
4OR manuscript No.
(will be inserted by the editor)

Compact linearization for binary quadratic
problems

Leo Liberti1

LIX, École Polytechnique, F-91128 Palaiseau, France

Received: 25th April 2006 / Revised version: ?

Abstract We show that a well-known linearization technique initially pro-
posed for quadratic assignment problems can be generalized to a broader
class of quadratic 0-1 mixed-integer problems subject to assignment con-
straints. The resulting linearized formulation is more compact and tighter
than that obtained with a more usual linearization technique. We discuss
the application of the compact linearization to three classes of problems
in the literature, among which the graph partitioning problem, where we
provide a computational study.

Keywords: binary quadratic problem – linearization – graph partitioning.

1 Introduction

Binary Quadratic Problems (BQP)s are NP-hard problems which are also
practically difficult to solve (although polynomially solvable instance classes
exist, see e.g. (Allemand et al., 2001)). However, because of the expressive
power of 0-1 products, BQPs have a wealth of applications (Padberg and
Rijal, 1996; Hammer and Rudeanu, 1968). Usually, 0-1 BQPs can be refor-
mulated exactly to MILPs with a large number of variables and constraints
(Fortet, 1960; Beasley, 1998). A complete treatment of linearizations for
some classes of BQPs can be found in (Padberg and Rijal, 1996), where
a very detailed polyhedral study of the problem polytope is performed for
some classes of BQPs.

Although the main factor to improve Branch-and-Bound (BB) solution
times of Integer Programming (IP) problems is usually the strength of for-
mulation (i.e. the bound tightness at each node), the size of formulation
is also important, since at every BB node a continuous relaxation of the



2 Leo Liberti

problem is solved with Linear Programming (LP) techniques, whose so-
lution times mainly depend on problem size. With respect to an existing
formulation, a formulation is compact if its formulation size is smaller.

In this paper, we present a compact linearization (with respect to the
usual linearization (Fortet, 1960)) for a class of BQPs subject to various
subsets of assignment constraints, and we discuss the strength of its con-
tinuous relaxation. The main idea behind this linearization is to multiply
subsets of linear constraints by subsets of problem variables and then to
linearize the products à la Reformulation-Linearization Technique (RLT)
(Sherali and Adams, 1986). The same idea had already been previously
used to propose a compact linearization of the Quadratic Assignment Prob-
lem (QAP) (Frieze and Yadegar, 1983), and eventually discussed in a more
formal RLT framework (Sherali and Brown, 1994). A related line of argu-
ment was pursued in (Sherali and Lee, 1996), focusing on the relaxation,
rather than on the linearization properties of the reformulation. A similar
linearization was applied to problems subject to knapsack (Caprara et al.,
1999) and packing (Caprara and Lancia, 2002) constraints, but its validity
depends the objective being the maximization a non-negatively weighted
sum of the products. The original contribution of the present paper is to
show that the same technique can be applied to linearize QPBs with assign-
ment constraints whose form is considerably more general than the QAP;
and furthermore, no restriction is imposed on the objective function.

In Section 2 we discuss the usual linearization employed for BQPs. In
Section 3 we discuss the compact linearization, show that it is equivalent
to the usual linearization and that its continuous relaxation is tighter. In
Section 4 we discuss the application of the compact linearization to three
well-known classes of problems, among which the Graph Partitioning

problem (GPP), where we perform a comparative computational study.
Throughout the paper, the following points hold: (a) if P is an opti-

mization problem, v(P ) is the optimal objective function value of P ; (b) all
products xixj are assumed ordered such that i ≤ j.

2 Usual linearization

Let x ∈ {0, 1}n be the problem variables, E the set of ordered index pairs
(i, j) (with 1 ≤ i ≤ j ≤ n) for which the product xixj is in the problem
formulation (with |E| = m), and w ∈ R

m
+ a set of non-negative linearization

variables where wij is used to replace the products xixj for all (i, j) ∈ E.
Let N = {1, . . . , n} and {Ik | k ∈ K} a covering of N , where K is an

index set whose cardinality is supposed bounded by a polynomial in n (for
if it were not, the original formulation would have more than polynomially
many constraints in n, and thus would likely solved with an altogether
different approach). A more realistic bound would be |K| ≤ n, given that



Compact linearization for binary quadratic problems 3

|K| is the size of a covering of {1, . . . , n}. We consider the following problem
P :

min
x,w

cTx + bTw (1)

g(x,w) ≤ 0 (2)

