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Why shortest paths?

@ Several real-life situation can be modeled as networks
» Road networks
» Telecommunications networks
» Logistics
» Etc...
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Why shortest paths?

@ Computing point-to-point shortest paths is of great interest to many
users:

» GPS devices with path computing capabilities
» Many web sites provide users with route planners
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Formulation

@ We can formulate the problems as follows:

(SP) :
Z = min Z CijXij
(iJ)eA
Z Xik — Z Xki = lfori=s
kedst(i) ked— (i)
Z Xik — Z xii = Oforie V\{S,t}
kes+(i) kes— (i)
Z Xik — Z xi = —1lfori=1t
keat (i) kes—(i)
xj>0for(i,j) € A
x € ZA
where x;; = 1 if (i, /) is in the shortest s — t path. e taue
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Complexity

@ (SP) is an integer program
@ Should be very difficult to solve, but we know that it is very easy in
practice

@ This is not the only case where we are “lucky”

@ Let us investigate the reason
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© Network Flows
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Easy Integer Programs

o Consider the problem (/P):
min{cx : Ax < b,x € Z1} }

with integral data A, b

@ We know that a BFS will have the form x = (xg, xy) = (B~1b,0)
where B is an m x m nonsingular submatrix of (A, /) and / is an
m X m identity matrix.
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Easy Integer Programs

Observation:

If the optimal basis B has det(B) = £1, then the linear programming
relaxation solves (/P)

Proof: From Cramer’s rule, B~! = adj(B)/det(B) where adj(B) is the
adjugate matrix Bj = (—1")M;. adj(B) is integral, and as det(B) = +1
we have B! integral = B~!b is integral for all integral b.
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Totally Unimodular Matrices

Definition:
A matrix A is totally unimodular (TU) if every square submatrix of A has
determinant +1, —1 or 0.

o If Ais TU, aj € {+1,—1, -} Vi, j.

@ Examples:
1 -1 -1 0
1 -1 -1 0 0 1
(1 1 ) o0 1 0 -1
0 0 1 0
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Totally Unimodular Matrices

Proposition:
Ais TU & AT is TU & (A, 1) is TU.

Sufficient Condition:
A matrix A is TU if:
Q aj € {+1,-1,0} Vi,j.
@ Each column contains at most two nonzero coefficients.

© There exists a partition (M, My) of the set M of rows such that each
column j containing two nonzero coefficients satisfies

ZieMl ajj — ZieMz ajj = 0.
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Minimum Cost Network Flows

@ Consider a digraph G = (V, A) with arc capacities hj; V(i,j) € A,
demands b; (positive inflows or negative outflows) at each node
i € V, unit flow costs ¢; V(i,j) € A.

@ The minimum cost network flow problem is to find a feasible flow
that satisfies all the demands at minimum cost.

(MCNF)
Z = min Z CijXjj
(ij)eA
Z Xife — Z Xii = biforieV
kedt(i) ked— (i)

OSXUSh,'ijI“(I',j) € A

where x;; denotes the flow in arc (i, ).
@ The problem is feasible only if > ..\, bi =0 e TecHioue
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Example

X12 X114 X3 X31  X32 X35 X366 Xa5 X51 X53  Xg5

1 1 0 -1 0 0 0 0 -1 0 0 = 3
-1 0 1 0o -1 0 0 0 0 0 0 = 0
0 0 -1 1 1 1 1 0 0 -1 0 = 0
0 -1 0 0 0 0 0 1 0 0 0 = -2
0 0 0 0 0 -1 0 -1 1 1 -1 = 4
0 0 0 0 0 0 -1 0 0 0 1 = -5
0 < x;; < hj. el e
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Minimum Cost Network Flows

Proposition:

The constraint matrix A arising in a minimum cost network flow problem
is totally unimodular.

Proof: The matrix A is of the form (I: ) where C comes from the flow

conservation constraints, and / from the capacity constraints. Therefore
we only have to show that C is TU. This follows from the sufficient
condition above, with the partition M; = M and M, = .
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(MCNF) Is An Easy Problem

Corollary:

In a (MCNF) problem, if b; and hj; are integral, then each extreme point
is integral.

