Division Matérielle

Alain GUYOT

Concurrent Integrated Systems **TIMA**

(33) 04 76 57 46 16

Alain.Guyot@imag.fr

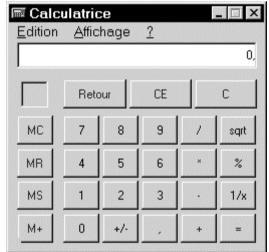
http://tima-cmp.imag.fr/Homepages/guyot

Techniques de l'Informatique et de la Microélectronique pour l'Architecture. Unité associée au C.N.R.S. n° B0706

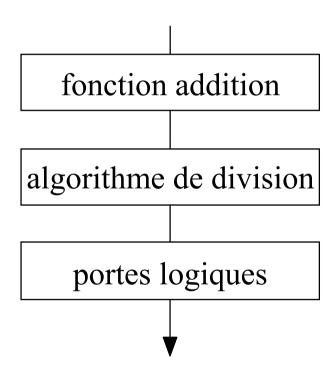
But Réaliser des diviseurs combinatoires rapides

Problème

- Propagation de la retenue

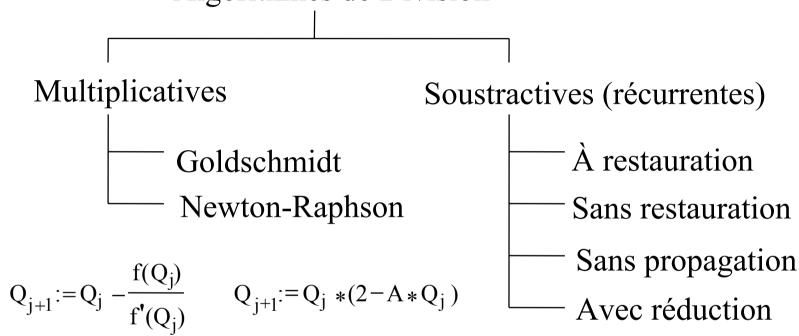


Moyen
Utiliser des additionneurs
sans propagation de retenue



Généralités / Plan

Algorithmes de Division



La division de deux entier n'est en général pas un entier, en conséquence on introduit les rationnels (virgule fixe)

$$A = \sum_{i=0}^{n-1} a_i 2^{-i} = a_0, a_1 a_2 a_3 a_4 \dots a_{n-2} a_{n-1} -A = \overline{A} + 2^{-n+1}$$

Division récurrente: principes

```
On veut calculer Q = \frac{A}{D}.
On va construire une suite Q<sub>0</sub>, Q<sub>1</sub>, Q<sub>2</sub>,... Q<sub>n</sub> et une suite R<sub>0</sub>, R<sub>1</sub>, R<sub>2</sub>,... R<sub>n</sub>
telles que l'invariant A = Q_j * D + R_j soit respecté \forall j.
                           Q_{j+1} = Q_j + q_{j+1} * 2^{-j-1}
La récurrence est :
                                   R_{i+1} = R_i - q_{i+1} * D * 2^{-j-1}
avec comme état initial:
                                    \hat{R}_0 = A
Quand on s'arrête, on a Q _n = \sum_{i=0}^n q_i * 2^{-i}
On impose que le choix des q<sub>j</sub> soit tel que R_j \to 0 quand j \to \infty.
On aura donc une approximation Q_n de Q telle que Q_n = \frac{A - R_n}{D} avec R_n petit.
Comme la valeur de Q est bornée par l'implémentation ( |Q| < 2),
il faut que - 2 * D < A < 2 * D ( D doit être suffisamment grand )
```

Exemple de division récurrente en décimal

On veut calculer $Q = \frac{22}{7}$.

Calcul des restes	Valeurs	Calcul des quotients	Valeurs
$R_0 := 22$	22	$Q_0 := 0$	
$R_1 := R_0 - 3 * D$	01,0	$Q_1 := Q_0 + 3$	3
$R_2 := R_1 - 0.1 * D$	00,30	$Q_2 := Q_1 + 0,1$	3,1
$R_3 := R_2 - 0.04 * D$	00,020	$Q_3 := Q_2 + 0.04$	3,14
$R_4 := R_3 - 0.002 * D$	00,0060	$Q_4 := Q_3 + 0,002$	3,142
$R_5 := R_4 - 0.0008 * D$	00,00040	$Q_5 := Q_4 + 0,0008$	3,1428
$R_6 := R_5 - 0.00005 * D$	00,000050	$Q_6 := Q_5 + 0,00005$	3,14285

On vérifie que
$$22 - 0.3 = 21.7 = 7 * 3.1$$

 $22 - 0.02 = 21.98 = 7 * 3.14$
 $22 - 0.006 = 21.994 = 7 * 3.142$
 $22 - 0.0004 = 21.9996 = 7 * 3.1428$
 $22 - 0.00005 = 21.99995 = 7 * 3.14285$

Exemple de division récurrente en binaire

On veut calculer Q = $\frac{10110}{111}$.

L'algorithme de division en base 2 est une transposition de l'algorithme en base 10.

Calcul des restes	Valeurs reste	Calcul des quotients	Valeurs du	Valeurs du
$R_0 := 10110$	10110	$Q_0 := 0$	quotient	quotient
$R_1 := R_0 - 10 * D$	01000	$Q_1 := Q_0 + 10$	10	2
$R_2 := R_1 - 1 * D$	00001	$Q_2 := Q_1 + 1$	11	3
$R_3 := R_2 - 0.0 * D$	00001,0	$Q_3 := Q_2 + 0.0$	11,0	3
$R_4 := R_3 - 0.00 * D$	00001,00	$Q_4 := Q_3 + 0.00$	11,00	3
$R_5 := R_4 - 0.001 * D$	00000,001	$Q_5 := Q_4 + 0,001$	11,001	3,125
$R_6 := R_5 - 0,0000 * D$	00000,0010	$Q_6 := Q_5 + 0,0000$	11,0010	3,125
$R_7 := R_6 - 0.00000 * D$	00000,00100	$Q_7 := Q_6 + 0,00000$	11,00100	3,125
$R_8 := R_7 - 0.000001 * D$	00000,000001	$Q_8 := Q_7 + 0,000001$	11,001001	3,14 <i>0625</i>