∀k ∈ K
∑

i∈Ik

xi = 1 (3)

∀(i, j) ∈ E wij = xixj (4)

∀i ∈ N xi ∈ {0, 1} (5)

∀(i, j) ∈ E wij ≥ 0 (6)

where c ∈ R
n and b ∈ R

m, and g is a vector of functions of x,w.
The linearization below, which we call usual linearization, was originally

proposed in (Fortet, 1960) and discussed in (Hammer and Rudeanu, 1968),
Sect. 7, Thm. 4. We reformulate problem P exactly to a MILP by introduc-
ing the following linearization constraints:

∀(i, j) ∈ E (wij ≤ xi) (7)

∀(i, j) ∈ E (wij ≤ xj) (8)

∀(i, j) ∈ E (wij ≥ xi + xj − 1), (9)

and removing the quadratic constraints (4). If either xi or xj is zero, then
by (6) and (7) or (8) we have wij = 0. If xi = xj = 1 then by (7) and (9)
wij = 1. Hence this is an exact reformulation, which we indicate with L1(P ).
This linearization implies the addition of 3m constraints to the formulation.

For practical purposes, it is a good idea to also introduce the constraints
wii = xi for all i ≤ n, which are always valid if wii linearizes the quadratic
term x2

i where xi ∈ {0, 1}. Furthermore, for the linearization to yield a
linear problem, it is required that g be a vector of linear functions of x,w.

3 Compact linearization

Let
F (K, I) = {(i, j) | (i, j) ∈

⋃

k∈K

(Ik × Ik) ∧ i ≤ j}, (10)

and F = F (K, I). We assume that the following covering condition holds:

E ⊆ F. (11)

We multiply (3) by xj (for j ∈ Ik) to form the following system:

∀k ∈ K, j ∈ Ik (
∑

i∈Ik

xixj = xj),



4 Leo Liberti

then substitute wij = xixj (recall the products are supposed to be ordered
i ≤ j) to get the following linear system:

∀k ∈ K, j ∈ Ik (
∑

i∈Ik
(i,j)∈F∨(j,i)∈F

wij = xj). (12)

We then form the problem L2(P ) by substituting constraints (7)-(9) in
L1(P ) with (12).

Theorem 1. Provided condition (11) holds, L2(P ) is an exact reformula-
tion of L1(P ).

Proof. By (12) we have

∀(i, j) ∈ F (wij ≤ xj) (13)

∀(i, j) ∈ F (wij ≤ xi), (14)

which by (11) imply (7)-(8). In order to simplify notation in the rest of the
proof, we are going to assume that wij are defined for i > j too, and that
wij = wji holds in such cases; (12) may then be written as:

∀k ∈ K, j ∈ Ik (
∑

i∈Ik

wij = xj). (15)

Any sum of (14) preserves the inequality sense, so:

∀k ∈ K, (i, j) ∈ F (
∑

f∈Ik\{i}

wfj ≤
∑

f∈Ik\{i}

xf ). (16)

We add and subtract wij from LHS of (16):

∀k ∈ K, (i, j) ∈ F (
∑

f∈Ik

wfj − wij ≤
∑

f∈Ik\{i}

xf ). (17)

We substitute xj =
∑

f∈Ik
wfj (which holds by (15)) in (17):

∀k ∈ K, (i, j) ∈ F (xj − wij ≤
∑

f∈Ik\{i}

xf ). (18)

We add and subtract xi from from RHS of (18):

∀k ∈ K, (i, j) ∈ F (xj − wij ≤
∑

f∈Ik

xf − xi). (19)

Finally, we substitute 1 =
∑

f∈Ik
xf (which holds by (3)) in (18):

∀k ∈ K, (i, j) ∈ F (xj − wij ≤ 1 − xi), (20)

which, by condition (11), establishes (9). ⊓⊔



Compact linearization for binary quadratic problems 5

3.1 Compactness

The number of added constraints (12) is R =
∑

k∈K |Ik|. The simplest worst
case analysis yields a constraint set size of O(n|K|), which, due to the size
of |K| (polynomial in n), may be worse than the 3m constraints added by
the usual linearization. In practice, however, assignment constraints turn
up in problems where the variables have several indices, and the assignment
constraint sums range over a proper subset of these indices. A reasonable
average case assumption is therefore that problem variables are arranged in
a d-dimensional array, and that the assignment constraints are sums ranging
over e-dimensional “slices” where e < d and indexed across the remaining

d − e dimensions. This gives rise to a set K of size O(n
d−e

d ) and sets Ik

of size O(n
e
d ). The number of added constraints (12), in this scenario, is

the product of the two sizes, i.e. O(n), which compares favourably with the
usual linearization.