@ Each time that we have a network flow problem with the constraints
in the form above, we know that the solution is integral.

@ It is a situation that is frequently found when modeling problems on
networks.
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(SP) Is An Easy Problem

(5P) :
Z = min Z CijXjj
(ij)eA
Z Xik — Z Xki = lfori=s
kedt(i) ked—(i)
Z Xjk — Z xii = Oforie V\{S,t}
kedt(i) ked—(i)
Z Xik — Z X = —lfori=t
ked+(i) ke~ (i)
xj>0for (i,j) € A
x € ZA
@ It is clearly a (MCNF) = integral solution! alecimioue
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The Shortest Path Tree Problem

@ Suppose we want to compute the shortest path from a source node s
to all other nodes v € V.

@ Formulation:

(SPT) :
Z = min Z CijXij
(iJ)EA
Z Xik — Z Xki — |V|—1f01"i=$
kedt(i) ked— (i)
Z Xik — Z xxi = —1lforie V\{s}
kes+(i) kes—(i)
xj>0for (i,j) € A
x e Z\A
where x;; > 0 if (i,/) is an arc of the SPT rooted at s. e taue
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Dijkstra’s Algorithm

@ The Shortest Path Problem can be solved with purely combinatorial
algorithms.

@ The most famous one: Dijkstra’s algorithm.

@ Idea: explore nodes, starting from the nearest to the source node s, in
a “ball” centered at s.

b
V=
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Dijkstra’s Algorithm

@ Let s be the source node, Q be the queue of explored nodes, d[v] be
the tentative distance of v from s, p[v] be the tentative parent node
of v on the shortest s — v path.

o Initialize: Q « 0, d[v] < 0o Vv € V' \ {s},p[v] < NILVv €
V\ {s},d[s] < 0, p[s] < s. We say that nodes in Q are explored.

@ Algorithm:

@ Extract i — argmin,cg{d[v]} (we say that i is settled).
@ For each j € 67(i) : d[i] + ¢ < d[j] set
Q — QU{j}, dlj] « dli] + cj, plj] — /.
© Repeat until a stopping criterion is met.
@ Commonly used stopping criteria:

» As soon as a target node t is settled.
» When Q is empty.
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Example
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Example
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Priority Queue:
2e—1
a2
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6

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

[m]

=

Ecg
POLYTECHNIQUE
E z 9ac



Example

o

Giacomo Nannicini (LIX)

Shortest Paths Algorithms

Priority Queue:
® a2
oc<3
o f«—7

ECOLE
POLYTECHNIQUE

15/11/2007 24 / 53



Example
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Example
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Example

Priority Queue:

ot«—7
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Example

3 3 1 Priority Queue:
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Goal Directed Search: A*

@ Same principle as Dijkstra’s algorithm: extract minimum from a
queue, explore adjacent nodes, update labels, repeat.

@ Main difference: add to the key of the priority queue a potential
function 7(v) which estimates d(v, t).

o If m(v) < d(v,t) Vv then A* computes shortest paths.

o If w(v) is a good estimation of d(v, t), A* explores considerably fewer
nodes than Dijkstra’s algorithm.
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Goal Directed Search: A*

o
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Goal Directed Search: A*

L — 4
@\‘ Priority Queue:

@e«—1
1
@a«—2
2

@c+—3
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Goal Directed Search: A*

o
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Priority Queue:
°oe—1+m(e)
0 a«—2+m(a)
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Goal Directed Search: A*

= 4
@\‘ Priority Queue:

1 @oc«— 17
@ e«—38
2

@ a+—10
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Goal Directed Search: A*

@ , Priority Queue:
\—’ od«—7
<d>/1 e« 38

o f«—38
2 ob+—9

@ a«— 10
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Goal Directed Search: A*

3
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Goal Directed Search: A*
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Goal Directed Search: A*

I t

Dijkstra's algorithm A*

b
V=
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A Good Lower Bound

@ The quality of 7(v) is critic for performances: the closer to d(v, t),
the better.

