Shortest Paths Algorithms

Giacomo Nannicini

LIX, École Polytechnique giacomon@lix.polytechnique.fr

15/11/2007

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 1 / 53

글 > - - - 글 >

- 2 Network Flows
- O Dijkstra's Algorithm

- 5 Bidirectional Search
- 6 State Of The Art For Road Networks

-

- 2 Network Flows
- 3 Dijkstra's Algorithm

- **Bidirectional Search**
- 6 State Of The Art For Road Networks

Giacomo Nannicini (LIX)

イロト イヨト イヨト イヨト

Why shortest paths?

- Several real-life situation can be modeled as networks
 - Road networks
 - Telecommunications networks
 - Logistics
 - ► Etc...

15/11/2007 4 / 53

くほう くほう

Why shortest paths?

- Computing point-to-point shortest paths is of great interest to many users:
 - GPS devices with path computing capabilities
 - Many web sites provide users with route planners

< ロ > < 同 > < 回 > < 回 > < 回

Formulation

• We can formulate the problems as follows:

$$(SP):$$

$$z = \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 1 \text{ for } i = s$$

$$\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 0 \text{ for } i \in V \setminus \{s, t\}$$

$$\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = -1 \text{ for } i = t$$

$$x_{ij} \ge 0 \text{ for } (i, j) \in A$$

$$x \in \mathbb{Z}^{|A|}$$

where $x_{ij} = 1$ if (i, j) is in the shortest $s \rightarrow t$ path.

Image: Image:

Complexity

- (SP) is an integer program
- Should be very difficult to solve, but we know that it is very easy in practice
- This is not the only case where we are "lucky"
- Let us investigate the reason

2 Network Flows

3 Dijkstra's Algorithm

- **Bidirectional Search**
- 6 State Of The Art For Road Networks

Giacomo Nannicini (LIX)

・ロト ・聞ト ・ヨト ・ヨト

Easy Integer Programs

• Consider the problem (*IP*):

$$\min\{cx: Ax \le b, x \in \mathbb{Z}_+^n\}$$

with integral data A, b

• We know that a BFS will have the form $x = (x_B, x_N) = (B^{-1}b, 0)$ where B is an $m \times m$ nonsingular submatrix of (A, I) and I is an $m \times m$ identity matrix.

Easy Integer Programs

Observation:

If the optimal basis *B* has $det(B) = \pm 1$, then the linear programming relaxation solves (*IP*)

Proof: From Cramer's rule, $B^{-1} = adj(B)/det(B)$ where adj(B) is the adjugate matrix $B_{ij} = (-1^{i+j})M_{ij}$. adj(B) is integral, and as $det(B) = \pm 1$ we have B^{-1} integral $\Rightarrow B^{-1}b$ is integral for all integral b.

Totally Unimodular Matrices

Definition:

A matrix A is totally unimodular (TU) if every square submatrix of A has determinant +1, -1 or 0.

• If A is TU, $a_{ij} \in \{+1, -1, -\} \ \forall i, j$.

• Examples:

Totally Unimodular Matrices

Proposition:

A is $\mathsf{TU} \Leftrightarrow A^T$ is $\mathsf{TU} \Leftrightarrow (A, I)$ is TU .

Sufficient Condition:

A matrix A is TU if:

1
$$a_{ij} \in \{+1, -1, 0\} \ \forall i, j.$$

- ② Each column contains at most two nonzero coefficients.
- There exists a partition (M₁, M₂) of the set M of rows such that each column j containing two nonzero coefficients satisfies ∑_{i∈M1} a_{ij} - ∑_{i∈M2} a_{ij} = 0.

