Plan

INF 560 Calcul Parallèle et Distribué Cours 7

Eric Goubault et Sylvie Putot

Ecole Polytechnique

2 février 2015

1/49

E. Goubault et S. Putot

Généralités

Algorithmique sur ressources hétérogènes
 Allocation et équilibrage de charges statique/dynamique

Généralités

• Communications et routage

Cas de l'hypercube (diffusion simple)Cas du tore 2D (multiplication de matrices)

• Cas de l'algorithme LU: sur anneau (1D) puis tore (2D)

E. Goubault et S. Putot

CARACTÉRISTIQUES D'UN RÉSEAU D'INTERCONNEXION STATIQUE

- Topologie statique: réseau d'interconnexion fixe:
 - anneau, tore 2D,
 - hypercube, graphe complet etc.
- Topologie dynamique: modifiée en cours d'exécution (par configuration de *switch* pour établir une connexion)

Représentable par un graphe dont les sommets sont les processeurs et les arêtes des liens de communication (les liens sont le plus souvent bidirectionnels)

- Le degré (nombre d'arêtes partant d'un noeud): nombre de voisins immédiats
- Le diamètre: distance (= longueur du plus court chemin) maximale entre deux noeuds
- Le nombre de liens
- Largeur de bisection: nombre minimal de connexions qu'il faut retirer pour avoir deux parties égales non connectées (mesure la capacité du réseau à transmettre des messages simultanément)

RÉSEAU COMPLET

- Diamètre = 1: idéal pour le temps de communications
- Mais degré = p 1 et nombre de liens p(p 1)/2: passage à l'échelle difficile! (prix du cablage, rajouter des nouveaux processeurs?)
- Largeur de bisection = (p/2)²: p/2 noeuds qui ont une connection à p/2 autres noeuds pour couper le réseau en 2

E. Goubault et S. Putot

GRILLE ET TORE (ICI 2D)

- Anneau: pas cher et simple, mais communications lentes (diamètre p/2), et tolérance aux pannes des liens faible (largeur bisection 2)
- Grille 2D: degré 2 à 4, diamètre en $2\sqrt{p}$, largeur bisection \sqrt{p} , facile à étendre, mais manque de symétrie (bords)
- Tore 2D: bon compromis dérivé de la grille, degré 4, diamètre en \sqrt{p} , largeur bisection $2\sqrt{p}$
- Connectivité encore augmentée en 3D (ex Crays T3D, T3E)

E. Goubault et S. Putot

5/49

6/49

HYPERCUBE

- Hypercube: un autre compromis intéressant
- Définition récursive du cube de dimension m (p = 2^m noeuds) à partir de 2 cubes de dimension m en reliant les sommets correspondants de chaque cube
- Degré *m*, diamètre faible (*m*), largeur bisection 2^{m-1}
- Mais nombre de liens croit rapidement avec le nombre de processeurs m2^{m-1}

Communications dans un hypercube

- Chemins et routage dans un hypercube
- Plongement d'anneaux et de grilles dans un hypercube
- Broadcast dans un hypercube

NUMÉROTATION DES SOMMETS

CHEMINS ET ROUTAGE

Un m-cube est la donnée de:

- Sommets numérotés de 0 à 2^m 1 (représentation binaire de longueur m)
- Il existe une arête d'un sommet à un autre si les deux diffèrent seulement d'un bit dans leur écriture binaire

Chemins entre deux sommets/processeurs A et B:

- Routage: trouver un chemin de longueur minimale
- Distance de Hamming *H*(*A*, *B*) entre deux sommets = le nombre de bits qui diffèrent dans l'écriture
- Distance de Hamming entre deux sommets adjacents est 1
- Il existe un chemin de longueur H(A, B) entre A et B (récurrence facile sur H(A, B))
- Il existe H(A, B)! chemins entre A et B, dont seuls H(A, B) sont indépendants (n'ont aucun sommet en commun exceptés A et B)
- Des chemins indépendants permettent l'acheminement simultané de plusieurs messages de *A* à *B*

E. Goubault et S. Putot

E. Goubault et S. Putot

9/49

CHEMINS ET ROUTAGE

Un routage: on construit un chemin A, A_1, A_2, \ldots, B en corrigeant à chaque étape le bit de poids faible des bits qui diffèrent.