3,142 *578125*

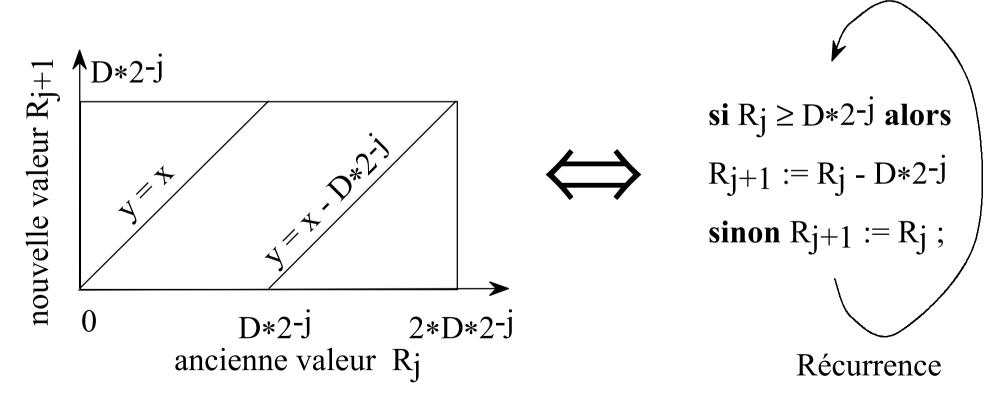
3,1428 22265

3,14285*2783*

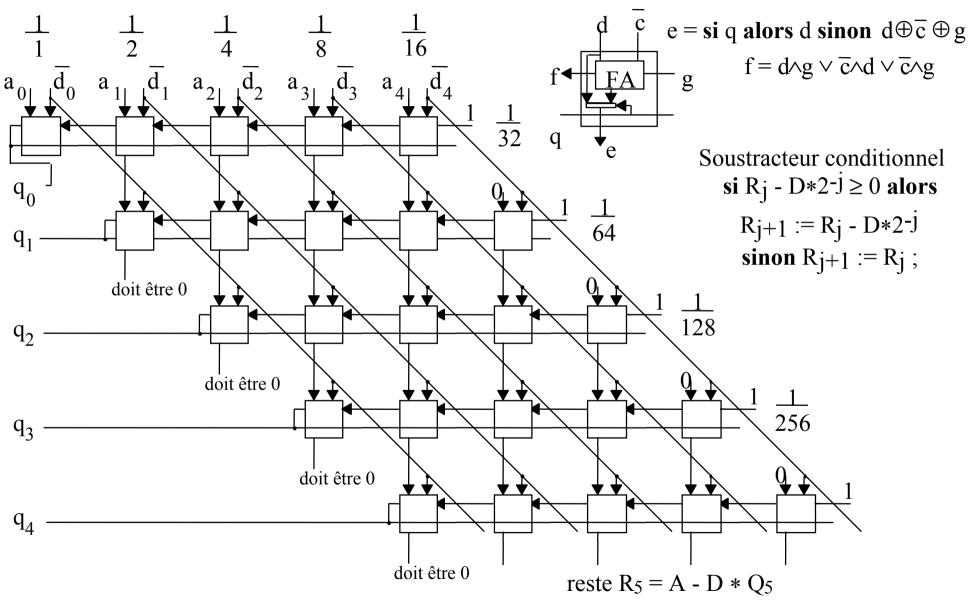
Diagramme de « Robertson »

(diviseur naïf ou à restauration)

Invariant: $0 \le R_j \le 2*D*2-j$



Diviseur naïf (à restauration)