Minimum Cost Network Flows

- Consider a digraph G = (V, A) with arc capacities h_{ij} ∀(i, j) ∈ A, demands b_i (positive inflows or negative outflows) at each node i ∈ V, unit flow costs c_{ij} ∀(i, j) ∈ A.
- The minimum cost network flow problem is to find a feasible flow that satisfies all the demands at minimum cost.

$$(MCNF):$$

$$z = \min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = b_i \text{ for } i \in V$$

$$0 \le x_{ij} \le h_{ij} \text{ for } (i,j) \in A$$

where x_{ij} denotes the flow in arc (i, j). • The problem is feasible only if $\sum_{i \in V} b_i = 0$

<i>x</i> ₁₂	<i>x</i> ₁₄	<i>x</i> ₂₃	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> 35	<i>x</i> ₃₆	<i>x</i> 45	<i>x</i> ₅₁	<i>x</i> 53	x ₆₅		
1	1	0	-1	0	0	0	0	-1	0	0	=	3
-1	0	1	0	-1	0	0	0	0	0	0	=	0
0	0	-1	1	1	1	1	0	0	-1	0	=	0
0	-1	0	0	0	0	0	1	0	0	0	=	-2
0	0	0	0	0	-1	0	-1	1	1	-1	=	4
0	0	0	0	0	0	-1	0	0	0	1	=	-5
$0 \leq x_{ij} \leq h_{ij}.$												ÉCOLE POLYTECHNIQUE

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Minimum Cost Network Flows

Proposition:

The constraint matrix A arising in a minimum cost network flow problem is totally unimodular.

Proof: The matrix A is of the form $\begin{pmatrix} C \\ I \end{pmatrix}$, where C comes from the flow conservation constraints, and I from the capacity constraints. Therefore we only have to show that C is TU. This follows from the sufficient condition above, with the partition $M_1 = M$ and $M_2 = \emptyset$.

(MCNF) Is An Easy Problem

Corollary:

In a (*MCNF*) problem, if b_i and h_{ij} are integral, then each extreme point is integral.

- Each time that we have a network flow problem with the constraints in the form above, we know that the solution is integral.
- It is a situation that is frequently found when modeling problems on networks.

(SP) Is An Easy Problem

$$(SP):$$

$$z = \min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = 1 \text{ for } i = s$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = 0 \text{ for } i \in V \setminus \{s,t\}$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = -1 \text{ for } i = t$$

$$x_{ij} \ge 0 \text{ for } (i,j) \in A$$

$$x \in \mathbb{Z}^{|A|}$$

• It is clearly a $(MCNF) \Rightarrow$ integral solution!

3.0

The Shortest Path Tree Problem

- Suppose we want to compute the shortest path from a source node s to all other nodes v ∈ V.
- Formulation:

$$(SPT):$$

$$z = \min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = |V| - 1 \text{ for } i = s$$

$$\sum_{k\in\delta^+(i)} x_{ik} - \sum_{k\in\delta^-(i)} x_{ki} = -1 \text{ for } i \in V \setminus \{s\}$$

$$x_{ij} \ge 0 \text{ for } (i,j) \in A$$

$$x \in \mathbb{Z}^{|A|}$$

where $x_{ij} \ge 0$ if (i, j) is an arc of the SPT rooted at s.

- 2 Network Flows
- O Dijkstra's Algorithm

- Bidirectional Search
- 6 State Of The Art For Road Networks

A B b

< 67 ▶

Dijkstra's Algorithm

- The Shortest Path Problem can be solved with purely combinatorial algorithms.
- The most famous one: Dijkstra's algorithm.
- Idea: explore nodes, starting from the nearest to the source node *s*, in a "ball" centered at *s*.

Dijkstra's Algorithm

- Let s be the source node, Q be the queue of explored nodes, d[v] be the tentative distance of v from s, p[v] be the tentative parent node of v on the shortest s → v path.
- Initialize: $Q \leftarrow \emptyset, d[v] \leftarrow \infty \forall v \in V \setminus \{s\}, p[v] \leftarrow NIL \forall v \in V \setminus \{s\}, d[s] \leftarrow 0, p[s] \leftarrow s$. We say that nodes in Q are explored.
- Algorithm:
 - **Q** Extract $i \leftarrow \arg\min_{v \in Q} \{d[v]\}$ (we say that i is settled).
 - ② For each $j \in \delta^+(i)$: $d[i] + c_{ij} < d[j]$ set $Q \leftarrow Q \cup \{j\}, d[j] \leftarrow d[i] + c_{ij}, p[j] \leftarrow i$.
 - Repeat until a stopping criterion is met.
- Commonly used stopping criteria:
 - As soon as a target node t is settled.
 - When Q is empty.