IMPLÉMENTATION:

- Le message circule avec un en-tête, initialement égal à (A xor B) calculé bit à bit
- Le routeur du processeur du noeud courant examine l'en-tête
 - s'il est nul, le message est pour lui
 - sinon il met à 0 le bit non nul de poids le plus faible de l'en-tête et envoie le message sur le lien correspondant

EXEMPLE:

- A = 1011, B = 1101, $A \operatorname{xor} B = 0110$ (ou exclusif bit à bit)
- A envoie donc son message vers 1001 avec entête 0100
- Puis 1001 renvoie vers 1101 = B avec entête 0000.

Plongements d'anneaux et de grilles

Pourquoi des plongement d'anneaux et grilles dans des hypercubes:

- Algorithmes conçus sur un anneau ou une grille
- Utiliser la connectivité de l'hypercube pour les communications globales comme les diffusions

Principe:

- Préserver la proximité des voisins
- On cherche des plongements qui minimisent la distance entre les processeurs image de processeurs voisins dans le réseau de départ

Aussi algorithmes dynamiques qui prennent les liens disponibles

11/49

On se limite aux anneaux et grilles de dimensions 2^m

CODES DE GRAY

Un code de Gray = une suite ordonnée de codes binaires tels que l'on passe au code suivant en ne modifiant qu'un seul bit

• Le code de Gray G_m de dimension $m \ge 2$ est défini récursivement:

$$G_m = \{0G_{m-1}, 1G_{m-1}^{rev}\}$$

- *xG* énumère les éléments de *G* en rajoutant *x* en tête de leur écriture binaire
- G^{rev} énumère les éléments de G dans l'ordre renversé

 $G_1 = (0, 1), \ G_2 = (00, 01, 11, 10),$

 $G_3 = (000, 001, 011, 010, 110, 111, 101, 100),$

 $G_4 = (0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1011, 1010, 1001, 1000).$

E. Goubault et S. Putot

DIFFUSION SIMPLE DANS L'HYPERCUBE

Codes de Gray: intérêt

Permet de définir un anneau de 2^m processeurs dans le m-cube grâce à G_m en projetant le processeur i de l'anneau sur le i^{eme} élément, noté g_i^(m), de la suite G_m.
 Exemple G₃ = (000, 001, 011, 010, 110, 111, 101, 100)

 Permet de définir un réseau torique de taille 2^r × 2^s dans un m-cube avec r + s = m (utiliser G_r × G_s: le processeur (i, j) de la grille a pour image (g_i^(r), g_i^(s)) dans le m-cube)

E. Goubault et S. Putot

13/49

14/49

Arbres couvrants de l'hypercube

- On suppose que le processeur 0 veut envoyer un message à tous les autres
 - Algorithme naïf 1: le processeur 0 envoie à tous ses voisins, puis tous ses voisins à tous leurs voisins etc.: très redondant (et gérer tous les send/receive...)

On voudrait également que chaque processeur reçoive le message une seule fois:

• Algorithme naïf (un peu moins) 2: on utilise le code de Gray et la diffusion sur l'anneau

- Primitives: send(cube-link,send-adr,L), receive(cube-link,recv-adr,L)
- On construit à la fois l'arbre couvrant et l'algo de diffusion, qui opère en m phases, numérotées de m-1 à 0
- Les processeurs vont recevoir le message sur le lien correspondant à leur premier 1 (à partir des poids faibles)
- Et vont propager sur les liens qui précèdent ce premier 1
- Le processeur 0 est supposé avoir un 1 fictif en position m

• Algorithme de Cannon

Algorithme de FoxAlgorithme de Snyder

par processeur)

Objectifs:

Trois algorithmes pour le produit de matrices carrées denses:

• Minimiser l'occupation mémoire (un bloc de chaque matrice

Exemple (m = 4):

- phase 3: 0000 envoie le message sur le lien 3 à 1000
- phase 2: 0000 et 1000 envoient le message sur le lien 2, à 0100 et 1100 respectivement
- ainsi de suite jusqu'à la phase 0

Si processeurs *m*-ports: message découpé et algo pipeliné sur arbres couvrants à arêtes indépendantes

E. Goubault et S. Putot

E. Goubault et S. Putot

17/49

Produit de matrices sur grille 2D

- C = C + AB, avec A, B et C de taille $N \times N$
- $p = q^2$: on a une grille de processeurs en tore de taille $q \times q$

• Distribution des matrices par blocs: P_{ij} stocke A_{ij}, B_{ij} et C_{ij}

Principe de l'algorithme de Cannon

• Distribution des données au départ:

