Scheduling and Optimization Course (MPRI)

Leo Liberti
LIX, École Polytechnique, France

Teachers

- Christoph Dürr
http://www.lix.polytechnique.fr/~durr Refer to Christoph for any information
- Philippe Baptiste
http://www.lix.polytechnique.fr/~baptiste
- Leo Liberti
http://www.lix.polytechnique.fr/~liberti

Scheduling

- Schedule n tasks on m machines such that the sum of completion times is minimum
- Scheduling = assignment + ordering
- Additional constraints: given precedence on tasks, delays under certain circumstances, time windows...
- Many industrial applications
- Similar problems arise in project management

Network design

- Break an existing telecom network such that the subnetworks have as few interconnections as possible
- Happens when a huge telecom giant wants to sell off or sublet some subnetworks
- Associate a variable to each vertex i and partition h, arc presence can be modelled by quadratic term $x_{i h} x_{j k}$

Shortest paths

- Find a shortest path between two geographical points
- Variants: find shortest paths from one point to all others, find shortest paths among all pairs, find a set of k paths such that total length is shortest, ...
- Additional constraints: arc weights as travelling times, real time computation, dynamic arc weights evolve with traffic

Important concepts

- Optimization: given a point set X and an objective function $f: X \rightarrow \mathbb{R}$, find the optimal solution x^{*} attaining the minimum (or maximum) value f^{*} on X
- X is called the feasible region
- Any point $x \in X$ is a feasible point
- Supposing $X \subseteq \mathbb{R}^{n}, x=\left(x_{1}, \ldots, x_{n}\right)$
- For $i \leq n, x_{i}$ is a problem variable
- Any numerical constant on which f, X depend is a problem parameter

Main optimization problem classes

- X is usually of the form $\mathbb{R}^{n-k} \times \mathbb{Z}^{k}$
- $k=0$: continuous problem, $k=n$: integer program; otherwise, mixed-integer problem
- If $X=\left\{x \in Y \mid \forall i \leq m\left(g_{i}(x) \leq 0\right)\right\}, g_{i}: Y \rightarrow \mathbb{R}$ are the constraints
- f, g_{i} linear $\& k=0$: Linear Programming (LP)
- f, g_{i} linear $\& k>0$: Mixed-Integer Linear Programming (MILP)
- f, g_{i} nonlinear $\& k=0$: NonLinear Programming (NLP)
- f, g_{i} nonlinear $\& k>0$: Mixed-Integer NonLinear Programming (MINLP)

Transportation problem

Let $x_{i j}$ be the (discrete) number of product units transported from plant $i \leq m$ to customer $j \leq n$ with respective unit transportation cost $c_{i j}$ from plant i to customer j.
Problem: find x minimizing the total cost, subject to production limits l_{i} at plant i and demand d_{j} at customer j.

$$
\left.\begin{array}{lc}
\min _{x} & \sum_{i=1}^{m} \\
\sum_{j=1}^{n} c_{i j} x_{i j} \\
i \leq m & \sum_{j=1}^{n} x_{i j} \leq l_{i} \\
j \leq n & \sum_{i=1}^{m} x_{i j} \geq d_{j} \\
\forall i, j & x_{i j} \in \mathbb{Z}_{+}
\end{array}\right\}
$$

Facility Location problem

Let $x_{i}=1$ if a servicing facility will be built on geographical region $i \leq m$ and 0 otherwise. The cost of building a facility on region i is c_{i}, and $a_{i j}=1$ if a facility on region i can serve town $j \leq n$, and 0 otherwise.
Problem: find $x \in\{0,1\}^{m}$ so that each town is serviced by at least one facility and the total cost is minimum.

$$
\forall \min _{x} \sum_{i=1}^{m} c_{i} x_{i}
$$

Travelling Salesman problem

A travelling salesman must visit n cities; each city must be visited exactly once.

Problem: find the visit order so that the total distance is minimized.

TSP Formulation I

Let $c_{i j}$ be the distance from city i to city j, and $x_{i j}=1$ if the travelling salesman goes from city i to city j and 0 otherwise.

$$
\left.\begin{array}{rc}
\min _{x} & \sum_{i \neq j \leq n} c_{i j} x_{i j} \\
\forall i \leq n & \sum_{j \leq n} x_{i j}=1 \\
\forall j \leq n & \sum_{i \leq n} x_{i j}=1 \\
\forall S \subsetneq\{1, \ldots, n\} & \sum_{i \neq j \in S} x_{i j} \leq|S|-1 \\
\forall i \neq j \leq n & x_{i j} \in\{0,1\}
\end{array}\right\}
$$

Exponentially many constraints!

TSP Formulation II

$$
\begin{array}{rlrl}
\min & \sum_{i \neq j \leq n} c_{i j} x_{i j} & \\
\forall i \leq n & \sum_{j \leq n} x_{i j} & =1 \\
\forall j \leq n & \sum_{i \leq n} x_{i j} & =1 \\
\forall i \neq j \leq n, i, j \neq 1 & u_{i}-u_{j}+1 & \leq(n-1)\left(1-x_{i j}\right) \\
\forall i \neq j \leq n & x_{i j} & \in\{0,1\} \\
\forall i>2 & u_{i} & \in\{2, \ldots, n\} \\
u_{1} & =1 .
\end{array}
$$

Only polynomially many constraints Is this a valid formulation? Does it describe Hamiltonian cycles?