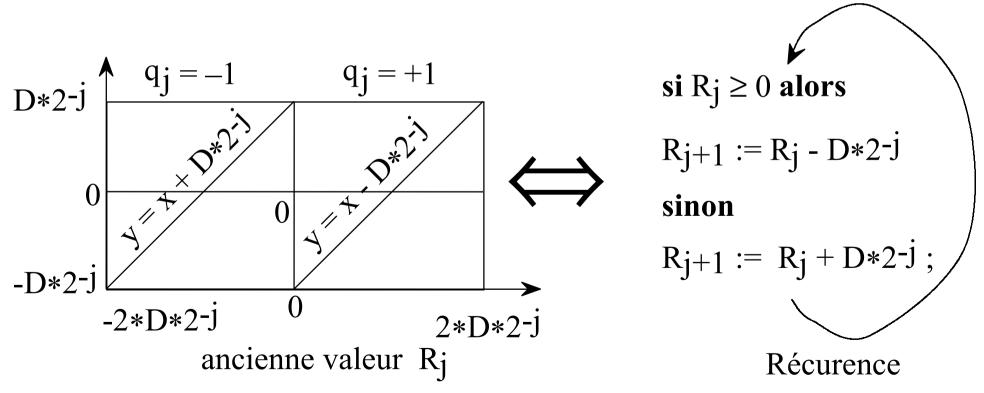


Exemple de division récurrente sans restauration

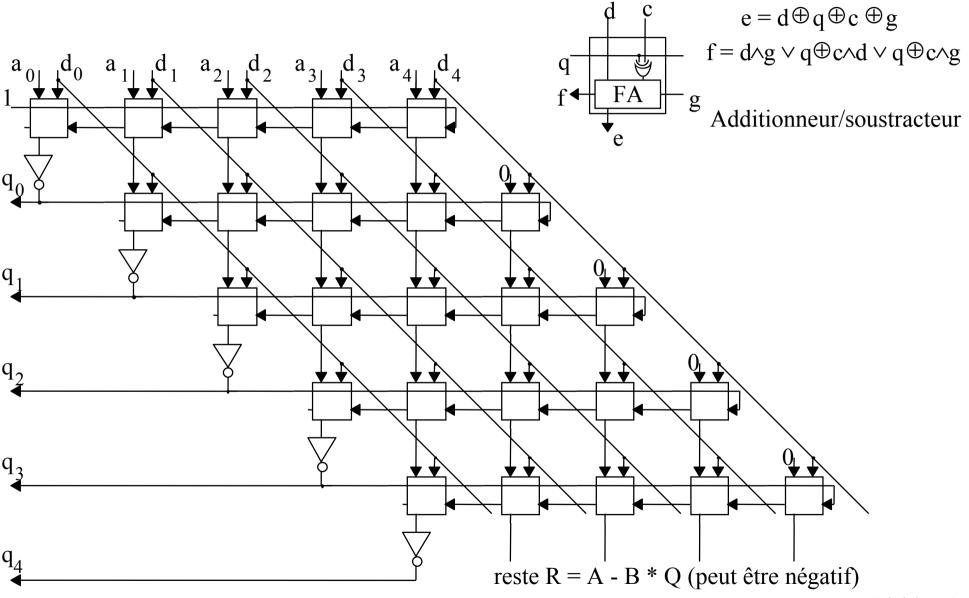
Calcul des restes	Valeurs du res	te (signé)	Calcul des quotients	Valeurs
$R_0 := 10110$	10110	22	$Q_0 := 0$	
$R_1 := R_0 - 10 * D$	$\overline{0}1000$	8	$Q_1 := Q_0 + 10$	10
$R_2 := R_1 - 1 * D$	00001	1	$Q_2 := Q_1 + 1$	11
$R_3 := R_2 - 0.1 * D$	00101,1	-2,5	$Q_3 := Q_2 + 0,1$	11,1
$R_4 := R_3 + 0.01 * D$	00011,01	-0,75	$Q_4 := Q_3 - 0.01$	11,01
$R_5 := R_4 + 0,001 * D$	$0000\overline{0},001$	0,125	$Q_5 := Q_4 - 0,001$	11,001
$R_6 := R_5 - 0.0001 * D$	00000, 1011	-0,3125	$Q_6 := Q_5 + 0,0001$	11,0011
$R_7 := R_6 + 0,00001 * D$	00000,01101	-0,09375	$Q_7 := Q_6 - 0,00001$	11,00101
$R_8 := R_7 + 0,000001 * D$	$00000,00\overline{0}001$	0,015625	$Q_8 := Q_7 - 0.000001$	11,001001

Division sans restauration

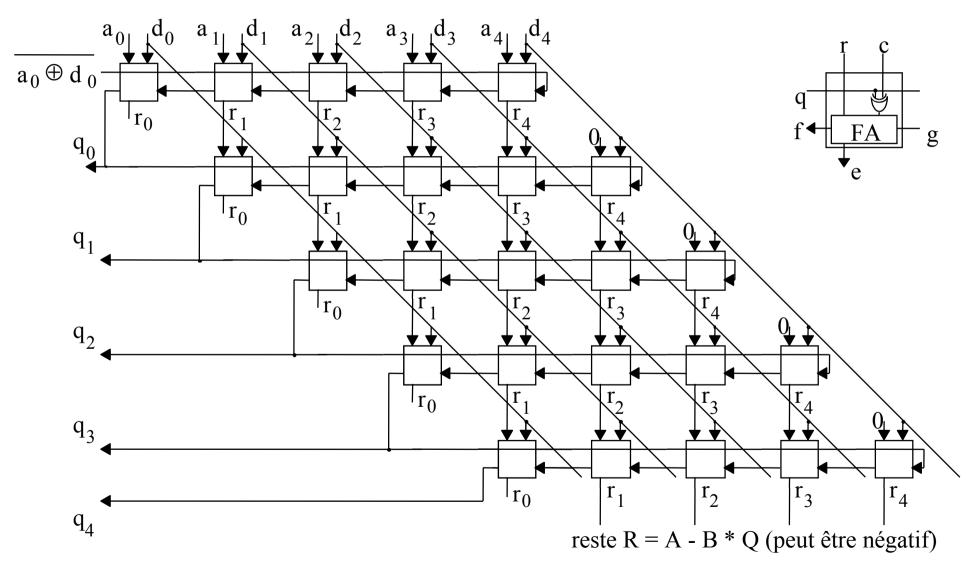
Invariant: $-2*D*2-j \le R_j \le 2*D*2-j$



Diviseur sans restauration (2)



Division signée



Conversion du quotient

Le quotient Q s'écrit $Q = \sum_{i=0}^{n-1} q_i * 2^{-i}$ avec $q_i \in \{-1,+1\}$. Pour le convertir on le réécrit:

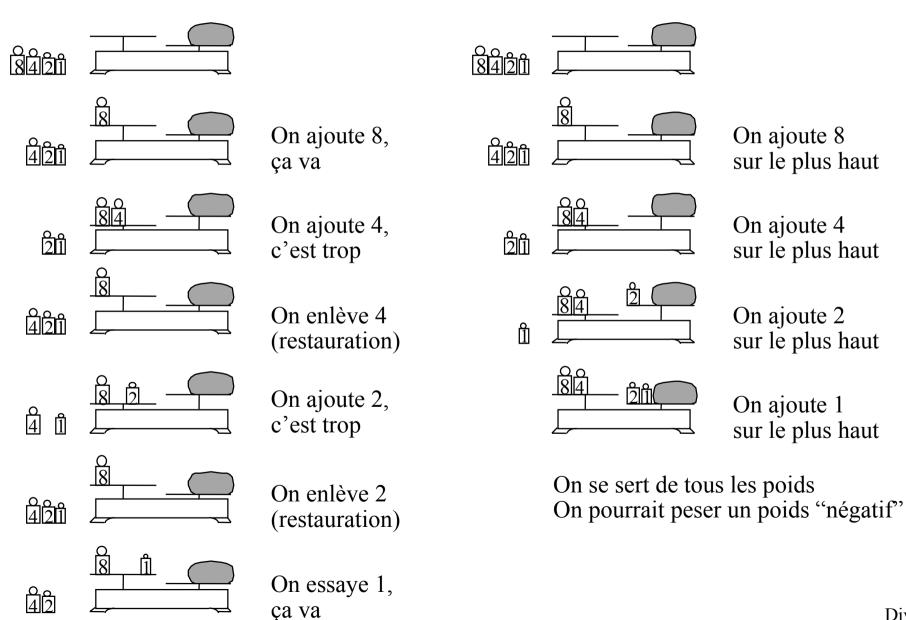
$$\begin{split} Q &= \sum_{i=0}^{n-1} q_i * 2^{-i} = \sum_{i=0}^{n-1} q_i * 2^{-i} + \sum_{i=0}^{n-1} 2^{-i} - \sum_{i=0}^{n-1} 2^{-i} \\ &= \sum_{i=0}^{n-1} (q_i + 1) * 2^{-i} - \sum_{i=0}^{n-1} 2^{-i} \\ &= 2 * \sum_{i=0}^{n-1} p_i * 2^{-i} - 2 + 2^{-n} \\ &= 2 * \left(p_0 - 1 + \sum_{i=1}^{n-1} p_i * 2^{-i} + 2^{-n-1} \right) \\ &= 2 * \left(-\overline{p_0} * 2^0 + \sum_{i=1}^{n-1} p_i * 2^{-i} + 2^{-n-1} \right) \end{split}$$
 Ceci est la notation en complément à 2
$$p_i \in \{0,1\}$$

