

Scheduling and Optimization Course (MPRI)

Leo Liberti

LIX, École Polytechnique, France

MPRI Scheduling and optimization: lecture 1 - p. 1/26

Teachers

- Christoph Dürr http://www.lix.polytechnique.fr/~durr Refer to Christoph for any information
- Philippe Baptiste http://www.lix.polytechnique.fr/~baptiste
- Leo Liberti

http://www.lix.polytechnique.fr/~liberti

Scheduling

- Schedule n tasks on m machines such that the sum of completion times is minimum
- Scheduling = assignment + ordering
- Additional constraints: given precedence on tasks, delays under certain circumstances, time windows...
- Many industrial applications
- Similar problems arise in project management

Network design

- Break an existing telecom network such that the subnetworks have as few interconnections as possible
- Happens when a huge telecom giant wants to sell off or sublet some subnetworks
- Associate a variable to each vertex i and partition h, arc presence can be modelled by quadratic term $x_{ih}x_{jk}$

Shortest paths

- Find a shortest path between two geographical points
- Variants: find shortest paths from one point to all others, find shortest paths among all pairs, find a set of k paths such that total length is shortest,
- Additional constraints: arc weights as travelling times, real time computation, dynamic arc weights evolve with traffic

Important concepts

- **Optimization:** given a point set X and an *objective function* $f: X \to \mathbb{R}$, find the *optimal solution* x^* attaining the minimum (or maximum) value f^* on X
- \checkmark X is called the feasible region
- Any point $x \in X$ is a feasible point
- Supposing $X \subseteq \mathbb{R}^n$, $x = (x_1, \ldots, x_n)$
- For $i \leq n$, x_i is a problem variable
- Any numerical constant on which f, X depend is a problem parameter

Main optimization problem classes

- X is usually of the form $\mathbb{R}^{n-k} \times \mathbb{Z}^k$
- k = 0: continuous problem, k = n: integer program;
 otherwise, mixed-integer problem
- If $X = \{x \in Y \mid \forall i \le m \ (g_i(x) \le 0)\}$, $g_i : Y \to \mathbb{R}$ are the constraints
 - f, g_i linear & k = 0: Linear Programming (LP)
 - f, g_i linear & k > 0: Mixed-Integer Linear Programming (MILP)
 - f, g_i nonlinear & k = 0: NonLinear Programming (NLP)
 - f, g_i nonlinear & k > 0: Mixed-Integer NonLinear Programming (MINLP)

Transportation problem

Let x_{ij} be the (discrete) number of product units transported from plant $i \le m$ to customer $j \le n$ with respective unit transportation cost c_{ij} from plant i to customer j.

Problem: find x minimizing the total cost, subject to production limits l_i at plant i and demand d_j at customer j.

Facility Location problem

Let $x_i = 1$ if a servicing facility will be built on geographical region $i \le m$ and 0 otherwise. The cost of building a facility on region i is c_i , and $a_{ij} = 1$ if a facility on region i can serve town $j \le n$, and 0 otherwise.

Problem: find $x \in \{0, 1\}^m$ so that each town is serviced by at least one facility and the total cost is minimum.

$$\min_{x} \sum_{\substack{i=1\\m}}^{m} c_{i} x_{i}$$

$$\forall j \le n \sum_{i=1}^{m} a_{ij} x_{i} \ge 1$$

$$\forall i \le m \qquad x_{i} \in \mathbb{Z}_{+}$$

Travelling Salesman problem

A travelling salesman must visit n cities; each city must be visited exactly once.

Problem: find the visit order so that the total distance is minimized.

TSP Formulation I

Let c_{ij} be the distance from city *i* to city *j*, and $x_{ij} = 1$ if the travelling salesman goes from city *i* to city *j* and 0 otherwise.

$$\min_{x} \qquad \sum_{\substack{i \neq j \leq n \\ i \neq j \leq n \\ \forall i \leq n \\ \forall j \leq n \\ i \neq j \leq n \\ \forall i \neq j \leq n \\ \forall i \neq j \leq n \\ \forall i \neq j \leq n \\ x_{ij} \in \{0, 1\} }$$

Exponentially many constraints!

TSP Formulation II

$$\min \sum_{\substack{i \neq j \leq n \\ i \neq j \leq n}} c_{ij} x_{ij} = 1$$

$$\forall i \leq n \qquad \sum_{\substack{j \leq n \\ i \leq n}} x_{ij} = 1$$

$$\forall i \neq j \leq n, i, j \neq 1 \quad u_i - u_j + 1 \quad \leq \quad (n-1)(1-x_{ij})$$

$$\forall i \neq j \leq n \qquad x_{ij} \in \quad \{0,1\}$$

$$\forall i > 2 \qquad u_i \in \quad \{2,\ldots,n\}$$

$$u_1 = 1.$$

Only polynomially many constraints Is this a valid formulation? Does it describe Hamiltonian cycles?