In the GPP problem (see Section 4.1) and the QAP (see Section 4.3),
d = 2 and e = 1. In the scheduling problem of Section 4.2, we have d = 3
and e = 2. For Graph Partitioning, the decrease in formulation size can
be observed in the LC columns of Table 1.

3.2 Relaxation strength

Denote by Ri(P ) the continuous relaxation of the linearization Li(P ) for
i ∈ {1, 2}.

Corollary 1. The continuous relaxation of the compact linearization is at
least as tight as that of the usual linearization, i.e. v(R2(P )) ≥ v(R1(P )).

Proof. Notice that the proof of Thm. 1 never uses the fact that x are binary
variables. Therefore, we can use the same argument to prove that a point
in the feasible region of R2(P ) is also in the feasible region of R1(P ), which
immediately implies the result. ⊓⊔

That there are indeed cases when R2(P ) is strictly tighter than R1(P )
should appear clear from the BB column of Table 1 reporting the compar-
ative number of BB iterations to solve the listed instances with the two
different linearizations, which is almost always strictly smaller in favour of
the compact linearization.

4 Applications

In this section we shall present some applications of the compact lineariza-
tion described in this paper. We perform a computational study on the



6 Leo Liberti

GPP, we report briefly on a computational study (Davidović et al., 2004)
on the Multiprocessor Scheduling Problem with Communication Delays
(MSPCD), and we provide an alternative proof of the Frieze-Yadegar for-
mulation (Frieze and Yadegar, 1983) for the QAP.

4.1 Graph partitioning

The GPP, also called Min-k-Cut, is a well-known NP-hard problem that
has many applications in several fields (Hendrickson and Kolda, 2000; Bat-
titi and Bertossi, 1999). Many different formulations of varying sizes where
the clusters have maximal given cardinality have recently been proposed and
compared in (Boulle, 2004). A problem variant with node capacities has been
studied in (Ferreira et al., 1996). Given an undirected graph G = (V,H)
and an integer k ≤ |V |, the problem consists of finding a partition of k sub-
sets (clusters) of V minimizing the number of edges {i, j} where i, j belong
to different clusters. To each vertex i ∈ V and for each cluster h ≤ k, we
associate a binary variable xih which is 1 if vertex i is in cluster h and 0
otherwise. We formulate the problem as follows:

min
x

1
2

∑

h6=l≤k

∑

{i,j}∈H

xihxjl

∀i ∈ V
k
∑

h=1

xih = 1

∀h ≤ k
∑

i∈V

xih ≥ 1

∀i ∈ V, h ≤ k xih ∈ {0, 1}.































(21)

The usual linearization of this BQP involves the addition of k2|H| continu-
ous variables 0 ≤ wijhl ≤ 1 to the formulation, as well as the introduction

of 3|H|k(k−1)
2 linearization constraints of the form (7)-(9) (one for each

quadratic product wijhl = xihxjl, for all h 6= l, {i, j} ∈ H — keeping in
mind that wijhl = wjilh). In order to find the compact linearization, we
define E = {((i, h), (j, l)) | {i, j} ∈ H ∧ i ≤ j ∧ h ≤ l ≤ k}, K = V ,

∀ i ∈ V (Ii = {(i, h) | h ≤ k}),

and F (K, I) defined as in (10). Since E ⊆ F (K, I), Thm. 1 applies. We
obtain the following k(|V |2 − 1) linearization constraints:

∀i 6= j ∈ V, l ≤ k (

k
∑

h=1

wijhl = xjl),

which (together with the symmetry relations ∀(i, h), (j, l) ∈ Ii; (wijhl =
wjilh)) replace the usual linearization constraints.



