Shortest Paths Algorithms

Giacomo Nannicini

LIX, École Polytechnique
giacomon@lix.polytechnique.fr

15/11/2007
(1) Problem definition
(2) Network Flows
(3) Dijkstra's Algorithm
(4) A^{*}
(5) Bidirectional Search
(6) State Of The Art For Road Networks
(7) Exercises

(1) Problem definition

(2) Network Flows
(3) Dijkstra's Algorithm
(5) Bidirectional Search

6 State Of The Art For Road Networks
(7) Exercises

Why shortest paths?

- Several real-life situation can be modeled as networks
- Road networks
- Telecommunications networks
- Logistics
- Etc...

Why shortest paths?

- Computing point-to-point shortest paths is of great interest to many users:
- GPS devices with path computing capabilities
- Many web sites provide users with route planners

Web Images Video News Maps Gmail more ${ }^{*}$
Google

Formulation

- We can formulate the problems as follows:

$$
\begin{aligned}
&(S P): \\
& z=\min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=1 \text { for } i=s \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=0 \text { for } i \in V \backslash\{s, t\} \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=-1 \text { for } i=t \\
& x_{i j} \geq 0 \text { for }(i, j) \in A \\
& x \in \mathbb{Z}^{|A|}
\end{aligned}
$$

where $x_{i j}=1$ if (i, j) is in the shortest $s \rightarrow t$ path.

Complexity

- (SP) is an integer program
- Should be very difficult to solve, but we know that it is very easy in practice
- This is not the only case where we are "lucky"
- Let us investigate the reason

(1) Problem definition

(2) Network Flows
(3) Dijkstra's Algorithm
(5) Bidirectional Search

6 State Of The Art For Road Networks
(7) Exercises

Easy Integer Programs

- Consider the problem (IP):

$$
\min \left\{c x: A x \leq b, x \in \mathbb{Z}_{+}^{n}\right\}
$$

with integral data A, b

- We know that a BFS will have the form $x=\left(x_{B}, x_{N}\right)=\left(B^{-1} b, 0\right)$ where B is an $m \times m$ nonsingular submatrix of (A, I) and I is an $m \times m$ identity matrix.

Easy Integer Programs

Observation:

If the optimal basis B has $\operatorname{det}(B)= \pm 1$, then the linear programming relaxation solves (IP)

Proof: From Cramer's rule, $B^{-1}=\operatorname{adj}(B) / \operatorname{det}(B)$ where $\operatorname{adj}(B)$ is the adjugate matrix $B_{i j}=\left(-1^{i+j}\right) M_{i j}$. $\operatorname{adj}(B)$ is integral, and as $\operatorname{det}(B)= \pm 1$ we have B^{-1} integral $\Rightarrow B^{-1} b$ is integral for all integral b.

Totally Unimodular Matrices

Definition:

A matrix A is totally unimodular (TU) if every square submatrix of A has determinant $+1,-1$ or 0 .

- If A is TU, $a_{i j} \in\{+1,-1,-\} \forall i, j$.
- Examples:

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Totally Unimodular Matrices

Proposition:

A is $\mathrm{TU} \Leftrightarrow A^{T}$ is $\mathrm{TU} \Leftrightarrow(A, I)$ is TU .

Sufficient Condition:

A matrix A is TU if:
(1) $a_{i j} \in\{+1,-1,0\} \forall i, j$.
(2) Each column contains at most two nonzero coefficients.
(3) There exists a partition $\left(M_{1}, M_{2}\right)$ of the set M of rows such that each column j containing two nonzero coefficients satisfies $\sum_{i \in M_{1}} a_{i j}-\sum_{i \in M_{2}} a_{i j}=0$.

Minimum Cost Network Flows

- Consider a digraph $G=(V, A)$ with arc capacities $h_{i j} \forall(i, j) \in A$, demands b_{i} (positive inflows or negative outflows) at each node $i \in V$, unit flow costs $c_{i j} \forall(i, j) \in A$.
- The minimum cost network flow problem is to find a feasible flow that satisfies all the demands at minimum cost.

$$
\begin{gathered}
(M C N F): \\
z=\min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
\sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=b_{i} \text { for } i \in V \\
0 \leq x_{i j} \leq h_{i j} \text { for }(i, j) \in A
\end{gathered}
$$

where $x_{i j}$ denotes the flow in arc (i, j).