• Réduire le ratio communication/calcul

C ₀₀	C_{01}	C_{02}	C ₀₃		A_{00}	A_{01}	A_{02}	A_{03}		B_{00}	B_{01}	B_{02}	B_{03}
C_{10}	C_{11}	C_{12}	C ₁₃		A_{10}	A_{11}	A_{12}	A_{13}	~	B_{10}	B_{11}	B_{12}	B_{13}
C_{20}	C_{21}	C_{22}	C ₂₃	_	A_{20}	A_{21}	A_{22}	A_{23}	X	B_{20}	B_{21}	B_{22}	B_{23}
C ₃₀	C_{31}	C_{32}	C ₃₃		A_{30}	A_{31}	A_{32}	A_{33}		B_{30}	B_{31}	B_{32}	B_{33}

• 'Preskewing'':

- Pour i = 0 à q 1, décalage circulaire de la ligne i de la matrice A de i positions à gauche
- Pour j = 0 à q 1, décalage circulaire de la colonne j de la matrice B de j positions vers le haut

PRINCIPE DE L'ALGORITHME DE CANNON (2)

- Initialisation $C_{ij} = 0, \forall i, j \in 0, \dots, q-1, A^{(0)}$ et $B^{(0)}$ les matrices "preskewees"
 - $A_{ij}^{(0)} = A_{i,(i+j) \mod q}, \ B_{ij}^{(0)} = B_{(i+j) \mod q,j}$
- Puis q étapes de calcul, de k = 0 à q 1: multiplication locales aux processeur, et décalage par communications entre voisins
 - $C_{ij} = C_{ij} + A_{ij}^{(k)} \times B_{ij}^{(k)} = C_{ij} + A_{i,(i+j+k) \mod q} \times B_{(i+j+k) \mod q,j}$ (produit de matrice local à chaque bloc) en parallèle
 - A^(k+1) = A^(k) dont chaque ligne a été décalée circulairement d'une position vers la gauche
 - B^(k+1) = B^(k) dont chaque colonne a été décalée circulairement d'une position vers le haut

Etape 1:

C ₀₀	C ₀₁	C ₀₂	C ₀₃		A_{01}	A_{02}	A ₀₃	A ₀₀		B_{10}	B_{21}	B_{32}	B ₀₃
C ₁₀	C_{11}	C_{12}	C ₁₃		A_{12}	A_{13}	A ₁₀	A_{11}	0	B_{20}	B_{31}	B_{02}	B ₁₃
C ₂₀	C_{21}	C ₂₂	C_{23}^{+}	=	A_{23}	A_{20}	A_{21}	A_{22}	\otimes	B_{30}	B_{01}	B_{12}	B ₂₃
C ₃₀	C_{31}	C_{32}	C ₃₃		A_{30}	A_{31}	A_{32}	A_{33}		B_{00}	B_{11}	B_{22}	B_{33}

E. Goubault et S. Putot

Algorithme de Fox

/* diag(A) sur col 0, diag(B) sur ligne 0 */
Rotations(A,B); /* preskewing */

/* calcul du produit de matrice */
forall (k=0; k<=q-1) {
 LocalProdMat(A,B,C);
 VerticalRotation(B,upwards);
 HorizontalRotation(A,leftwards); }</pre>

/* mouvements des donnees apres les calculs */ Rotations(A,B); /* postskewing */

E. Goubault et S. Putot

21/49

22/49

PRINCIPE DE L'ALGORITHME DE FOX

- Algorithmes de Fox et Snyder:
 - D'autres façons de réorganiser les matrices A et B pour toujours pouvoir faire des produits entrée par entrée sur chaque processeur
 - 3 algos difficiles à comparer, les coûts de communication dépendent des paramètres du réseau

Principe de l'algorithme de Fox:

- Pas de mouvements de données initiales
- Diffusions horizontales des éléments de A
- Rotations verticales de *B* (de bas en haut)
- Comme pour Cannon: à chaque étape, produit matriciel par blocs sur chaque entrée

- Initialisation $C_{ij}=0, \forall i,j \in 0,\ldots,q-1$, pas de mouvement de données initial
- Puis q étapes de calcul, de k = 0 à q 1:
 - Diffusion horizontale sur chaque ligne de A: dans la ligne i, $A_{ij}^{(k)} = A_{i,(i+k) \mod q}, \forall j \in \{0, \dots, q-1\}$
 - Rotation verticale de B (chaque colonne est décalée circulairement d'une position vers le haut): B_{ij}⁽⁰⁾ = B, B_{ij}^(k+1) = B_(i+1) mod q,j = B_(i+k) mod q,j, ∀i, j ∈ {0,...,q-1}
 - $C_{ij} = C_{ij} + A_{ij}^{(k)} \times B_{ij}^{(k)} = C_{ij} + A_{i,(i+k) \mod q} \times B_{(i+k) \mod q,j}$ (produit de matrice local à chaque bloc) en parallèle