@ On an Euclidean plane, we can use the standard Euclidean distance to
compute potentials.

o Idea ([Goldberg and Harrelson, 2004]): use a few nodes as landmarks
to compute distances within the graph.
@ Then triangle inequality comes to our help.
» ALT algorithm: A*, Landmarks, Triangle inequality.
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A Good Lower Bound
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A Good Lower Bound

@ Suppose we have a set L C V of landmarks, i.e. we know
d(v,0),d(¢,v) VveV,lel.

@ Then we have d(v, ) < d(v,t) + d(t,¢) and
d(¢,t) <d(,v)+d(v,t) YveV,lel.

Lower bounding function:
m(v) = max max{d(v,t) — d(t,0),d(¢,t) — d(¢,v)}.
€

is a lower bound to d(v,t)Vv,t € V.

ECOLE
POLYTECHNIQUE

Giacomo Nannicini (LIX) Shortest Paths Algorithms 15/11/2007 42 /53



© Bidirectional Search
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Bidirectional Search

@ Suppose we want to compute a point-to-point shortest path.

@ Main idea: explore nodes not only from the source, but also from
target node, using the reverse graph G = (V, A) where
(i,j)) e Ae(j,i) € A

@ This will reduce the search space.

I t

o
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Balancing the search

@ At each iteration, how do we choose between the forward and the
backward search?

@ Simple idea: alternate between the two searches at each iteration.
@ This works very well in practice.

@ Stopping criterion: stop as soon as there is a node v which has been
settled by both searches.

Theorem:

During bidirectional Dijkstra’s algorithm, suppose that v is the first node
that is settled by both searches. Then the shortest path from s to t passes
through v.

ECOLE
POLYTECHNIQUE

Giacomo Nannicini (LIX) Shortest Paths Algorithms 15/11/2007 45 / 53



Bidirectional A*

@ In principle, we could bidirectionalize the A* algorithm, and it should
still work.

@ We can't use the same stopping criterion! (Try to prove it)

@ Conservative idea:
» Keep the value (3 of the shortest s — t path found so far.
» This may be updated each time that we obtain a new meeting point.
» Suppose v¢ is the minimum element of the forward search queue, and
Vp is the minimum element of the backward search queue. If
B < d(s, vf)+ d(vp, t) then we can stop the search, and (3 is optimal.
@ We have to work on the potentials: we need m¢(v) + mp(v) to be
constant Vv € V.
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© State Of The Art For Road Networks
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Transit Node Routing

@ We can make the following two observations:

» The set of nodes such that at least one node appears on any
sufficiently long shortest path (transit nodes) is very small.

» For any s, t pair, the number of these “important” nodes that are
involved in a shortest path computation (access nodes) is very small.

@ Using these ideas, we can develop a very efficient algorithm.
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Transit Node Routing

@ Consider a set 7 C V of transit nodes, and an access mapping
AV — 27 that maps a vertex to its access nodes set.

@ Consider a locality filter £: V x V — {true,false} that decides
whether an s — t query is local or not.

Property:

—L(s,t) = d(s, t) = ueA(g)ﬂ\?eA(t){d(s’ u)+d(u,v)+d(v,t)}.
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Transit Node Routing

@ Assume we have precomputed d(u,v) : u,v € 7.
@ Algorithm:
> If =L(s,t), compute d(s, t) as

d(s,t) = min{d(s,u) + d(u,v) + d(v, t)|u € A(s),v € A(t)}.

» Otherwise, use any other shortest paths algorithm.

access node

distances be access node
transit nodes
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Transit Node Routing

@ A very efficient implementation [Sanders and Schultes, 2007] has been
presented at the 9th DIMACS Computational Challenge (late 2006).

@ It is based on the Highways Hierarchies algorithm [Sanders and
Schultes, 2005].

@ Average query times for the european road network: 5.6
microseconds, no more than a few hundreds microseconds in the
worst case.
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@ Exercises
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Exercises: AMPL

@ Write model and data file for the SP problem for this network, with

source node: a and target node: f (use CPLEX: option solver
cplex;).

@ Write a run file that uses the model and data file to compute and
display the shortest path for each node pair in the network.

@ Modify those files to compute the SP tree rooted at each node. t e
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