- The problem is feasible only if $\sum_{i \in V} b_{i}=0$

Example

$$
\begin{array}{rrrrrrrrrrrll}
x_{12} & x_{14} & x_{23} & x_{31} & x_{32} & x_{35} & x_{36} & x_{45} & x_{51} & x_{53} & x_{65} & \\
\hline 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & = & 3 \\
-1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & = & 0 \\
0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & = & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & = & -2 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 & 1 & -1 & = & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & = & -5
\end{array}
$$

$$
0 \leq x_{i j} \leq h_{i j}
$$

Minimum Cost Network Flows

Proposition:

The constraint matrix A arising in a minimum cost network flow problem is totally unimodular.

Proof: The matrix A is of the form $\binom{C}{I}$, where C comes from the flow conservation constraints, and I from the capacity constraints. Therefore we only have to show that C is TU. This follows from the sufficient condition above, with the partition $M_{1}=M$ and $M_{2}=\emptyset$.

(MCNF) Is An Easy Problem

Corollary:

In a (MCNF) problem, if b_{i} and $h_{i j}$ are integral, then each extreme point is integral.

- Each time that we have a network flow problem with the constraints in the form above, we know that the solution is integral.
- It is a situation that is frequently found when modeling problems on networks.

$(S P)$ Is An Easy Problem

$$
\begin{aligned}
&(S P): \\
& z=\min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=1 \text { for } i=s \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=0 \text { for } i \in V \backslash\{s, t\} \\
& \sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=-1 \text { for } i=t \\
& x_{i j} \geq 0 \text { for }(i, j) \in A \\
& x \in \mathbb{Z}^{|A|}
\end{aligned}
$$

- It is clearly a (MCNF) \Rightarrow integral solution!

The Shortest Path Tree Problem

- Suppose we want to compute the shortest path from a source node s to all other nodes $v \in V$.
- Formulation:

$$
\begin{gathered}
z=\min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
\sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=|V|-1 \text { for } i=s \\
\sum_{k \in \delta^{+}(i)} x_{i k}-\sum_{k \in \delta^{-}(i)} x_{k i}=-1 \text { for } i \in V \backslash\{s\} \\
x_{i j} \geq 0 \text { for }(i, j) \in A \\
x \in \mathbb{Z}^{|A|}
\end{gathered}
$$

where $x_{i j} \geq 0$ if (i, j) is an arc of the SPT rooted at s.
(2) Network Flows
(3) Dijkstra's Algorithm
(4) A^{*}
(5) Bidirectional Search

6 State Of The Art For Road Networks
(7) Exercises

Dijkstra's Algorithm

- The Shortest Path Problem can be solved with purely combinatorial algorithms.
- The most famous one: Dijkstra's algorithm.
- Idea: explore nodes, starting from the nearest to the source node s, in a "ball" centered at s.

Dijkstra's Algorithm

- Let s be the source node, Q be the queue of explored nodes, $d[v]$ be the tentative distance of v from $s, p[v]$ be the tentative parent node of v on the shortest $s \rightarrow v$ path.
- Initialize: $Q \leftarrow \emptyset, d[v] \leftarrow \infty \forall v \in V \backslash\{s\}, p[v] \leftarrow N I L \forall v \in$ $V \backslash\{s\}, d[s] \leftarrow 0, p[s] \leftarrow s$. We say that nodes in Q are explored.
- Algorithm:
(1) Extract $i \leftarrow \arg \min _{v \in Q}\{d[v]\}$ (we say that i is settled).
(2) For each $j \in \delta^{+}(i): d[i]+c_{i j}<d[j]$ set $Q \leftarrow Q \cup\{j\}, d[j] \leftarrow d[i]+c_{i j}, p[j] \leftarrow i$.
(3) Repeat until a stopping criterion is met.
- Commonly used stopping criteria:
- As soon as a target node t is settled.
- When Q is empty.