Algorithme de Fox

• Etape 0:

/* pas de mouvements de donnees avant les calculs */

```
/* calcul du produit de matrices */
broadcast(A(x,x));
forall (k=0; k<q-1) {
   LocalProdMat(A,B,C);
   VerticalRotation(B,upwards);
   broadcast(A(k+x,k+x)); }</pre>
```

LocalProdMat(A,B,C); VerticalRotation(B, upwards);

/* pas de mouvements de donnees apres les calculs */

E. Goubault et S. Putot

25/49 E. Goubault et S. Putot

Principe de l'algorithme de Snyder

Algorithme de Snyder: étapes 0 et 1

Etape 0:

• Transposition préalable de B

- Sommes globales sur les lignes de processeurs (des produits calculés à chaque étape) accumulées dans le coefficient correspondant dans C
- Une diagonale du tore calculée dans *C* à chaque étape représentée en gras dans les transparents ci-après
- Rotation verticale de *B* vers le haut à chaque étape

PRINCIPE DE L'ALGORITHME DE SNYDER

/* mouvements des donnees avant les calculs */
Transpose(B);
/* calcul du produit de matrices */
forall () {
LocalProdMat(A,B,C);
VerticalRotation (B, upwards); }
forall (k=0;k <q-1) td="" {<=""></q-1)>
GlobalSum(C(i,(i+k) mod q));
LocalProdMat(A,B,C);
VerticalRotation (B, upwards); }
$GlobalSum(C(i,(i+q-1) \mod q));$
/* mouvements des donnees apres les calculs */
Transpose(B);

Algorithmique hétérogène

Allocation statique de tâches:

- *B* tâches atomiques identiques et indépendantes à exécuter
- t_1, t_2, \ldots, t_p temps de cycle des processeurs pour effectuer une tâche atomique
- Nombre de tâches c_i à allouer au processeur i?
- Principe: $c_i \times t_i = constante$, d'où idéalement:

$$B = \underbrace{(c_i \times t_i)}_{\text{temps de l'appli}} \times \underbrace{(\sum_{k=1}^{p} e_{i})}_{\text{temps de l'appli}} \times \underbrace{(\sum_{k=1}^{p} e_{i})}_{\text{temps de l'appli}}$$

nb de tâches exécutables par cycle

En général, l'équilibrage parfait ($c_i \times t_i = constante$) n'est pas possible, on minimise le temps total en partant de:

$$c_i = \left\lfloor \frac{\frac{1}{t_i}}{\sum_{k=1}^{p} \frac{1}{t_k}} \times B \right\rfloor$$

E. Goubault et S. Putot

E. Goubault et S. Putot

29/49

ALLOCATION STATIQUE OPTIMALE

$\underline{\text{DISTRIBUTE}}(B,T[1],T[2],...,T[N])$ // initialisation tq c[i]*t[i] ~ cste et c[1]+C[2]+...+C[n] <= B for $(i=1; i \le p; i++)$ c[i] = ... // formule du transparent précédent // incrementer iterativement les c[i] minimisant le temps while (sum(c[]) < B) {</pre> $k = argmin(k in \{1, ..., p\})(t[i]*(c[i]+1));$ c[k] = c[k]+1;**return** (c []);

L'algorithme donne l'allocation optimale. Au plus p étapes donc $O(p^2)$.

ALGORITHME INCRÉMENTAL

- Si maintenant *B* pas forcément fixé
- On veut allocation optimale pour tout nombre d'atomes entre 1 et B, étant donné t_1, t_2, \ldots, t_n
- Coût moyen d'exécution d'un atome pour l'allocation $C = (c_1, c_2, \dots, c_n)$ est

$$t(C) = \frac{\max_{1 \le i \le p} c_i t_i}{\sum_{i=1}^p c_i}$$

• Programmation dynamique pour minimiser à chaque atome supplémentaire le coût: calculer

 $\operatorname{argmin}(t(c_1+1, c_2, \dots, c_n), t(c_1, c_2+1, \dots, c_n), \dots, t(c_1, c_2, \dots, c_n+1))$