< ロト < 同ト < ヨト < ヨト

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 22 / 53

Priority Queue:

- e $\leftarrow 1$
- a ← 2
- c \leftarrow 3

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 23 / 53

Priority Queue:

- a ← 2
- c ← 3
- $\bullet \ f \leftarrow 7$

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

15/11/2007 24 / 53

Priority Queue:

- c \leftarrow 3
- b ← 6
- $\bullet \ f \leftarrow 7$

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

15/11/2007 25 / 53

Priority Queue:

- $b \leftarrow 5$
- $f \leftarrow 5$
- d \leftarrow 6

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

15/11/2007 26 / 53

Priority Queue: • $f \leftarrow 5$ • $d \leftarrow 6$

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

15/11/2007 27 / 53

Priority Queue:

- $\bullet \ \mathsf{d} \leftarrow \mathsf{6}$
- t ← 9

・ロト ・聞ト ・ヨト ・ヨト

Giacomo Nannicini (LIX)

15/11/2007 28 / 53

Priority Queue: • $t \leftarrow 7$

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 29 / 53

<≣>

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Priority Queue: \emptyset

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 30 / 53

<≣>

→ Ξ →

<⊡>

- 2 Network Flows
- 3 Dijkstra's Algorithm

- **Bidirectional Search**
- 6 State Of The Art For Road Networks

・ロト ・聞ト ・ヨト ・ヨト

- Same principle as Dijkstra's algorithm: extract minimum from a queue, explore adjacent nodes, update labels, repeat.
- Main difference: add to the key of the priority queue a potential function $\pi(v)$ which estimates d(v, t).
- If $\pi(v) \leq d(v,t) \quad \forall v$ then A^* computes shortest paths.
- If π(v) is a good estimation of d(v, t), A* explores considerably fewer nodes than Dijkstra's algorithm.

32 / 53

15/11/2007

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 33 / 53

・ロト ・聞ト ・ヨト ・ヨト

Priority Queue:

- e ← 1
- a ← 2
- c \leftarrow 3

< 注→ < 注→

4 AP

Giacomo Nannicini (LIX)

15/11/2007 34 / 53

Priority Queue:

Giacomo Nannicini (LIX)

15/11/2007 34 / 53

(B)

Priority Queue:

- c ← 7
- $e \leftarrow 8$
- a \leftarrow 10

A B F A B F

< □ > < ---->

Giacomo Nannicini (LIX)

15/11/2007 35 / 53

Priority Queue:

- $\bullet \ \mathsf{d} \leftarrow \mathsf{7}$
- $e \leftarrow 8$
- f ← 8
- $\bullet \ b \leftarrow 9$
- $\bullet \ \mathsf{a} \leftarrow 10$

- < ≣ >

< m

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 36 / 53

→

Priority Queue:

- t ← 7
- e ← 8
- f ← 8
- $\bullet \ b \leftarrow 9$
- $\bullet \ \mathsf{a} \leftarrow 10$

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 37 / 53

→

- **→ →**

< m

Priority Queue:

- e ← 8
- f ← 8
- $\bullet \ b \leftarrow 9$
- a \leftarrow 10

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

15/11/2007 38 / 53

→

- **→ →**

< m

Giacomo Nannicini (LIX)

15/11/2007 39 / 53

3.0

A Good Lower Bound

- The quality of π(v) is critic for performances: the closer to d(v, t), the better.
- On an Euclidean plane, we can use the standard Euclidean distance to compute potentials.
- Idea ([Goldberg and Harrelson, 2004]): use a few nodes as landmarks to compute distances within the graph.
- Then triangle inequality comes to our help.
 - ► ALT algorithm: *A**, Landmarks, Triangle inequality.