Example

Example

Priority Queue:

- $\mathrm{e} \leftarrow 1$
- $a \leftarrow 2$
- c $\leftarrow 3$

Example

Priority Queue:

- $a \leftarrow 2$
- $\mathrm{c} \leftarrow 3$
- $\mathrm{f} \leftarrow 7$

Example

> Priority Queue:
> - $\mathrm{c} \leftarrow 3$
> - $\mathrm{b} \leftarrow 6$
> - $\leftarrow \leftarrow 7$

Example

> Priority Queue:
> - $\mathrm{b} \leftarrow 5$
> - $\leftarrow \leftarrow 5$
> - $\mathrm{d} \leftarrow 6$

Example

> Priority Queue:
> of $\leftarrow 5$
> o $\mathrm{d} \leftarrow 6$
> o $t \leftarrow 9$

Example

> Priority Queue:
> o $\mathrm{d} \leftarrow 6$
> - $\mathrm{t} \leftarrow 9$

Example

Priority Queue:
 - $\mathrm{t} \leftarrow 7$

Example

Priority Queue: \emptyset

（1）Problem definition

（2）Network Flows
（3）Dijkstra＇s Algorithm
（4）A^{*}
（5）Bidirectional Search

6 State Of The Art For Road Networks
（7）Exercises

Goal Directed Search: A^{*}

- Same principle as Dijkstra's algorithm: extract minimum from a queue, explore adjacent nodes, update labels, repeat.
- Main difference: add to the key of the priority queue a potential function $\pi(v)$ which estimates $d(v, t)$.
- If $\pi(v) \leq d(v, t) \quad \forall v$ then A^{*} computes shortest paths.
- If $\pi(v)$ is a good estimation of $d(v, t), A^{*}$ explores considerably fewer nodes than Dijkstra's algorithm.

Goal Directed Search: A^{*}

Goal Directed Search: A^{*}

Priority Queue:

- $\mathrm{e} \leftarrow 1$
- a $\leftarrow 2$
- $c \leftarrow 3$

Goal Directed Search: A^{*}

Priority Queue:

- $\mathrm{e} \leftarrow 1+\pi(e)$
- $\mathrm{a} \leftarrow 2+\pi(a)$
- $c \leftarrow 3+\pi(c)$

Goal Directed Search: A^{*}

Priority Queue:

- $\mathrm{c} \leftarrow 7$
- e $\leftarrow 8$
- a $\leftarrow 10$

Goal Directed Search: A^{*}

Priority Queue:

- $d \leftarrow 7$
- $\mathrm{e} \leftarrow 8$
- $\mathrm{f} \leftarrow 8$
- $\mathrm{b} \leftarrow 9$
- $a \leftarrow 10$

Goal Directed Search: A^{*}

Priority Queue:

- $\mathrm{t} \leftarrow 7$
- $\mathrm{e} \leftarrow 8$
- $\mathrm{f} \leftarrow 8$
- $\mathrm{b} \leftarrow 9$
- $a \leftarrow 10$

Goal Directed Search: A^{*}

$$
\begin{gathered}
\text { Priority Queue: } \\
\text { - e } \leftarrow 8 \\
\text { of } \leftarrow 8 \\
\text { - } \mathrm{b} \leftarrow 9 \\
\text { - } \mathrm{a} \leftarrow 10
\end{gathered}
$$

Goal Directed Search: A^{*}

A^{*}

A Good Lower Bound

- The quality of $\pi(v)$ is critic for performances: the closer to $d(v, t)$, the better.
- On an Euclidean plane, we can use the standard Euclidean distance to compute potentials.
- Idea ([Goldberg and Harrelson, 2004]): use a few nodes as landmarks to compute distances within the graph.
- Then triangle inequality comes to our help.
- ALT algorithm: A^{*}, Landmarks, Triangle inequality.

A Good Lower Bound

A Good Lower Bound

- Suppose we have a set $L \subset V$ of landmarks, i.e. we know $d(v, \ell), d(\ell, v) \quad \forall v \in V, \ell \in L$.
- Then we have $d(v, \ell) \leq d(v, t)+d(t, \ell)$ and $d(\ell, t) \leq d(\ell, v)+d(v, t) \quad \forall v \in V, \ell \in L$.