DISTRIBUTE_INCR(B,T[1],T[2],...T[P])

```
/* Initialisation: aucune tache a distribuer m=0 */
for (i=1;i<=p;i++) c[i]=0;
/* construit iterativement l'allocation sigma */
for (m=1;m<=B;m++)
    k = argmin(k in {1,...p})(t[i]*(c[i]+1));
    c[k]=c[k]+1;
    sigma[m]=k;
return(sigma[],c[]);</pre>
```

Retourne la distribution optimale pour tout sous-ensemble d'atomes $[1, m], m \leq B$, complexité O(pB)

<i>#atomes</i>	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	cout	proc.sel.	alloc. σ
0	0	0	0		1	
1	1	0	0	3	2	$\sigma[1] = 1$
2	1	1	0	2.5	1	$\sigma[2] = 2$
3	2	1	0	2	3	$\sigma[3] = 1$
4	2	1	1	2	1	$\sigma[4] = 3$
5	3	1	1	1.8	2	$\sigma[5] = 1$
9	5	3	1	1.67	3	σ [9] = 2
10	5	3	2	1.6		$\sigma[10] = 3$

E. Goubault et S. Putot

33/49 E. Goubault et S. Putot

34/49

Application à la factorisation LU

LU pour une matrice de taille $nb \times nb$, et des blocs de b colonnes alloués par processeurs:

- A chaque étape, le processeur qui possède le bloc pivot le normalise et le diffuse
- Les autres processeurs mettent à jour les colonnes restantes
- A l'étape suivante le bloc des *b* colonnes suivantes devient le pivot, et ainsi de suite
- L'étape coûteuse est la mise à jour: trouver une allocation statique pour équilibrer les charges?
- Difficulté: la taille des données à traiter passe d'une étape à l'autre de $(n-1) \times b$ à $(n-2) \times b$ etc.
 - 1ère idée: équilibrer les charges à chaque étape par l'algo précédent
 - il faut redistribuer les données à chaque étape
 - coût de communication important, et pas modulaire (dans une bibliothèque d'algèbre linéaire, on veut même allocation au début et à la fin)

Allocation équilibrant les charges 1D

Trouver une allocation statique des données fournissant un équilibrage des charges de mise à jour qui soit commun à toutes les étapes:

- Distribution de *B* tâches sur *p* processeurs de temps de cycle *t*₁, *t*₂ etc. *t_p* telle que
- Pour tout i ∈ {2,..., B}, le nombre de blocs de {i,..., B} que possède chaque processeur P_j soit approximativement inversement proportionnel à t_j
- On va utiliser l'algorithme incrémental

EXEMPLE

- Matrice $(nb) \times (nb)$
- Allouer périodiquement, sous forme d'un motif de largeur *B*, les blocs de *b* colonnes aux processeurs
- B est un paramètre, par exemple si B = n le motif a la largeur de la matrice et n'est pas répété
- Meilleur pour le recouvrement calcul communication si B << n, mais supposons B = n pour simplifier
- Utiliser l'algorithme précédent en sens inverse: on commence par allouer le bloc de colonnes B = n (sur σ(1)), puis n − 1 (sur σ(2)), etc bloc k sur σ(B − k + 1).
- Cette distribution est quasi-optimale pour tout sous-ensemble [*i*, *n*] de blocs de colonnes

n = B = 10, $t_1 = 3$, $t_2 = 5$, $t_3 = 8$ le motif sera:

E. Goubault et S. Putot

37/49 E. Goubault et S. Putot

38/49

Equilibrage de charge 2D

Multiplication de matrices - cas homogène

Exemple: Multiplication de matrices sur grille homogène:

- Algorithme par blocs de ScaLAPACK (version plus simple que celles vues précédemment)
- Répartition par blocs de A_{ij}, B_{ij} et C_{ij} sur P_{ij}
- Double diffusion horizontale et verticale à chaque étape $k=0,\ldots,p-1$
 - A_{ik} est diffusé sur la ligne *i* et B_{ki} sur la colonne *i* pour tout *i*
 - puis produit sur chaque processeur: $C_{ij} = C_{ij} + A_{ik}B_{kj}$
- S'adapte facilement au cas de matrices et grilles rectangulaires
- Aucune redistribution initiale des données

Multiplication - cas inhomogène "régulier"

