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Why shortest paths?

Several real-life situation can be modeled as networks
◮ Road networks
◮ Telecommunications networks
◮ Logistics
◮ Etc...
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Why shortest paths?

Computing point-to-point shortest paths is of great interest to many
users:

◮ GPS devices with path computing capabilities
◮ Many web sites provide users with route planners
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Formulation

We can formulate the problems as follows:

(SP) :

z = min
∑

(i ,j)∈A

cijxij

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 1 for i = s

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 0 for i ∈ V \ {s, t}

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = −1 for i = t

xij ≥ 0 for (i , j) ∈ A

x ∈ Z
|A|

where xij = 1 if (i , j) is in the shortest s → t path.
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Complexity

(SP) is an integer program

Should be very difficult to solve, but we know that it is very easy in
practice

This is not the only case where we are “lucky”

Let us investigate the reason
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Easy Integer Programs

Consider the problem (IP):

min{cx : Ax ≤ b, x ∈ Z
n
+}

with integral data A, b

We know that a BFS will have the form x = (xB , xN) = (B−1b, 0)
where B is an m × m nonsingular submatrix of (A, I ) and I is an
m × m identity matrix.
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Easy Integer Programs

Observation:

If the optimal basis B has det(B) = ±1, then the linear programming
relaxation solves (IP)

Proof: From Cramer’s rule, B−1 = adj(B)/det(B) where adj(B) is the
adjugate matrix Bij = (−1i+j)Mij . adj(B) is integral, and as det(B) = ±1
we have B−1 integral ⇒ B−1b is integral for all integral b.

Giacomo Nannicini (LIX) Shortest Paths Algorithms 15/11/2007 10 / 53



Totally Unimodular Matrices

Definition:

A matrix A is totally unimodular (TU) if every square submatrix of A has
determinant +1,−1 or 0.

If A is TU, aij ∈ {+1,−1,−} ∀i , j .

Examples:

(

1 −1
1 1

)









1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0








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Totally Unimodular Matrices

Proposition:

A is TU ⇔ AT is TU ⇔ (A, I ) is TU.

Sufficient Condition:

A matrix A is TU if:

1 aij ∈ {+1,−1, 0} ∀i , j .

2 Each column contains at most two nonzero coefficients.

3 There exists a partition (M1, M2) of the set M of rows such that each
column j containing two nonzero coefficients satisfies
∑

i∈M1
aij −

∑

i∈M2
aij = 0.
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Minimum Cost Network Flows

Consider a digraph G = (V , A) with arc capacities hij ∀(i , j) ∈ A,
demands bi (positive inflows or negative outflows) at each node
i ∈ V , unit flow costs cij ∀(i , j) ∈ A.

The minimum cost network flow problem is to find a feasible flow
that satisfies all the demands at minimum cost.

(MCNF ) :

z = min
∑

(i ,j)∈A

cijxij

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = bi for i ∈ V

0 ≤ xij ≤ hij for (i , j) ∈ A

where xij denotes the flow in arc (i , j).

The problem is feasible only if
∑

i∈V bi = 0
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Example

1

2 3

6

54

2

3

0 0

5

4

x12 x14 x23 x31 x32 x35 x36 x45 x51 x53 x65

1 1 0 -1 0 0 0 0 -1 0 0 = 3
-1 0 1 0 -1 0 0 0 0 0 0 = 0
0 0 -1 1 1 1 1 0 0 -1 0 = 0
0 -1 0 0 0 0 0 1 0 0 0 = -2
0 0 0 0 0 -1 0 -1 1 1 -1 = 4
0 0 0 0 0 0 -1 0 0 0 1 = -5

0 ≤ xij ≤ hij .
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Minimum Cost Network Flows

Proposition:

The constraint matrix A arising in a minimum cost network flow problem
is totally unimodular.