Lower bounding function:

$$
\pi(v)=\max _{\ell \in L} \max \{d(v, \ell)-d(t, \ell), d(\ell, t)-d(\ell, v)\} .
$$

is a lower bound to $d(v, t) \forall v, t \in V$.

1) Problem definition

(2) Network Flows
(3) Dijkstra's Algorithm
(4) A^{*}
(5) Bidirectional Search

6 State Of The Art For Road Networks
(7) Exercises

Bidirectional Search

- Suppose we want to compute a point-to-point shortest path.
- Main idea: explore nodes not only from the source, but also from target node, using the reverse graph $\bar{G}=(V, \bar{A})$ where $(i, j) \in \bar{A} \Leftrightarrow(j, i) \in A$.
- This will reduce the search space.

Balancing the search

- At each iteration, how do we choose between the forward and the backward search?
- Simple idea: alternate between the two searches at each iteration.
- This works very well in practice.
- Stopping criterion: stop as soon as there is a node v which has been settled by both searches.

Theorem:

During bidirectional Dijkstra's algorithm, suppose that v is the first node that is settled by both searches. Then the shortest path from s to t passes through v.

Bidirectional A^{*}

- In principle, we could bidirectionalize the A^{*} algorithm, and it should still work.
- We can't use the same stopping criterion! (Try to prove it)
- Conservative idea:
- Keep the value β of the shortest $s \rightarrow t$ path found so far.
- This may be updated each time that we obtain a new meeting point.
- Suppose v_{f} is the minimum element of the forward search queue, and v_{b} is the minimum element of the backward search queue. If $\beta \leq d\left(s, v_{f}\right)+d\left(v_{b}, t\right)$ then we can stop the search, and β is optimal.
- We have to work on the potentials: we need $\pi_{f}(v)+\pi_{b}(v)$ to be constant $\forall v \in V$.

(1) Problem definition

(2) Network Flows
(3) Dijkstra's Algorithm
(4) A^{*}
(5) Bidirectional Search
(6) State Of The Art For Road Networks
(7) Exercises

Transit Node Routing

- We can make the following two observations:
- The set of nodes such that at least one node appears on any sufficiently long shortest path (transit nodes) is very small.
- For any s, t pair, the number of these "important" nodes that are involved in a shortest path computation (access nodes) is very small.
- Using these ideas, we can develop a very efficient algorithm.

Transit Node Routing

- Consider a set $\mathcal{T} \subset V$ of transit nodes, and an access mapping $\mathcal{A}: V \rightarrow 2^{\mathcal{T}}$ that maps a vertex to its access nodes set.
- Consider a locality filter $\mathcal{L}: V \times V \rightarrow\{$ true, false $\}$ that decides whether an $s \rightarrow t$ query is local or not.

Property:

$$
\neg \mathcal{L}(s, t) \Rightarrow d(s, t)=\min _{u \in \mathcal{A}(s), v \in \mathcal{A}(t)}\{d(s, u)+d(u, v)+d(v, t)\} .
$$

Transit Node Routing

- Assume we have precomputed $d(u, v): u, v \in \mathcal{T}$.
- Algorithm:
- If $\neg \mathcal{L}(s, t)$, compute $d(s, t)$ as

$$
d(s, t)=\min \{d(s, u)+d(u, v)+d(v, t) \mid u \in \mathcal{A}(s), v \in \mathcal{A}(t)\} .
$$

- Otherwise, use any other shortest paths algorithm.

Transit Node Routing

- A very efficient implementation [Sanders and Schultes, 2007] has been presented at the 9th DIMACS Computational Challenge (late 2006).
- It is based on the Highways Hierarchies algorithm [Sanders and Schultes, 2005].
- Average query times for the european road network: 5.6 microseconds, no more than a few hundreds microseconds in the worst case.

1) Problem definition

(2) Network Flows
(3) Dijkstra's Algorithm
(4) A^{*}
(5) Bidirectional Search

6 State Of The Art For Road Networks

(7) Exercises

Exercises: AMPL

- Write model and data file for the SP problem for this network, with source node: a and target node: f (use CPLEX: option solver cplex;).
- Write a run file that uses the model and data file to compute and display the shortest path for each node pair in the network.
- Modify those files to compute the SP tree rooted at each node.