- Allouer des rectangles (blocs) de tailles différentes aux processeurs, en fonction de leur vitesse relative
- $p \times q$ processeurs $P_{i,j}$ de temps de cycle $t_{i,j}$
- On suppose le rectange de taille $r_i \times c_j$ alloué au processeur P_{ij}
- Temps d'exécution du processeur P_{ij} est donc t_{ij}r_ic_i
- Equilibrage de charge parfait: $t_{ij}r_ic_j = Cste = K, \ \forall (i,j) \in \{1, \dots, p\} \times \{1, \dots, q\}$

Equilibrage de charge parfait

- Possible ssi la matrice des temps de cycle $T = (t_{i,j})$ est de rang 1:
 - posons $r_1 = 1$ et $c_1 = 1/t_{11}$, puis $r_i = 1/(t_{i1}c_1)$ et $c_j = 1/t_{1j}$ pour $i, j \ge 2$.
 - alors on a $t_{ij}r_ic_j = 1$ pour $i, j \ge 2$ car le déterminant

$$\begin{array}{ccc} t_{11} & t_{1j} \\ t_{i1} & t_{ij} \end{array}$$

est nul.

• Exemple, rang 2, $P_{2,2}$ est partiellement inactif:

	$c_1 = 1$	$c_2 = \frac{1}{2}$
$r_1 = 1$	$t_{11} = 1$	$t_{12} = 2$
$r_2 = \frac{1}{3}$	$t_{21} = 3$	$t_{22} = 5$

• Exemple, rang 1, équilibrage parfait:

	$c_1 = 1$	$c_2 = \frac{1}{2}$
$r_1 = 1$	$t_{11} = 1$	$t_{12} = 2$
$r_2 = \frac{1}{3}$	$t_{21} = 3$	$t_{22} = 6$

E. Goubault et S. Putot

E. Goubault et S. Putot

41/49

Résolution générale du problème

Deux façons d'écrire le problème d'optimisation donnant les r_i et c_i :

 Objectif Obj1 (minimiser le temps d'exécution, normalisé à un motif de taille 1 × 1, on multiplie ensuite le résultat par n et on prend des entiers proches):

$$\min_{\sum_{i} r_i = 1; \sum_{j} c_j = 1} \max_{i,j} \{ r_i \times t_{i,j} \times c_j \}$$

• Objectif *Obj*2 (dual: maximiser la taille du motif pouvant être traité en une unité de temps):

$$max_{r_i \times t_{i,j} \times c_j \le 1} \left\{ \left(\sum_i r_i \right) \times \left(\sum_j c_j \right) \right\}$$

RÉGULARITÉ?

- En fait, la position des processeurs dans la grille n'est pas une donnée du problème
- Toutes les permutations des *pq* processeurs en une grille *p* × *q* sont possibles, et il faut chercher la meilleure
- Problème NP-complet
- Conclusion: l'équilibrage 2D est très difficile!

43/49

PARTITIONNEMENT LIBRE

PARTITIONNEMENT LIBRE

Ne plus se restreindre à une grille \dots ou comment faire avec p(quelconque, ici 13) processeurs?

- *p* processeurs de vitesses s_1, s_2, \ldots, s_p de somme 1 (normalisées)
- Partitionner le carré unité en p rectangles de surfaces $s_1, s_2, ..., s_p$
- Surface des rectangles \Leftrightarrow vitesses relatives des processeurs
- Forme des rectangles \Leftrightarrow minimiser les communications

E. Goubault et S. Putot 4	15/49	E. Goubault et S. Putot	46/49

GÉOMÉTRIQUEMENT

EXEMPLE

- p = 5 rectangles R_1, \ldots, R_5
- Aires $s_1 = 0.36$, $s_2 = 0.25$, $s_3 = s_4 = s_5 = 0.13$

- Partitionner le carré unité en p rectangles d'aires fixées s_1 , s_2 , \ldots , s_p afin de minimiser
 - soit la somme des demi-périmètres des rectangles dans le cas des communications séquentielles
 - soit le plus grand des demi-périmètres des rectangles dans le cas de communications parallèles
- Problèmes NP-complets

EXEMPLE

- Demi-périmètre maximal pour R_1 , approximativement 1.2002
 - borne inférieure absolue $2\sqrt{s_1} = 1.2$ atteinte lorsque le plus grand rectangle est un carré (pas possible ici)
- Somme des demi-périmètres = 4.39
 - borne absolue inférieure $\sum_{i=1}^{p} 2\sqrt{s_i} = 4.36$ atteinte lorsque tous les rectangles sont des carrés

E. Goubault et S. Putot