La conversion ne change pas la <u>valeur</u> de Q mais seulement sa <u>représentation</u> sous forme de chaîne de bits

Remarque: si on connaît a priori le signe du résultat, l'inverseur n'est même pas nécessaire

Pesée à restauration

Pesée sans restauration



Le "BS", mais c'est très simple

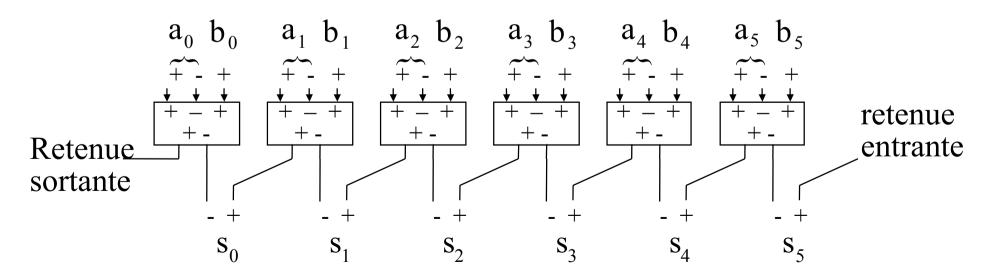
$$A = A^{+} - A^{-} = \sum_{i=0}^{n-1} a_{i}^{+} 2^{-i} - \sum_{i=0}^{n-1} a_{i}^{-} 2^{-i} = \sum_{i=0}^{n-1} (a_{i}^{+} - a_{i}^{-}) 2^{-i} = \sum_{i=0}^{n-1} a_{i} 2^{-i}$$

$$a_{i}^{+}, a_{i}^{-} \in \{0, 1\}$$

$$a_{i} \in \{-1, 0, 1\}$$

Addition hybride S = A + B

$$a_i, s_i \in \{-1, 0, 1\} \quad b_i \in \{0, 1\}$$



Avec ou Sans propagation

Type d'opération

Propagation de Retenue

Additionner de deux nombres en BS \cdots $(A + B) \Rightarrow S$	Avec	Sans
Déterminer le signe d'un nombre en BS \cdots $(0001 \ge 0?)$	Avec	Sans
Forcer à 0 les poids forts d'un nombre petit $0 \Rightarrow 0 $	Avec	Sans
Convertir de notation BS à Standard $0.10\overline{1} \Rightarrow 0.011$	Avec	Sans

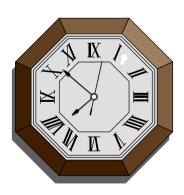
¿¿ Utilité du BS??

iii Comment utiliser cette er « en sur é de notation???

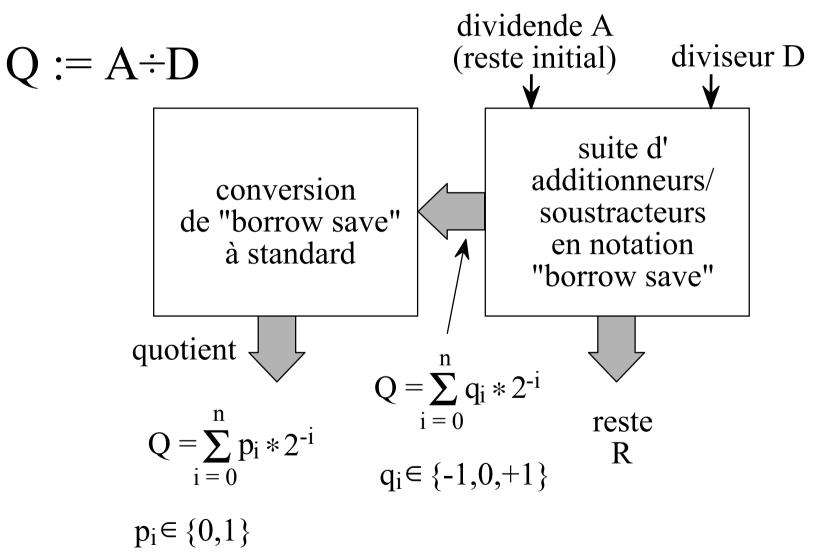
- Sans comparaison
- Sans élimination de chiffres non significatifs
- Avec un coût de conversion exorbitant

Dans un algorithme comme la DIVISION RAPIDE

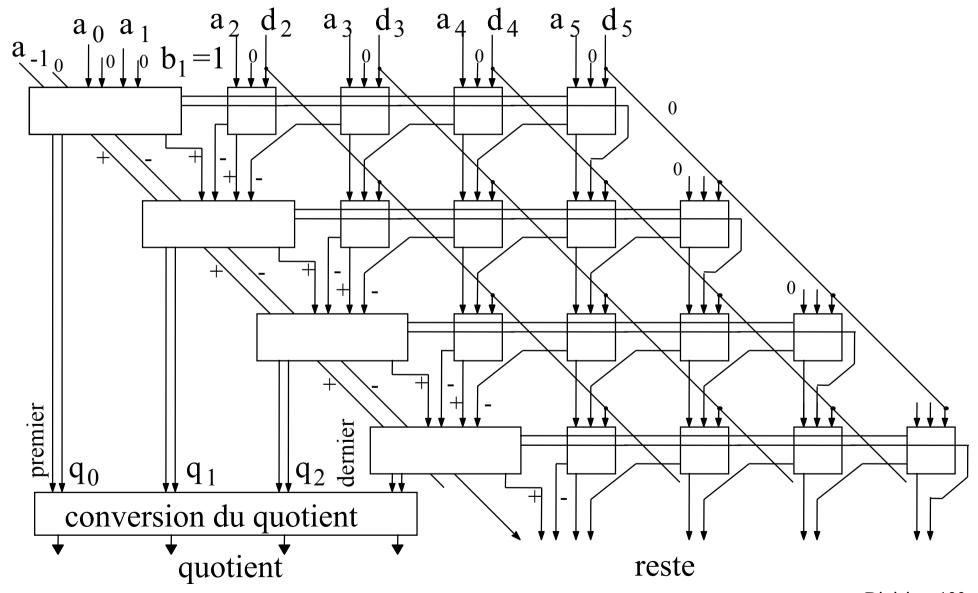
Divide ut regnes Machiavel



Diviseur en notation "BS"



Diviseur régulier en notation "borrow save"



Format du reste partiel R_i

On suppose D normalisé
$$1 \le D < 2$$
: $D = \sum_{i=0}^{n} d_i 2^{-i}$ $d_0 = 1$

Donc
$$-4 < -2D \le R_j * 2^j \le +2D < 4$$
.