Proof: The matrix A is of the form

(

C

I

)

, where C comes from the flow

conservation constraints, and I from the capacity constraints. Therefore
we only have to show that C is TU. This follows from the sufficient
condition above, with the partition M1 = M and M2 = ∅.
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(MCNF ) Is An Easy Problem

Corollary:

In a (MCNF ) problem, if bi and hij are integral, then each extreme point
is integral.

Each time that we have a network flow problem with the constraints
in the form above, we know that the solution is integral.

It is a situation that is frequently found when modeling problems on
networks.
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(SP) Is An Easy Problem

(SP) :

z = min
∑

(i ,j)∈A

cijxij

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 1 for i = s

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = 0 for i ∈ V \ {s, t}

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = −1 for i = t

xij ≥ 0 for (i , j) ∈ A

x ∈ Z
|A|

It is clearly a (MCNF ) ⇒ integral solution!
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The Shortest Path Tree Problem

Suppose we want to compute the shortest path from a source node s

to all other nodes v ∈ V .

Formulation:

(SPT ) :

z = min
∑

(i ,j)∈A

cijxij

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = |V | − 1 for i = s

∑

k∈δ+(i)

xik −
∑

k∈δ−(i)

xki = −1 for i ∈ V \ {s}

xij ≥ 0 for (i , j) ∈ A

x ∈ Z
|A|

where xij ≥ 0 if (i , j) is an arc of the SPT rooted at s.
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Dijkstra’s Algorithm

The Shortest Path Problem can be solved with purely combinatorial
algorithms.

The most famous one: Dijkstra’s algorithm.

Idea: explore nodes, starting from the nearest to the source node s, in
a “ball” centered at s.
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Dijkstra’s Algorithm

Let s be the source node, Q be the queue of explored nodes, d [v ] be
the tentative distance of v from s, p[v ] be the tentative parent node
of v on the shortest s → v path.

Initialize: Q ← ∅, d [v ] ← ∞ ∀v ∈ V \ {s}, p[v ] ← NIL ∀v ∈
V \ {s}, d [s] ← 0, p[s] ← s. We say that nodes in Q are explored.

Algorithm:
1 Extract i ← arg minv∈Q{d [v ]} (we say that i is settled).
2 For each j ∈ δ+(i) : d [i ] + cij < d [j ] set

Q ← Q ∪ {j}, d [j ] ← d [i ] + cij , p[j ] ← i .
3 Repeat until a stopping criterion is met.

Commonly used stopping criteria:
◮ As soon as a target node t is settled.
◮ When Q is empty.
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Example

t

1

1

3

2

3

6

3

2

4

2
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d
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c
s

2

4
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Example

t

1

1

3
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3
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3
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2
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c
s

4

2

Priority Queue:

e ← 1

a ← 2

c ← 3
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t
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Example

t
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Example

t
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a
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b ← 5

f ← 5
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Example
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Example
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Goal Directed Search: A∗

Same principle as Dijkstra’s algorithm: extract minimum from a
queue, explore adjacent nodes, update labels, repeat.

Main difference: add to the key of the priority queue a potential
function π(v) which estimates d(v , t).

If π(v) ≤ d(v , t) ∀v then A∗ computes shortest paths.

If π(v) is a good estimation of d(v , t), A∗ explores considerably fewer
nodes than Dijkstra’s algorithm.
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Goal Directed Search: A∗
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Goal Directed Search: A∗
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Goal Directed Search: A∗

t
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Priority Queue:

e ← 1 + π(e)

a ← 2 + π(a)

c ← 3 + π(c)
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Goal Directed Search: A∗

t
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Goal Directed Search: A∗
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Goal Directed Search: A∗
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Goal Directed Search: A∗
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Goal Directed Search: A∗

Dijkstra’s algorithm A∗
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A Good Lower Bound

The quality of π(v) is critic for performances: the closer to d(v , t),
the better.

On an Euclidean plane, we can use the standard Euclidean distance to
compute potentials.