Testing TSP2

- $x_{14}=x_{43}=x_{32}=x_{21}=1$, all other $x_{i j}=0$
- set, for example: $u_{1}=1, u_{2}=4, u_{3}=3, u_{4}=2$
- for $(i, j) \in\{(4,3),(3,2)\}$, constraints reduce to
$u_{i}-u_{j} \leq-1$:

$$
u_{4}-u_{3}=2-3=-1, \quad u_{3}-u_{2}=3-4=-1 \quad \text { OK }
$$

- for all other i, j constraints also valid

Formulations and reformulations

Defn. A formulation is a pair (f, X)
Defn. A formulation (h, Y) is a reformulation of (f, X) if there is a function $\phi: Y \rightarrow X$ such that for each optimum y^{*} of (h, Y) there is a corresponding optimum $x^{*}=\phi\left(y^{*}\right)$ of (f, X) and $h^{*}=f^{*}$.

Thm. TSP2 reformulates TSP1.

Reformulation proof

Proof. By contradiction, suppose \exists a point (x, u) feasible in TSP2 s.t. x represents two disjoint cycles. Let $C=(V, A)$ be the cycle not containing vertex 1 , and let $q=|A|>0$. If all constraints are satisfied, then arbitrary sums of constraints must also be satisfied. Summing constraints

$$
u_{j} \geq u_{i}+1-(n-1)\left(1-x_{i j}\right)
$$

over A, since $x_{i j}=1$ for all $(i, j) \in A$, we obtain

$$
\sum_{j \in V} u_{j} \geq \sum_{i \in V} u_{i}+q
$$

whence $q<0$, contradicting $q>0$. Therefore every feasible point in TSP2 represents a cycle of length n in the graph. Since $f \equiv h$, the function ϕ sending each point (x, u) in TSP2 to the corresponding point x in TSP1 is a reformulation.

Exercise 1

Prove that TSP1 reformulates TSP2

(Hint: show that given an optimum x^{*} for TSP1, there exists u^{*} such that $\left(x^{*}, u^{*}\right)$ is feasible in TSP2. Why is this sufficient to show that TSP1 reformulates TSP2?)

Solution algorithms

- Exact (provide a guarantee of optimality or ε-optimality for given $\varepsilon>0$ (in nonlinear continuous problems)

Simplex Algorithm, Branch and Bound

- Approximation algorithms (provide a guarantee on the solution quality)
Christofides' TSP Approximation Algorithm
- Heuristic algorithms (do not provide any guarantee, but common sense suggests solution would be good)
Variable Neighbourhood Search

Approximation algorithms

- Let \bar{f} be the objective function value at the solution \bar{x} provided by the appr. alg.
- Alg. is a k-approximation algorithm for a minimization problem if $\bar{f} \leq k f^{*}$
- How could we ever prove this without knowing f^{*} ???
- Notation: given an undirected graph $G=(V, E)$ let $\bar{\delta}(v)$ be the set of edges in E adjacent to $v \in V$

Christofides’ TSP Alg. I

- $\frac{3}{2}$-approximation algorithm for the metric TSP (i.e. distances obey a triangular inequality)
- Consider a complete graph $G=(V, E)$ weighted by $c: E \rightarrow \mathbb{R}$, aim to find a "reasonably short" Hamiltonian cycle in G
(1)
(2)
(4)
(6)
(5)
(7)

Christofides’ TSP Alg. II

(1) Let $T=(V, F)$ be a spanning tree of G (connected subgraph covering V) of minimum cost

(2) Let $\bar{V}=\{v \in V| | \bar{\delta}(v) \cap F \mid \bmod 2=1\}$

Christofides’ TSP Alg. III

(3) Let $M=(\bar{V}, H)$ be a matching of $(\bar{V}, E(\bar{V}))$ of minimum cost

(4) Let $L=F \cup H$, and $K=T \cup M=(V, L)$. This is a Eulerian cycle (i.e. passing through each edge exactly once) because by definition $|\bar{\delta}(v) \cap L| \bmod 2=0$

Christofides’ TSP Alg. IV

(5) For each v s.t. $\beta(v)=|\bar{\delta}(v) \cap L|>2$, pick $\frac{\beta(v)}{2}-1$ distinct pairs of distinct vertices u, w adjacent to v and set $L \leftarrow L \backslash\{\{u, v\},\{v, w\}\} \cup\{u, w\}$

Christofides’ TSP Alg. V

The Hamiltonian cycle found with Christofides' approximation algorithm (left) and the optimal one (right)

Christofides’ TSP Alg.VI

Lemma. L is a Hamiltonian cycle in G (Exercise 2)

Thm. Let \bar{f} be the cost of L and f^{*} be the cost of an optimal Hamiltonian cycle. Then $\bar{f} \leq \frac{3}{2} f^{*}$
Proof. For a set of edges $S \subseteq E$, let $f(S)=\sum_{\{i, j\} \in S} c_{i j}$. Every Hamiltonian cycle (including the optimal one) can be seen as a spanning tree union an edge. Since T is of minimum cost, $f(F) \leq f^{*}$. On the other hand, each Hamiltonian cycle is also a 2-matching (each vertex is adjacent to precisely two other vertices), and M is of minimum cost, $2 f(H) \leq f^{*}$. Therefore $f(F \cup H)=f(F)+f(H) \leq f^{*}+\frac{1}{2} f^{*}$. By the triangular inequality, $f(L) \leq f(F \cup H)$ (why? - exercise 3). \square

Christofides' TSP Alg.

- Minimum cost spanning tree: polynomial algorithm
- Minimum cost matching: polynomial algorithm
- Rest of algorithm: polynomial number of steps
- \Rightarrow Polynomial approximation algorithm

Exercise 4

Find a 2-approximation algorithm for the TSP

(Hint. Consider the algorithm: (i) let T be a min spanning tree of G (ii) duplicate each edge of T to obtain T^{\prime} (iii) perform step (5) of Christofides' algorithm on T^{\prime} to obtain L. Show that L is a Hamiltonian cycle in G of cost $\leq 2 f^{*}$)