Pour être additionné ou soustrait rapidement, R_j est écrit en "BS" Pour avoir une écriture bornée de R_j, les 2 premiers chiffres de R_j ne peuvent pas être non nul de signe différent

$$R_j * 2^j = \sum_{i=-2}^n r_i 2^{-i} = r_{-2} r_{-1} r_0, r_1 r_2 r_3 \dots r_n$$
 $r_{-2} * r_{-1} \ge 0$

Choix de l'opération à exécuter

Itération à l'étape j: $R_{j+1} := R_j - q_j * D * 2^{-j}$ avec $q_j \in \{-1, 0, +1\}$

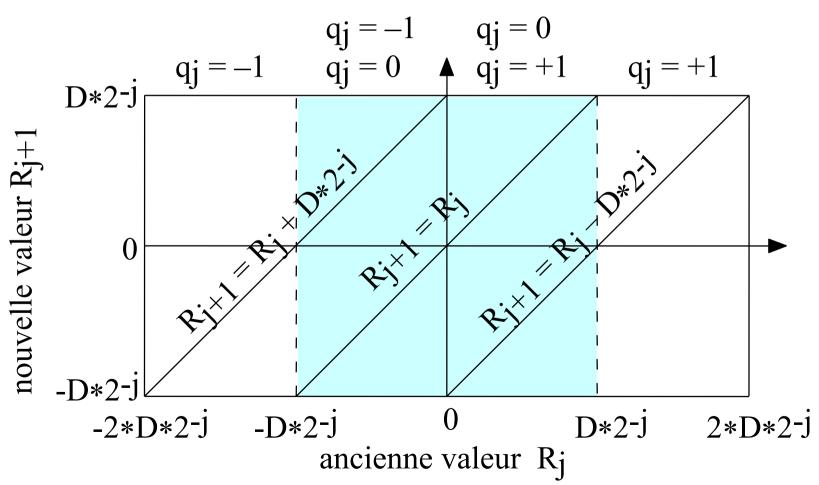
Pour déterminer l'opération q_j à exécuter à l'étape j, il suffit d'examiner les 3 premiers chiffres de R_j seulement.

Condition de convergence: $|R_j| \le 2 * D * 2^{-j} \Longrightarrow |R_{j+1}| \le 2 * D * 2^{-j-1}$

On introduit $\hat{R} = 4*r_{-2} + 2*r_{-1} + r_0$, "estimation" de R_j*2j $-1<\hat{R}-R_j*2^j<1$

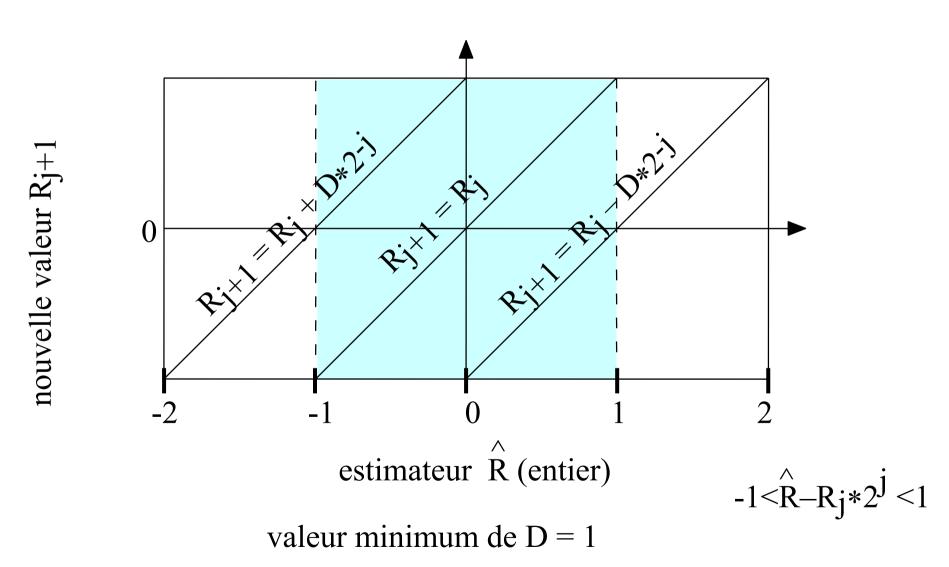
Division SRT

Invariant: $-2*D*2-j \le R_j \le 2*D*2-j$



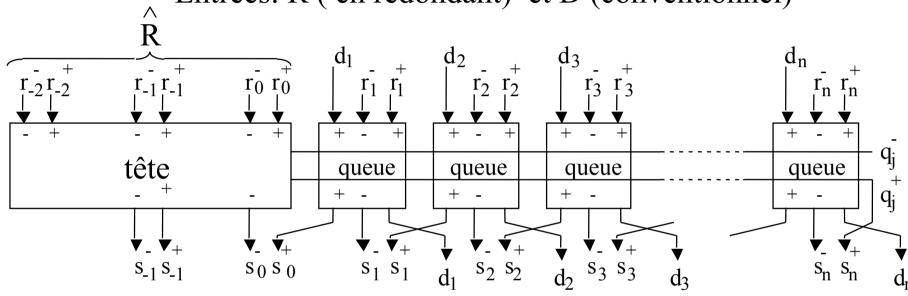
Division 126

Division SRT (2)