A Good Lower Bound

Giacomo Nannicini (LIX)

15/11/2007 41 / 53

<ロ> (日) (日) (日) (日) (日)

A Good Lower Bound

- Suppose we have a set L ⊂ V of landmarks, i.e. we know d(v, ℓ), d(ℓ, v) ∀v ∈ V, ℓ ∈ L.
- Then we have $d(v, \ell) \le d(v, t) + d(t, \ell)$ and $d(\ell, t) \le d(\ell, v) + d(v, t) \quad \forall v \in V, \ell \in L.$

Lower bounding function:

$$\pi(\mathbf{v}) = \max_{\ell \in L} \max\{d(\mathbf{v}, \ell) - d(t, \ell), d(\ell, t) - d(\ell, \mathbf{v})\}.$$

is a lower bound to $d(v, t) \forall v, t \in V$.

- 2 Network Flows
- 3 Dijkstra's Algorithm

Giacomo Nannicini (LIX)

- < 注 → - < 注 →

< 🗇 🕨

Bidirectional Search

- Suppose we want to compute a point-to-point shortest path.
- Main idea: explore nodes not only from the source, but also from target node, using the reverse graph $\overline{G} = (V, \overline{A})$ where $(i, j) \in \overline{A} \Leftrightarrow (j, i) \in A.$
- This will reduce the search space.

Balancing the search

- At each iteration, how do we choose between the forward and the backward search?
- Simple idea: alternate between the two searches at each iteration.
- This works very well in practice.
- Stopping criterion: stop as soon as there is a node *v* which has been settled by both searches.

Theorem:

During bidirectional Dijkstra's algorithm, suppose that v is the first node that is settled by both searches. Then the shortest path from s to t passes through v.

Bidirectional A*

- In principle, we could bidirectionalize the A* algorithm, and it should still work.
- We can't use the same stopping criterion! (Try to prove it)
- Conservative idea:
 - Keep the value β of the shortest $s \rightarrow t$ path found so far.
 - This may be updated each time that we obtain a new meeting point.
 - Suppose v_f is the minimum element of the forward search queue, and v_b is the minimum element of the backward search queue. If $\beta \leq d(s, v_f) + d(v_b, t)$ then we can stop the search, and β is optimal.
- We have to work on the potentials: we need π_f(v) + π_b(v) to be constant ∀v ∈ V.

6 State Of The Art For Road Networks

(人間) とうき くうう

- We can make the following two observations:
 - The set of nodes such that at least one node appears on any sufficiently long shortest path (*transit nodes*) is very small.
 - For any s, t pair, the number of these "important" nodes that are involved in a shortest path computation (access nodes) is very small.
- Using these ideas, we can develop a very efficient algorithm.

- Consider a set $\mathcal{T} \subset V$ of transit nodes, and an access mapping $\mathcal{A}: V \to 2^{\mathcal{T}}$ that maps a vertex to its access nodes set.
- Consider a locality filter L : V × V → {true, false} that decides whether an s → t query is local or not.

Property:

$$\neg \mathcal{L}(s,t) \Rightarrow d(s,t) = \min_{u \in \mathcal{A}(s), v \in \mathcal{A}(t)} \{ d(s,u) + d(u,v) + d(v,t) \}.$$

- Assume we have precomputed $d(u, v) : u, v \in \mathcal{T}$.
- Algorithm:
 - If $\neg \mathcal{L}(s, t)$, compute d(s, t) as

 $d(s,t) = \min\{d(s,u) + d(u,v) + d(v,t) | u \in \mathcal{A}(s), v \in \mathcal{A}(t)\}.$

Otherwise, use any other shortest paths algorithm.

- A very efficient implementation [Sanders and Schultes, 2007] has been presented at the 9th DIMACS Computational Challenge (late 2006).
- It is based on the Highways Hierarchies algorithm [Sanders and Schultes, 2005].
- Average query times for the european road network: 5.6 microseconds, no more than a few hundreds microseconds in the worst case.

- 2 Network Flows
- 3 Dijkstra's Algorithm

- **Bidirectional Search**
- 6 State Of The Art For Road Networks

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Exercises: AMPL

- Write model and data file for the SP problem for this network, with source node: *a* and target node: *f* (use CPLEX: option solver cplex;).
- Write a run file that uses the model and data file to compute and display the shortest path for each node pair in the network.
- Modify those files to compute the SP tree rooted at each node.

