ = R̂+1 ; ai = '-1' ; }

 "head" of divider2

 if R̂ ≥ 0 then { Ŝ = R̂– 2 ; ai = '1' ; }

 if R̂ < 0 then { Ŝ = R̂+1 ; ai = '-1' ; }
It is clear that whenever = 0, divider1 speculates that R < 0 and divider2 that R > 0.
At most one of them will eventually overflow, before the occurrence of the next
 = 0. An overflow indicates that the correct output is the other divider's one.
Only divider1 is shown by the following applet.

Arithmetic operators Page 48

 The two heads detect the overflow to produce together a 3-valued indicator :
'K' the output digit is correct (either divider1 and divider2 give the same value, or
divider2 overflows), 'G' the output digit is incorrect and must be complemented
(divider1 overflows), 'P' propagate the next indicator's value (values differ, no
overflow). Whenever a divider overflows, it carries on with the other divider's partial
remainder R.
The propagation is similar to the carry propagation of addition..

Numerical

application
The "Nb. bits" selects simultaneously the number of bits of the calculations and the
number of steps. Clicking the vertical arrow changes the representation. Again, the
key "Mise à zéro" allows to control 'manually' the convergence.

Arithmetic operators Page 49

Bipartite Table

The values of a function can be precomputed and stored into a table (a ROM).
Nevertheless, the table size grows very quickly with the precision. This practically
limits this approach. For continuous functions, one may store only a few values in a
table named "TIV", and the function slope, in order to interpolate within the stored
points, in another table named "TO".
In the applet below, start by selecting a function, then fix WI and then explore
solutions varying the values of TIV and TO around 2/3 of WI.
Adding a function to the list implies the modification of the source.

Arithmetic operators Page 50

Modular Arithmetic
Modular

representation

Let be the set { m1, m2, m3, ... mn} of n integer constant pairwise prime called moduli
and let M be the product of this constants, M = m1* m2* m3* ... * mn.
Let A be an integer smaller than M.
A can be written (a1 a2 a3 an)RNS where ai = A modulo mi (residue).
This definition tells how to get the ai from A. On the other hand it is possible to get
back A from the ai using another set of precomputed constants { im1, im2, im3, ... imn}
called inverse modulo M of the former.
A =  a1 * im1 + a2 * im2 + a3 * im3 + an * imn  modulo M

This result is proved in the "Chinese remainder theorem". Check if you are acquainted
with this representation by converting A from "decimal to RNS" or from "RNS to
decimal".

Modular
addition

 Modular addition uses n small adders computing simultaneously all the sums
si =  ai + bi  modulo mi.

Modular

Subtraction
 Modular subtraction uses n small subtractors computing simultaneously all the
differences di =  ai + mi - bi  modulo mi.

Arithmetic operators Page 51

Modular

Multiplication
Modular multiplication uses n small multipliers computing simultaneously all the
products pi =  ai * bi  modulo mi.

Conversion into

RNS
The conversion of a binary variable A into RNS consists in finding all ai = A modulo
mi i.e. the remainders of the division of A by mi. But the division is not the best
approach.

• the rest modulo 2n is immediate,
• the rest modulo 2n – 1 requires only additions,
• the rest modulo 2n + 1 requires some additions and some subtractions.

In other cases we resort to the one of the two last expressions with the smallest n.
Trees of adders (Wallace trees) reduce A to the sum of two n-bit numbers while
respecting the rest modulo mi.
The graphical conventions are the same as for partial products reduction .

Arithmetic operators Page 52

Example of

modulo
reduction

The following applet reduces 64 bits into 6 bits whereas preserving the value
modulo 63 (63 = 26 – 1) . At the output, zero has two notations: either "000 000" or
"111 111"

Arithmetic operators Page 53

modulo 2n–1
adder

The "end-around-carry" adder offers two advantages : it works fine modulo 2n – 1
and is simple, and two disadvantages as well : it is slow and difficult to test, both for
the same raison i.e. for the value zero are two stable cases.
An adder delivers spontaneously a modulo 2n sum. With a slight modification, the
Sklanski's adder delivers a modulo 2n – 1 sum S.

• if A + B < 2n – 1 then S = A + B ;
• if A + B ≥ 2n – 1 then S =  A + B + 1  modulo 2 n

The condition is given by the carry out cn: if cn = 'K' then A + B < 2n – 1, if cn = 'P'
then A + B = 2n – 1, if cn = 'G' then A + B > 2n – 1. The "feed-back" signal that
controls the "+1" is 'K' if cn = 'K' and 'G' otherwise.

modulo 2n +1

adder
We now want an adder modulo 2n + 1.

• if A + B < 2n + 1 then S = A + B ;
• if A + B ≥ 2n + 1 then S =  A + B – 1  modulo 2 n

The previous adder is used with two numbers X and Y such that X + Y = A + B + 2n
– 1. A row of HA' cells carries on this addition propagation-free. HA' is the dual of
HA.

• if X + Y < 2n+1 then S = X + Y + 1  modulo 2n ;
• if X + Y ≥ 2n+1 then S =  X + Y  modulo 2n ;

The "feed-back" signal that controls the "+1" is the "nand" of xn and (cn = 'K'). The
result bit sn is the "and" of xn and (cn = 'P').

Arithmetic operators Page 54

Conversion

from "RNS"
into mixed-radix

system "MRS"

 The "Mixed Radix System" is a positional number system with weights (1) (m1)
(m1m2) (m1m2m3) (m1m2m3.....mn-1) .
In this system X is written (z1 z2 z3 zn)MRS with 0 ≤ zi < mi. Note that the digit
set have the same range as the RNS digits, but the digits themselves are different.
The value of X = z1 + m1 * (z2 + m2 * (z3 + m3 * (.....))).

	"FA" function in CMOS
	Adders
	Multipliers
	Integer constants multiplications
	Dividers
	Floating-point addition
	Elementary Functions
	Bipartite Table
	Modular Arithmetic