Étage de diviseur

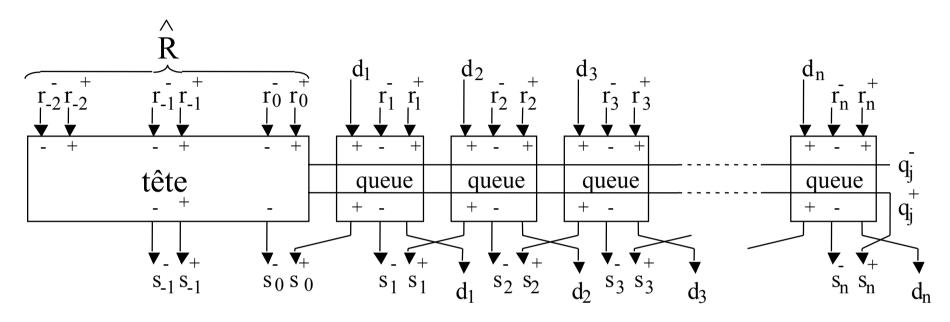
Entrées: R (en redondant) et D (conventionnel)



Sorties: S (en redondant) et D (conventionnel)

```
si \overset{\wedge}{R} < 0 alors S = R + D { add et sous sans propagation} sinon si \overset{\wedge}{R} > 0 alors S = R - D sinon S = R
```

Rôles de la tête et de la queue



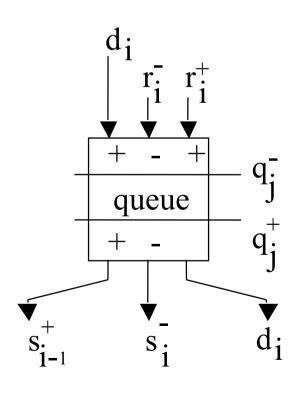
Tête:

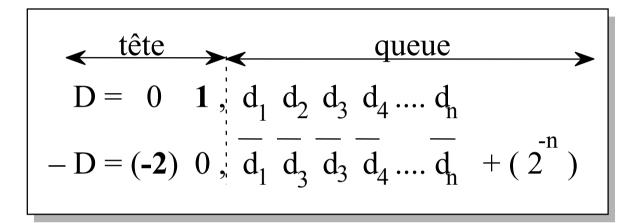
- 1- Déterminer l'opération à exécuter (add, sous ou rien)
- 2- Exécuter cette opération sur les chiffres de tête
- 3- Recoder le résultat pour éliminer le chiffre poids fort s₋₂

Queue:

- Exécuter l'opération (add, sous ou rien) sur les chiffres de queue sans retenue propagé
- Transmettre D décalé vers les poids faibles

Equations d'une cellule de queue





Equation arithmétique

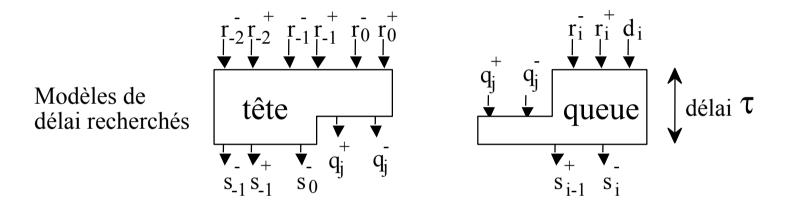
$$2 * s_{i-1}^+ - s_i^- = r_i^+ - r_i^- + (q_j^+ \overline{d_i} + q_j^- d_i)$$

$$2 * s_{i-1}^+ + \overline{s_i} = r_i^+ + \overline{r_i} + (q_j^+ \overline{d_i} + q_j^- d_i)$$

Les contrôles q_{j}^{-} et q_{j}^{+} arrivent après les autres

Optimisation de la cellule de queue

Les contrôles q_j^- et q_j^+ arrivent après les autres dans la queue



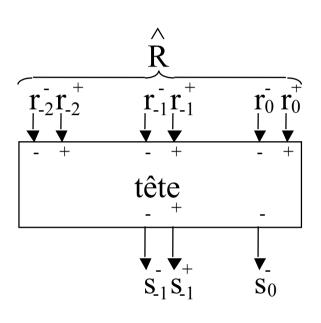
queue	s _{i-1} +	s _i
q _j ⁺	$(r_i^+ \wedge \overline{r_i^-}) \vee (r_i^+ \vee \overline{r_i^-}) \wedge \overline{d_i}$	$r_{i}^{+} \oplus \overline{r_{i}^{-}} \oplus \overline{d_{i}}$
q_{j}^{-}	$(r_i^+ \wedge \overline{r_i^-}) \vee (r_i^+ \vee \overline{r_i^-}) \wedge d_i$	$r_i^+ \oplus \overline{r_i^-} \oplus d_i$
$q_j^+ \vee q_j^-$	$(r_i^+ \wedge \overline{r_i^-})$	$r_{i}^{+}\oplus\overline{r_{i}^{-}}$

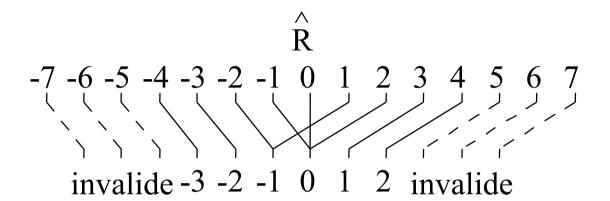
Equations du bloc de tête

$$\begin{array}{l} \hat{R} := 4 * (r_{2}^{+} - r_{-2}^{-}) + 2 * (r_{-1}^{+} - r_{-1}^{-}) + (r_{0}^{+} - r_{0}^{-}) \\ q_{j}^{+} := (\hat{R} > 0) \; ; \; q_{j}^{-} := (\hat{R} < 0) \; ; \\ \textbf{si } q_{j}^{+} \; \textbf{alors } \Sigma_{out} := R - \textbf{2} \\ \textbf{sinon } si q_{j}^{-} \; \textbf{alors } \Sigma_{out} := \hat{R} + \textbf{1} \\ \textbf{sinon } \Sigma_{out} := 0 \; ; \\ s_{-1}^{+} := (\Sigma_{out} > 0) \; ; \\ s_{-1}^{-} := (\Sigma_{out} \leq -2) \; ; \\ s_{0}^{-} := \Sigma_{out} - 2 * (s_{-1}^{+} - s_{-1}^{-}) \; ; \\ q_{j}^{+} := r_{-2}^{+} + r_{-2}^{-} \left(r_{1}^{+} \; r_{-1}^{-} + r_{-1}^{+} \; r_{0}^{+} \; r_{0}^{-} + r_{1}^{+} \; r_{0}^{+} \; r_{0}^{-} \right) ; \\ q_{j}^{+} := r_{-2}^{+} + r_{-2}^{-} \left(r_{1}^{+} \; r_{-1}^{-} + r_{-1}^{+} \; r_{0}^{+} \; r_{0}^{-} + r_{1}^{+} \; r_{0}^{+} \; r_{0}^{-} \right) ; \end{array}$$