Compact linearization for binary quadratic problems 7

4.1.1 Validation tests Table 1 reports computational results obtained over
a few problem instances, as a way to ascertain that the proposed reformu-
lation is actually valid and as a comparison between compact and usual
linearizations. The mesh instances are

√

|V | ×
√

|V | square grid graphs;
hypercube instances are (log2 |V |)-dimensional hypercubic graphs; ran-

dom-0.5 is a randomly generated graph where each edge had 1
2 generation

probability. These results were obtained by solving the above formulations
with CPLEX 8.1 (ILOG, 2002) on a 2.66GHz Pentium IV CPU with 1GB
RAM running Linux. |V | is the number of nodes and |H| the number of
edges in the graph; k is the number of subsets of the partition. The next
three columns (labelled c) denote the number of linearization constraints
LC, the number of BB nodes and user time of CPU required to reach the
optimal solution with the compact linearization. The last three columns (la-
belled u) indicate the corresponding quantities for the usual linearization.
The optimal objective function values were verified to be the same for both
linearizations.

Instance |V | |H| k c: LC BB CPU u: LC BB CPU
mesh 9 12 2 24 13 0.03s 36 13 0.1s

5 60 2711 3.99s 360 19666 34.22s
8 96 284094 783.48s 1008 317645 1498.2s

hypercube 16 32 2 64 45 0.13s 96 63 0.38s
3 96 778 2.18s 288 1570 4.68s
5 160 44874 125.79s 960 400020 2882.39s

random-0.5 15 64 2 128 33 0.23s 192 87 1.03s
3 192 320 2.91s 576 535 8.03s
5 320 11897 218.2s 1920 38034 1496.5s

Table 1. The effect of compact linearization on the Graph Partitioning problem. CPU
times printed in boldface mark best results.

4.1.2 Performance comparison In order to test the compact linearization
in a more realistic setting and against better formulations than that ob-
tained with the usual linearization, we solved the GPP with an added max-
imum cardinality constraint

∀h ≤ k

(

∑

i∈V

xih ≤

⌊

|V |

k
+

(

1 −
1

k

)⌋

)

(when k = 2, this is also referred to as the Balanced Graph Bisection

problem). Several instances are publically available (Johnson et al., 1989)
at http://public.research.att.com/~dsj/instances.html. As this test
suite was put together to test heuristic, rather than exact, methods, only the
smallest instances in the set could be solved to optimality. Consequently, the



8 Leo Liberti

result tables only report on a subset of the whole test suite. As the competing
formulation, we chose the best-performing formulation in (Boulle, 2004)
(formulation B2 for k = 2 and B for k > 2). The results were obtained by
CPLEX 10.0 on an AMD Athlon 64bit 1.8GHz with 1GB RAM running
Linux.

Instance |V | |H| c: f∗ BB CPU B2: f∗ BB CPU
example1 6 8 2 2 0.00 2 3 0.00
example2 4 6 4 4 0.00 4 5 0.00
Breg100.04 100 150 4 14 0.24 4 48 0.56
Breg100.08 100 150 8 249 0.57 8 249 0.96
Breg100.20 100 150 16 8957 9.13 16 3669 4.99

Breg500.12 500 750 12 795 15.96 12 1546 29.26
Breg500.16 500 750 16 4715 59.27 16 7917 126.48
Breg500.20 500 750 20 47118 549.56 20 64065 906.73
Cat.0352 352 351 1 50 1.56 1 23 1.35

Cat.0702 702 701 1 100 6.05 1 28 4.46

Cat.1052 1052 1051 1 150 8.96 1 40 1.47

G124.02 124 149 13 322 0.56 13 155 0.79
G124.04 124 318 63 122369 442.35 63 268034 787.80
G124.08

∗ 124 620 183 3.3 × 106 31.18% 182 5.1 × 106 33.36%
G250.01 250 331 29 8125 29.25 29 792579 1203.84

G500.005
† 500 625 49 1046477 8657.04 50 2.1 × 106 8802.07

Grid100.10 100 180 10 259 0.84 10 107 0.86
Grid.900 900 1740 30 110533 8974.17 30 247843 18210.57
RCat.134 134 133 1 12 0.24 1 4 0.41
RCat.554 554 553 1 24 3.61 1 2 2.49

W-grid100.20 100 200 20 2146 4.42 20 2044 4.45

Table 2. Comparative results for k = 2 for the Balanced Graph Bisection problem.
CPU times printed in boldface mark best results. ∗ The instance G124.08 was not solved
to optimality: both runs were interrupted after 10h CPU time; the CPU time column con-
tains the integrality gap at termination. † The instance G500.05 was solved to optimality
only with the compact linearization; the integrality gap at termination for formulation
B2 was 25.6%.