Idea ([Goldberg and Harrelson, 2004]): use a few nodes as landmarks
to compute distances within the graph.

Then triangle inequality comes to our help.
◮ ALT algorithm: A∗, Landmarks, Triangle inequality.
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A Good Lower Bound
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A Good Lower Bound

Suppose we have a set L ⊂ V of landmarks, i.e. we know
d(v , ℓ), d(ℓ, v) ∀v ∈ V , ℓ ∈ L.

Then we have d(v , ℓ) ≤ d(v , t) + d(t, ℓ) and
d(ℓ, t) ≤ d(ℓ, v) + d(v , t) ∀v ∈ V , ℓ ∈ L.

Lower bounding function:

π(v) = max
ℓ∈L

max{d(v , ℓ) − d(t, ℓ), d(ℓ, t) − d(ℓ, v)}.

is a lower bound to d(v , t)∀v , t ∈ V .
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Bidirectional Search

Suppose we want to compute a point-to-point shortest path.

Main idea: explore nodes not only from the source, but also from
target node, using the reverse graph Ḡ = (V , Ā) where
(i , j) ∈ Ā ⇔ (j , i) ∈ A.

This will reduce the search space.
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Balancing the search

At each iteration, how do we choose between the forward and the
backward search?

Simple idea: alternate between the two searches at each iteration.

This works very well in practice.

Stopping criterion: stop as soon as there is a node v which has been
settled by both searches.

Theorem:

During bidirectional Dijkstra’s algorithm, suppose that v is the first node
that is settled by both searches. Then the shortest path from s to t passes
through v .
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Bidirectional A∗

In principle, we could bidirectionalize the A∗ algorithm, and it should
still work.

We can’t use the same stopping criterion! (Try to prove it)

Conservative idea:
◮ Keep the value β of the shortest s → t path found so far.
◮ This may be updated each time that we obtain a new meeting point.
◮ Suppose vf is the minimum element of the forward search queue, and

vb is the minimum element of the backward search queue. If
β ≤ d(s, vf ) + d(vb, t) then we can stop the search, and β is optimal.

We have to work on the potentials: we need πf (v) + πb(v) to be
constant ∀v ∈ V .
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Transit Node Routing

We can make the following two observations:
◮ The set of nodes such that at least one node appears on any

sufficiently long shortest path (transit nodes) is very small.
◮ For any s, t pair, the number of these “important” nodes that are

involved in a shortest path computation (access nodes) is very small.

Using these ideas, we can develop a very efficient algorithm.
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Transit Node Routing

Consider a set T ⊂ V of transit nodes, and an access mapping
A : V → 2T that maps a vertex to its access nodes set.

Consider a locality filter L : V × V → {true, false} that decides
whether an s → t query is local or not.

Property:

¬L(s, t) ⇒ d(s, t) = min
u∈A(s),v∈A(t)

{d(s, u) + d(u, v) + d(v , t)}.
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Transit Node Routing

Assume we have precomputed d(u, v) : u, v ∈ T .

Algorithm:
◮ If ¬L(s, t), compute d(s, t) as

d(s, t) = min{d(s, u) + d(u, v) + d(v , t)|u ∈ A(s), v ∈ A(t)}.

◮ Otherwise, use any other shortest paths algorithm.
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Transit Node Routing

A very efficient implementation [Sanders and Schultes, 2007] has been
presented at the 9th DIMACS Computational Challenge (late 2006).

It is based on the Highways Hierarchies algorithm [Sanders and
Schultes, 2005].

Average query times for the european road network: 5.6
microseconds, no more than a few hundreds microseconds in the
worst case.
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Exercises: AMPL

b

a

c

d e

f

3

4

5

21

3

23

1

Write model and data file for the SP problem for this network, with
source node: a and target node: f (use CPLEX: option solver

cplex;).

Write a run file that uses the model and data file to compute and
display the shortest path for each node pair in the network.

Modify those files to compute the SP tree rooted at each node.
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