- $x_{14} = x_{43} = x_{32} = x_{21} = 1$, all other $x_{ij} = 0$
- **•** set, for example: $u_1 = 1$, $u_2 = 4$, $u_3 = 3$, $u_4 = 2$
- for $(i, j) \in \{(4, 3), (3, 2)\}$, constraints reduce to $u_i u_j \le -1$:

 $u_4 - u_3 = 2 - 3 = -1$, $u_3 - u_2 = 3 - 4 = -1$ OK

• for all other i, j constraints also valid

Formulations and reformulations

Defn. A formulation is a pair (f, X)

Defn. A formulation (h, Y) is a *reformulation* of (f, X) if there is a function $\phi : Y \to X$ such that for each optimum y^* of (h, Y) there is a corresponding optimum $x^* = \phi(y^*)$ of (f, X) and $h^* = f^*$.

Thm. TSP2 reformulates TSP1.

Reformulation proof

Proof. By contradiction, suppose \exists a point (x, u) feasible in TSP2 s.t. x represents two disjoint cycles. Let C = (V, A) be the cycle not containing vertex 1, and let q = |A| > 0. If all constraints are satisfied, then arbitrary sums of constraints must also be satisfied. Summing constraints

$$u_j \ge u_i + 1 - (n-1)(1 - x_{ij})$$

over A, since $x_{ij} = 1$ for all $(i, j) \in A$, we obtain

$$\sum_{j \in V} u_j \ge \sum_{i \in V} u_i + q,$$

whence $q \le 0$, contradicting q > 0. Therefore every feasible point in TSP2 represents a cycle of length n in the graph. Since $f \equiv h$, the function ϕ sending each point (x, u) in TSP2 to the corresponding point x in TSP1 is a reformulation.

Prove that TSP1 reformulates TSP2

(Hint: show that given an optimum x^* for TSP1, there exists u^* such that (x^*, u^*) is feasible in TSP2. Why is this sufficient to show that TSP1 reformulates TSP2?)

Solution algorithms

• Exact (provide a guarantee of optimality or ε -optimality for given $\varepsilon > 0$ (in nonlinear continuous problems)

Simplex Algorithm, Branch and Bound

Approximation algorithms (provide a guarantee on the solution quality)

Christofides' TSP Approximation Algorithm

Heuristic algorithms (do not provide any guarantee, but common sense suggests solution would be good)

Variable Neighbourhood Search

Approximation algorithms

- Let \overline{f} be the objective function value at the solution \overline{x} provided by the appr. alg.
- Alg. is a k-approximation algorithm for a minimization problem if $\bar{f} \leq k f^*$
- How could we ever prove this without knowing f^* ???
- Notation: given an undirected graph G = (V, E) let $\overline{\delta}(v)$ be the set of edges in *E* adjacent to *v* ∈ *V*

Christofides' TSP Alg. I

- ³/₂-approximation algorithm for the metric TSP (i.e. distances obey a triangular inequality)
- Consider a complete graph G = (V, E) weighted by $c: E \to \mathbb{R}$, aim to find a "reasonably short" Hamiltonian cycle in *G*

8

Christofides' TSP Alg. II

(1) Let T = (V, F) be a spanning tree of G (connected subgraph covering V) of minimum cost

Christofides' TSP Alg. III

(3) Let $M = (\overline{V}, H)$ be a matching of $(\overline{V}, E(\overline{V}))$ of minimum cost

(4) Let $L = F \cup H$, and $K = T \cup M = (V, L)$. This is a Eulerian cycle (i.e. passing through each edge exactly once) because by definition $|\overline{\delta}(v) \cap L| \mod 2 = 0$

Christofides' TSP Alg. IV

(5) For each v s.t. $\beta(v) = |\overline{\delta}(v) \cap L| > 2$, pick $\frac{\beta(v)}{2} - 1$ distinct pairs of distinct vertices u, w adjacent to v and set $L \leftarrow L \smallsetminus \{\{u, v\}, \{v, w\}\} \cup \{u, w\}$

Christofides' TSP Alg. V

The Hamiltonian cycle found with Christofides' approximation algorithm (left) and the optimal one (right)

Christofides' TSP Alg.VI

Lemma. L is a Hamiltonian cycle in G (Exercise 2)

Thm. Let \overline{f} be the cost of L and f^* be the cost of an optimal Hamiltonian cycle. Then $\overline{f} \leq \frac{3}{2}f^*$

Proof. For a set of edges $S \subseteq E$, let $f(S) = \sum_{\{i,j\}\in S} c_{ij}$. Every Hamiltonian cycle (including the optimal one) can be seen as a spanning tree union an edge. Since *T* is of minimum cost, $f(F) \leq f^*$. On the other hand, each Hamiltonian cycle is also a 2-matching (each vertex is adjacent to precisely two other vertices), and *M* is of minimum cost, $2f(H) \leq f^*$. Therefore $f(F \cup H) = f(F) + f(H) \leq f^* + \frac{1}{2}f^*$. By the triangular inequality, $f(L) \leq f(F \cup H)$ (why? — exercise 3). \Box

Christofides' TSP Alg.

- Minimum cost spanning tree: polynomial algorithm
- Minimum cost matching: polynomial algorithm
- Rest of algorithm: polynomial number of steps
- \blacksquare \Rightarrow Polynomial approximation algorithm

Find a 2-approximation algorithm for the TSP

(Hint. Consider the algorithm: (i) let T be a min spanning tree of G (ii) duplicate each edge of T to obtain T' (iii) perform step (5) of Christofides' algorithm on T' to obtain L. Show that L is a Hamiltonian cycle in G of cost $\leq 2f^*$)