Table 2 gives the results for k = 2. The columns describe, in order:
instance name, number of nodes |V |, number of edges |H|, and: optimal ob-
jective function value f∗, number of Branch-and-Bound nodes (BB), user
time in seconds (CPU) for the compact linearization (labelled c) and for
Boulle’s B2 formulation (labelled B2). Table 3 gives the results for k = 3,
and Table 4 for k = 4. In the latter case, the test set was restricted to
include only those instances which were solved to optimality by at least one
formulation. The performance difference is more definite with k > 2 partly
because Boulle’s formulation B has a comparatively bigger size than formu-
lation B2 (by contrast, formulation B is valid for all k, whereas formulation
B2 is only valid for k = 2).

It is easy to see from the results in Tables 2-4 that in general the com-
pact linearization outperforms Boulle’s formulations B2/B. This is due to
formulation size as well as formulation strength: Boulle’s formulations are



Compact linearization for binary quadratic problems 9

Instance |V | |H| c: f∗ BB CPU B: f∗ BB CPU
example1 6 8 5 16 0.01 5 4 0.01
example2 4 6 4 4 0.00 4 7 0.00
Breg100.04 100 150 16 11784 59.49 16 128948 802.07
Breg100.08 100 150 19 41345 199.94 19 297377 1872.68

Breg100.20
† 100 150 23 632113 2642.26 27 973348 33.68%

Breg500.0
∗ 500 750 62 105404 77.4% 79 68413 90.68%

Breg500.12
∗ 500 750 72 37934 82.77% 88 32179 89.39%

Breg500.16
∗ 500 750 70 34642 80.91% 87 33683 88.85%

Breg500.20
∗ 500 750 78 48926 83.25% 89 34687 89.13%

Cat.0352 352 351 5 621122 2717.55 5 63806 2113.89

Cat.0702
∗ 702 701 6 551272 44.72% 6 80775 48.23%

Cat.1052
‡ 1052 1051 - - - 2 204 98.00

G124.02 124 149 18 1911 9.64 18 8720 54.02
G124.04

∗ 124 318 91 308390 38.38% 97 341905 54.28%
G250.01

∗ 250 331 42 293064 16.53% 49 220903 41.26%
G500.005

∗ 500 625 76 56753 57.88% 84 60406 76.48%
Grid100.10 100 180 18 4826 33.29 18 7066 78.94
Grid.900

∗ 900 1740 63 12152 74.6% 64 4834 84.89%
RCat.134 134 133 2 78 0.82 2 6 1.51
RCat.554 554 553 2 87 6.01 2 127 14.66

W-grid100.20
† 100 200 34 556582 4432.88 36 755551 27.91%

Table 3. Comparative results for k = 3 for the Graph Partitioning problem. CPU times
printed in boldface mark best results. ∗ Neither formulation found the optimum within
2 hours of user CPU time; the “winner” is the formulation which found the best solution
and the smallest integrality gap. † The compact linearization found the optimum whereas
Boulle’s formulation B did not. ‡ The compact linearization formulation for Cat.1052 was
too large to fit in the memory allocated to AMPL (Fourer and Gay, 2002).

Instance |V | |H| c: f∗ BB CPU B: f∗ BB CPU
example1 6 8 5 20 0.02 5 20 0.02
example2 4 6 6 6 0.01 6 0 0.00

Breg100.08
∗ 100 150 23 524764 6123.18 29 329819 42.17%

Cat.0702 702 701 3 4530 145.00 3 2859 586.59
G124.02 124 149 23 62674 537.86 23 336911 3910.27
Grid100.10 100 180 20 5841 139.70 20 15824 524.33
RCat.134 134 133 3 248 2.30 3 26 2.63
RCat.554 554 553 3 417 18.25 3 104 24.24

Table 4. Comparative results for k = 4 for the Graph Partitioning problem. CPU
times printed in boldface mark best results. ∗ This instance was solved to optimality
only with the compact linearization; the CPU time column for Boulle’s formulation B
contains the integrality gap after 2 hours of user CPU time.

based on a set of constraints whose form is similar to (9). This means that
they are in fact “big M”-type constraints, which are generally known to
often yield a comparatively poor LP relaxation bounds.