$$\begin{split} q_{j}^{+} &:= r_{-2}^{+} + \overline{r_{-2}} \; (\; r_{-1}^{+} \; \overline{r_{-1}} \; + \overline{r_{-1}} \; r_{0}^{+} \, \overline{r_{0}} \; + r_{-1}^{+} \; r_{0}^{+} \; \overline{r_{0}} \;) \; ; \\ q_{j}^{-} &:= r_{2}^{-} + \overline{r_{-2}} \; (\; \overline{r_{-1}^{+}} \; r_{-1}^{-} \; + \overline{r_{-1}^{+}} \; \overline{r_{0}^{+}} \; r_{0}^{-} + r_{-1}^{-} \; \overline{r_{0}^{+}} \; \overline{r_{0}} \;) \; ; \\ s_{-1}^{+} &:= r_{2}^{+} (\; r_{-1}^{+} \; + \; \overline{r_{-1}^{-}} \; + r_{0}^{+} \; \overline{r_{0}^{-}} \;) \; + \; \overline{r_{-2}^{-}} \; r_{-1}^{+} \; \overline{r_{-1}^{-}} \; r_{0}^{+} \; \overline{r_{0}^{-}} \; ; \\ s_{-1}^{-} &:= r_{2}^{-} \; (\; \overline{r_{-1}^{+}} \; + \; \overline{r_{1}^{-}} \; + \; \overline{r_{0}^{+}} \; \overline{r_{0}^{-}} \;) \; + \; \overline{r_{-2}^{+}} \; \overline{r_{-1}^{+}} \; \overline{r_{-1}^{-}} \; \overline{r_{0}^{+}} \; \overline{r_{0}^{-}} \; ; \\ s_{0}^{-} &:= q_{j}^{-} \oplus r_{0}^{+} \oplus r_{0}^{-} \; \; \{ \; seuls \; chiffres \; de \; poids \; 2^{0} \} \; ; \end{split}$$

Condition arithmétique





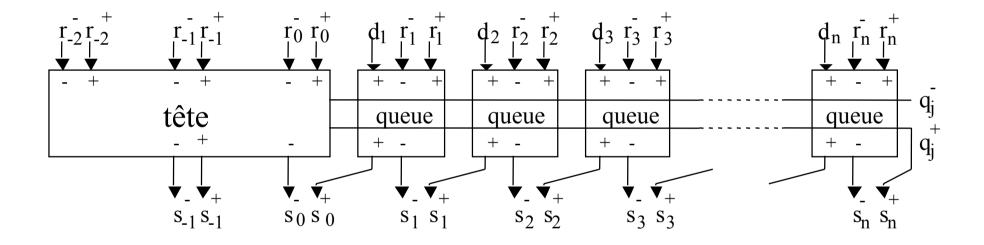
Il faut que
$$-4 \le \stackrel{\wedge}{R} \le +4$$

$$-4 < -2*D \le R_j*2^j \le 2*D < 4$$

$$-1 < \stackrel{\wedge}{R} - R_j*2^j < 1$$

$$\Rightarrow -5 < \stackrel{\wedge}{R} < 5$$

Le Quotient est en notation BS ⇒ il faut le convertir

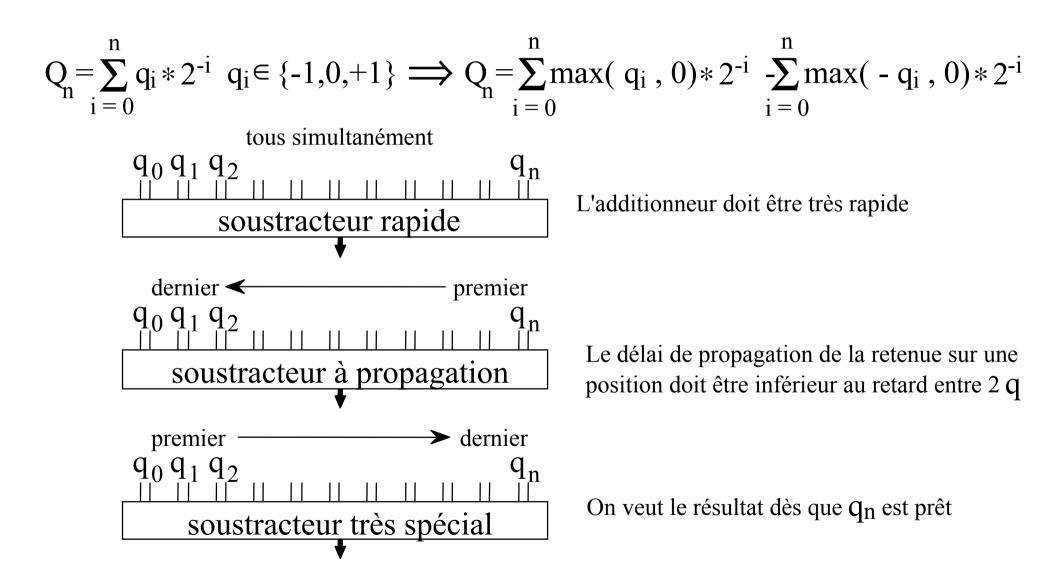


La conversion ne change pas la <u>valeur de Q</u> mais seulement sa <u>représentation</u> sous forme de chaîne de bits.

