Operations Research - Mock examination paper ISC612

Philippe Baptiste, Leo Liberti, Ruslan Sadykov
LIX, École Polytechnique, F-91128 Palaiseau, France
Email:
{baptiste, liberti, sadykov
}@lix.polytechnique.fr

December 7, 2006

Here follows a list of OR exercises of the difficulty and type that is likely to arise in the exam.

1 Optimization on graphs

1. Apply Prim's algorithm to the graph $G=(V, E)$ below to find the spanning tree of minimum cost. Describe each step of the algorithm graphically. Now suppose the cost c_{45} on the edge $\{4,5\}$ is set to the value 12 . How can you modify the spanning tree so that it is optimal with respect to this edge cost change, without having to re-apply Prim's algorithm from the start? [Liberti]

2. Compute the cost of the Fundamental Cycle Basis associated to both spanning trees found in Exercise 1. Can you find a Fundamental Cycle Basis with lower cost? [Liberti]
3. Dijkstra's algorithm finds all shortest paths from a given root vertex to all other vertices on an directed graph. How do you proceed to apply it to an undirected graph? Apply Dijkstra's algorithm from root vertex 1 to the graph $G=(V, E)$ of Exercise 1. [Liberti]
4. Describe an algorithmic procedure to find a shortest path between two given vertices $s, t \in V$ on a weighted undirected graph $G=(V, E)$, and apply it to the graph of Exercise 1, first with $s=1, t=5$, then with $s=1, t=7$. [Liberti]
5. In the graph $G=(V, E)$ of Exercise 1 , let the cost c_{25} on the edge $\{2,5\}$ take the value -6 . What is the shortest path from vertex 1 to vertex 6 ? [Liberti]

2 Dynamic programming

No mock question was readied in this section. Either contact Philippe Baptiste directly, or just carry out some exercises on this subject in any operations research book.

3 Linear programming

1. Give the mathematical programming formulation of an optimization problem with exactly two distinct local minima whose objective function values are 0 and (respectively) 1. [Liberti]
2. Give the mathematical programming formulation of an optimization problem with variables vector $x \in \mathbb{R}^{3}$ whose feasible region has volume $\sqrt{2}$. [Liberti]
3. Write a linear programming formulation of a problem with infinitely many local minima. Are these minima also global? [Liberti]
4. Write a linear programming formulation of a problem in canonical form with variables vector $x \in \mathbb{R}^{2}$ where all the vertices of the feasible region are degenerate. [Liberti]
5. Given a polyhedron $K=\left\{x \in \mathbb{R}^{n} \mid A x=b \wedge x \geq 0\right\}$ in standard form, reformulate it to the corresponding polyhedron K^{\prime} in canonical form. [Liberti]
6. Find an example of a linear programming problem where the simplex algorithm passes from a basic feasible solution x to a feasible solution x^{\prime} where both x, x^{\prime} correspond to the same vertex of the feasible polyhedron. [Liberti]
7. Solve the linear programming problem

$$
\begin{align*}
\max 7 x_{1}+8 x_{2} & \tag{1}\\
x_{1}+2 x_{2}+x_{3} & =2 \tag{2}\\
2 x_{1}+x_{2} & \leq 2 \tag{3}\\
3 x_{1}+x_{2} & \leq 3 \tag{4}\\
\forall i \leq 3 x_{i} & \geq 0 . \tag{5}
\end{align*}
$$

Draw a picture in \mathbb{R}^{2} of its feasible region. [Liberti]
8. Write the dual of problem (1)-(5). Using the Karush-Kuhn-Tucker conditions, prove that the point $(0,0,2)$ of the problem is not optimal. [Liberti]

4 Integer Programming

1. Total unimodularity. Are the following matrices totally unimodular or not?

$$
A_{1}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{ccccccc}
-1 & & 1 & & -1 & & \\
& 1 & & 1 & 1 & & 1 \\
-1 & 1 & & & & & \\
& & 1 & & & 1 & 1 \\
& & & 1 & & -1 &
\end{array}\right)
$$

[Sadykov]

2. Convex hull. Consider the set $X=\left\{x \in \mathbb{Z}_{+}^{2}: x_{1}-x_{2} \geq-1,2 x_{1}+6 x_{2} \leq 15, x_{1}-x_{2} \leq\right.$ $\left.3,2 x_{1}+4 x_{2} \leq 7\right\}$. List and represent graphically the set of feasible points. Use this to find inequalities which describe the convex hull of X. [Sadykov]
3. Gomory inequalities. Prove that $x_{2}+x_{3}+2 x_{4} \leq 6$ is valid for

$$
X=\left\{x \in \mathbb{Z}_{+}^{4}: 4 y_{1}+5 y_{2}+9 y_{3}+12 y_{4} \leq 34\right\} .
$$

[Sadykov]

5 Modelling

Look at the exercises in Chapter 4 of the course's Exercise Book.