4.2 Multi-processor Scheduling with Communication Delays

The MSPCD arises in parallel computing. It involves scheduling dependent
tasks with communication delays, which are due to data transfer, onto a ho-
mogeneous, arbitrarily connected multiprocessor architecture such that the



10 Leo Liberti

total completion time is minimum. The problem is complicated by the fact
that communication delays between tasks also depend on what processors
the tasks are being executed on; namely, we assume that the connections
among the processors do not form a complete graph, so transferring data
between non-adjacent processors takes a time proportional to the distance
between them. The MSPCD can be formulated as follows:

min
y,t

max
j≤n

{tj + Lj}

∀j ≤ n
p
P

k=1

n
P

s=1

ys
jk

= 1

∀k ≤ p
n
P

j=1

y1
jk

≤ 1

∀k ≤ p, s ≥ 2
n
P

j=1

ys
jk

−
n
P

j=1

ys−1

jk
≤ 0

∀j ≤ n, i ∈ δ−(j) ti + Li +
p
P

k=1

n
P

s=1

p
P

l=1

n
P

r=1

γkl
ij ys

ik
yr

jl
≤ tj

∀i, j ≤ n, k ≤ p, s ≤ n − 1 ti + Li − α

"

2 −

 

ys
ik

+
n
P

r=s+1

yr
jk

!#

≤ tj

∀j ≤ n T L − Lj ≤ tj
∀j, s ≤ n, k ≤ p ys

jk
∈ {0, 1} , tj ≥ 0,

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(22)

where p is the number of processors, n is the number of tasks, δ−(j) is the
set of immediate predecessors of task j, Lj is the length of task j, γkl

ij is
the communication delay between tasks i and j when they are executed on
processors k and l, α is a sufficiently large penalty coefficient, ys

jk is a binary
variable set to 1 if task j is the s-th process to be executed on processor
k and tj is a continuous variable indicating the starting time of process
j. TL is a lower bound on the total completion time calculatd either with
Load Balancing or with a Critical Path Method (CPM) applied to the task
precedence graph where the arcs are weighted by the running times Lj . The
usual linearization of this formulation is obtained by replacing each product
yr

jly
s
ik by a variable wsr

ijkl and adding constraints (7)-(9) to the model.

The sets δ−(j) define a digraph topology on the tasks given by G =
(V,A), where (i, j) ∈ A if task i has to be completed before task j begins.
The problem variables are indexed by triplets (i, s, k), where i, s ≤ n and
k ≤ p. We define E to be the set of pairs of triplets {(i, s, k), (j, r, l)} such
that there is an arc (i, j) in A. We define K = {1, . . . n},

∀ k ∈ K (Ik = {(k, h, s) | h ≤ p ∧ s ≤ n}),

F (K, I) as in (10), and note that condition (11) is satisfied. Thus, by Thm. 1,
on multiplying the assignment constraints ∀j ≤ n(

∑p

k=1

∑n

s=1 ys
jk = 1) by

all problem variables yr
il, we obtain a set of O(n4p) constraints

∀i, j, r ≤ n, l ≤ p (

p
∑

k=1

n
∑

s=1

wrs
ijlk = yr

il)



Compact linearization for binary quadratic problems 11

which reformulate the 3n4p2 constraints of the usual linearization. The com-
parative computational results, discussed in (Davidović et al., 2004) indicate
user CPU time improvements of one to two orders of magnitude.

4.3 Quadratic Assignment problem

In this section we show that the application of the compact linearization
to the QAP Koopmans-Beckmann formulation (Koopmans and Beckmann,
1957) yields the Frieze-Yadegar formulation (Frieze and Yadegar, 1983).
This provides a validation of the compact linearization as well as an alter-
native (and in our opinion, simpler) proof of validity of the Frieze-Yadegar
formulation.

The QAP can be formulated as follows:

min
x

n
∑

i,j,k,l

aijbklxikxjl +
n
∑

i,j

cijxij

∀i ≤ n
n
∑

j=1

xij = 1

∀j ≤ n
n
∑

i=1

xij = 1

∀i, j ≤ n xij ∈ {0, 1},







































(23)

where (xij) is an n × n array of binary variables and A = (aij), B =
(bij), C = (cij) are given n × n matrices. This is known as the Koopmans-
Beckmann formulation (Koopmans and Beckmann, 1957). We multiply both
sets of assignment constraints by each problem variable xkl (k, l ≤ n). We
then linearize the resulting products by requiring ∀i, j, k, l ≤ n (wijkl =
xijxkl). We define E = {((i, j), (k, l)) | i ≤ k ∧ j ≤ l}, K = {1, . . . , n},
Ik = {1, . . . , n} for all k ∈ K, F (K, I) as in (10), note that E ⊆ F (K, I),
and obtain the following linearization constraints:

∀i, k, l ≤ n (
n
∑

j=1

wijkl = xkl)

∀j, k, l ≤ n (

n
∑

i=1

wijkl = xkl).