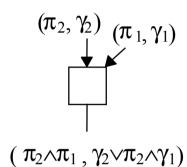
La somme pondérée des bits qui entrent dans le convertisseur est égale à la somme pondérée des bits qui en sortent.

$$q_{j} = q_{j}^{+} - q_{j}^{-}$$
 $q_{j} \in \{-1,0,+1\}$

Conversion de "borrow save" à standard

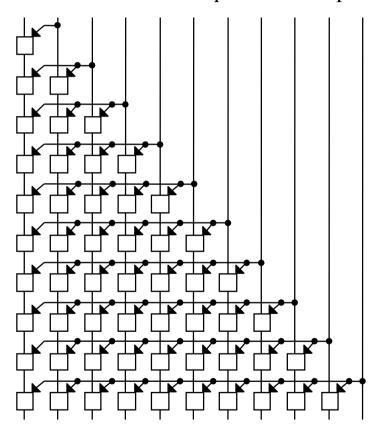


Conversion de "borrow save" à standard (2)



- Associatif
- Non commutatif
- Idempotent
- Croissant (inverseurs)

génération des p_i et des g_i



 $q_i \in \{-1,0,+1\}$

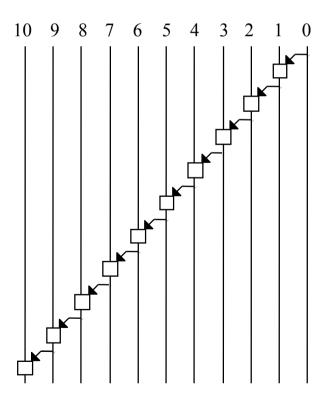
q_i	pi	gi
-1	0	1
0	1	0
+1	0	0

génération de la somme $s_i = p_i \oplus \mathbf{G}_{i-1,0}$ $s_i \in \{0,1\}$

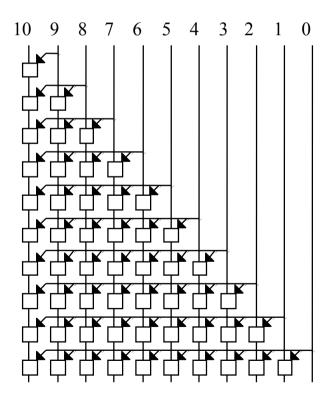
Conversion de "borrow save" à standard (3)

$$q_i \in \{-1,0,+1\}$$
 $p_i \in \{0,1\}$

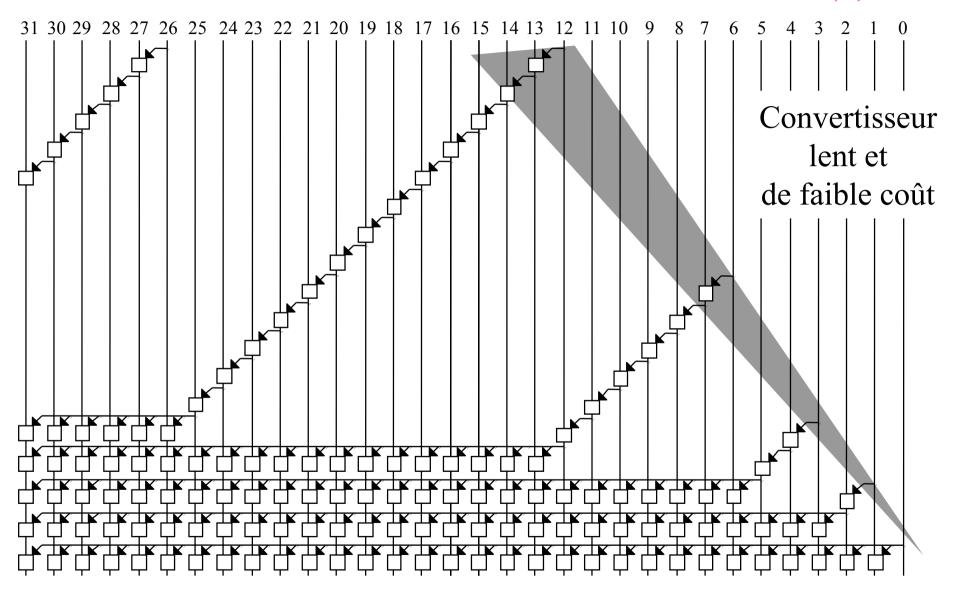
séquentiellement poids faibles d'abord



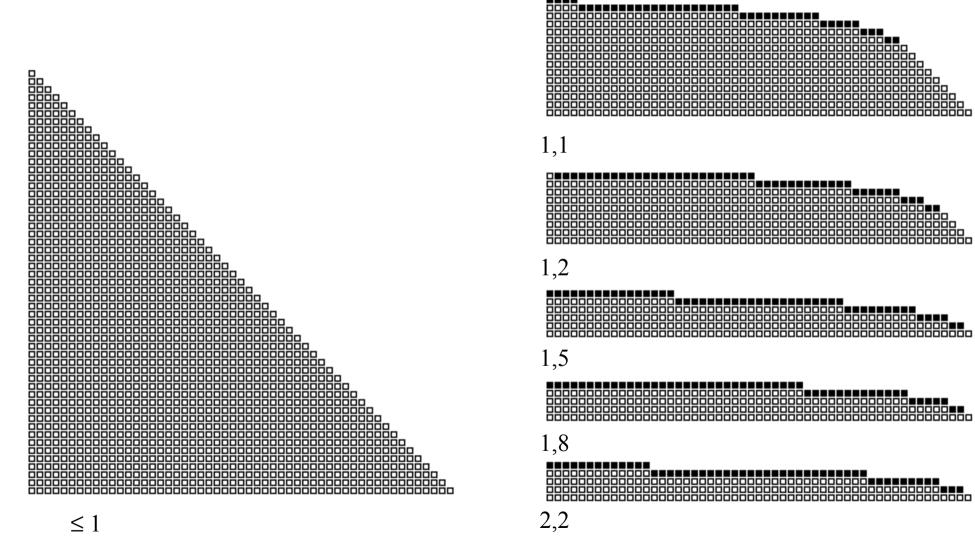
séquentiellement poids forts d'abord

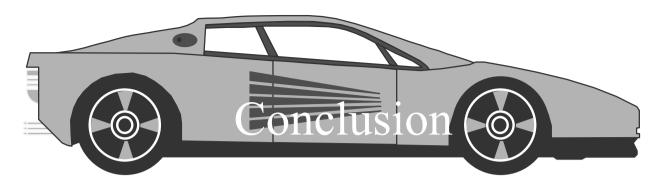


Conversion de "borrow save" à standard (4)



Formes du convertisseur

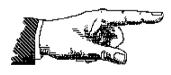




Un algorithme de division <u>rapide</u> a été proposé:

- Les Additions/Soustraction ne propagent pas la retenue

- Le calcul, le recodage et le test du reste partiel sont effectués simultanément (et non séquentiellement)



- Les lignes longues et leurs amplis sont éliminées du chemin critique

- Un nouvel algorithme de conversion du quotient, rapide et peu coûteux, a été introduit.