By Thm. 1, we can use the above constraints to replace the usual lineariza-
tion constraints ∀i, j, k, l ≤ n (wijkl ≤ xij∧wijkl ≤ xkl∧wijkl ≥ xij+xkl−1).
The resulting linearization is the Frieze-Yadegar formulation (Frieze and
Yadegar, 1983).



12 Leo Liberti

5 Conclusion

In this paper we derive a compact linearization for 0-1 problems involving
products of binary variables subject to assignment constraints. Our result
provides a substantial improvement over the usual linearization of 0-1 prod-
ucts, both in terms of size and relaxation strength. We show the application
of the compact linearization to: (a) the graph partitioning problem, where
we provide a computational study showing that the compact linearization
yields a formulation which is superior to other formulations in the litera-
ture; (b) the multiprocessor scheduling problem with communication de-
lays, where we refer to a computational study that has already been made
available as a technical report (Davidović et al., 2004); (c) the quadratic
assignment problem, where we derive a new proof of the Frieze-Yadegar
formulation.

Acknowledgments

I am very grateful to two anonymous referees for their extensive comments
which led to substantial improvements.

References

K. Allemand, K. Fukuda, T.M. Liebling, and E. Steiner. A polynomial case of un-
constrained zero-one quadratic optimization. Mathematical Programming, 91:49–52,
2001.

R. Battiti and A. Bertossi. Greedy, prohibition and reactive heuristics for graph parti-
tioning. IEEE Transactions on Computers, 48(4):361–385, 1999.

J.E. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming
problem. Technical Report, Management School, Imperial College London, 1998.

M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and
Engineering, 5:315–333, 2004.

A. Caprara and G. Lancia. Structural alignment of large-size proteins via lagrangian
relaxation. In Proceedings of 6th RECOMB, pages 100–108. ACM Press, 2002.

A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem.
INFORMS Journal on Computing, 11:125–137, 1999.

T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Mathematical programming-
based approach to scheduling of communicating tasks. Technical Report G-2004-99,
Cahiers du GERAD, 2004.

C.E. Ferreira, A. Martin, C. Carvalho de Souza, R. Weismantel, and L.A. Wolsey. For-
mulations and valid inequalities for the node capacitated graph partitioning problem.
Mathematical Programming, 74:247–266, 1996.

R. Fortet. Applications de l’algèbre de boole en recherche opérationelle. Revue Française
de Recherche Opérationelle, 4:17–26, 1960.

R. Fourer and D. Gay. The AMPL Book. Duxbury Press, 2002.
A.M. Frieze and J. Yadegar. On the quadratic assignment problem. Discrete Applied

Mathematics, 5:89–98, 1983.
P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related

Areas. Springer, Berlin, 1968.



Compact linearization for binary quadratic problems 13

B. Hendrickson and T. Kolda. Partitioning rectangular and structurally nonsymmetric
sparse matrices for parallel processing. SIAM Journal on Scientific Computing, 21
(6):2048–2072, 2000.

ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.
D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simu-

lated annealing: An experimental evaluation; part i, graph partitioning. Operations
Research, 37:865–892, 1989.

T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of economic
activities. Econometrica, 25:53–76, 1957.

M.W. Padberg and M.P. Rijal. Location, Scheduling, Design and Integer Programming.
Kluwer, Dordrecht, 1996.

H. Sherali and E. Brown. A quadratic partial assignment and packing model and al-
gorithm for the airline gate assignment problem. In P. Pardalos and H. Wolkowicz,
editors, Quadratic Assignment and related problems, pages 343–364. American Math-
ematical Society, 1994.

H.D. Sherali and W.P. Adams. A tight linearization and an algorithm for 0-1 quadratic
programming problems. Management Science, 32(10):1274–1290, 1986.

H.D. Sherali and Y. Lee. Tighter representations for set partitioning problems. Discrete
Applied Mathematics, 68:153–167, 1996.


