Compact linearization for binary quadratic problems

Leo Liberti ${ }^{1}$
LIX, École Polytechnique, F-91128 Palaiseau, France

Received: 25th April 2006 / Revised version: ?

Abstract

We show that a well-known linearization technique initially proposed for quadratic assignment problems can be generalized to a broader class of quadratic 0-1 mixed-integer problems subject to assignment constraints. The resulting linearized formulation is more compact and tighter than that obtained with a more usual linearization technique. We discuss the application of the compact linearization to three classes of problems in the literature, among which the graph partitioning problem, where we provide a computational study.

Keywords: binary quadratic problem - linearization - graph partitioning.

1 Introduction

Binary Quadratic Problems (BQP)s are NP-hard problems which are also practically difficult to solve (although polynomially solvable instance classes exist, see e.g. (Allemand et al., 2001)). However, because of the expressive power of $0-1$ products, BQPs have a wealth of applications (Padberg and Rijal, 1996; Hammer and Rudeanu, 1968). Usually, 0-1 BQPs can be reformulated exactly to MILPs with a large number of variables and constraints (Fortet, 1960; Beasley, 1998). A complete treatment of linearizations for some classes of BQPs can be found in (Padberg and Rijal, 1996), where a very detailed polyhedral study of the problem polytope is performed for some classes of BQPs.

Although the main factor to improve Branch-and-Bound (BB) solution times of Integer Programming (IP) problems is usually the strength of formulation (i.e. the bound tightness at each node), the size of formulation is also important, since at every BB node a continuous relaxation of the
problem is solved with Linear Programming (LP) techniques, whose solution times mainly depend on problem size. With respect to an existing formulation, a formulation is compact if its formulation size is smaller.

In this paper, we present a compact linearization (with respect to the usual linearization (Fortet, 1960)) for a class of BQPs subject to various subsets of assignment constraints, and we discuss the strength of its continuous relaxation. The main idea behind this linearization is to multiply subsets of linear constraints by subsets of problem variables and then to linearize the products à la Reformulation-Linearization Technique (RLT) (Sherali and Adams, 1986). The same idea had already been previously used to propose a compact linearization of the Quadratic Assignment Problem (QAP) (Frieze and Yadegar, 1983), and eventually discussed in a more formal RLT framework (Sherali and Brown, 1994). A related line of argument was pursued in (Sherali and Lee, 1996), focusing on the relaxation, rather than on the linearization properties of the reformulation. A similar linearization was applied to problems subject to knapsack (Caprara et al., 1999) and packing (Caprara and Lancia, 2002) constraints, but its validity depends the objective being the maximization a non-negatively weighted sum of the products. The original contribution of the present paper is to show that the same technique can be applied to linearize QPBs with assignment constraints whose form is considerably more general than the QAP; and furthermore, no restriction is imposed on the objective function.

In Section 2 we discuss the usual linearization employed for BQPs. In Section 3 we discuss the compact linearization, show that it is equivalent to the usual linearization and that its continuous relaxation is tighter. In Section 4 we discuss the application of the compact linearization to three well-known classes of problems, among which the Graph Partitioning problem (GPP), where we perform a comparative computational study.

Throughout the paper, the following points hold: (a) if P is an optimization problem, $v(P)$ is the optimal objective function value of P; (b) all products $x_{i} x_{j}$ are assumed ordered such that $i \leq j$.

2 Usual linearization

Let $x \in\{0,1\}^{n}$ be the problem variables, E the set of ordered index pairs (i, j) (with $1 \leq i \leq j \leq n$) for which the product $x_{i} x_{j}$ is in the problem formulation (with $|E|=m$), and $w \in \mathbb{R}_{+}^{m}$ a set of non-negative linearization variables where $w_{i j}$ is used to replace the products $x_{i} x_{j}$ for all $(i, j) \in E$.

Let $N=\{1, \ldots, n\}$ and $\left\{I_{k} \mid k \in K\right\}$ a covering of N, where K is an index set whose cardinality is supposed bounded by a polynomial in n (for if it were not, the original formulation would have more than polynomially many constraints in n, and thus would likely solved with an altogether different approach). A more realistic bound would be $|K| \leq n$, given that
$|K|$ is the size of a covering of $\{1, \ldots, n\}$. We consider the following problem P :

$$
\begin{array}{rlrl}
\min _{x, w} c^{\top} x & +b^{\top} w \\
g(x, w) & \leq 0 \\
\forall k \in K \quad \sum_{i \in I_{k}} x_{i} & =1 \\
\forall(i, j) \in E \quad w_{i j} & =x_{i} x_{j} \\
\forall i \in N & x_{i} & \in\{0,1\} \\
\forall(i, j) \in E \quad w_{i j} & \geq 0 \tag{6}
\end{array}
$$

where $c \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$, and g is a vector of functions of x, w.
The linearization below, which we call usual linearization, was originally proposed in (Fortet, 1960) and discussed in (Hammer and Rudeanu, 1968), Sect. 7, Thm. 4. We reformulate problem P exactly to a MILP by introducing the following linearization constraints:

$$
\begin{array}{ll}
\forall(i, j) \in E & \left(w_{i j} \leq x_{i}\right) \\
\forall(i, j) \in E & \left(w_{i j} \leq x_{j}\right) \\
\forall(i, j) \in E & \left(w_{i j} \geq x_{i}+x_{j}-1\right) \tag{9}
\end{array}
$$

and removing the quadratic constraints (4). If either x_{i} or x_{j} is zero, then by (6) and (7) or (8) we have $w_{i j}=0$. If $x_{i}=x_{j}=1$ then by (7) and (9) $w_{i j}=1$. Hence this is an exact reformulation, which we indicate with $L_{1}(P)$. This linearization implies the addition of 3 m constraints to the formulation.

For practical purposes, it is a good idea to also introduce the constraints $w_{i i}=x_{i}$ for all $i \leq n$, which are always valid if $w_{i i}$ linearizes the quadratic term x_{i}^{2} where $x_{i} \in\{0,1\}$. Furthermore, for the linearization to yield a linear problem, it is required that g be a vector of linear functions of x, w.

3 Compact linearization

Let

$$
\begin{equation*}
F(K, I)=\left\{(i, j) \mid(i, j) \in \bigcup_{k \in K}\left(I_{k} \times I_{k}\right) \wedge i \leq j\right\} \tag{10}
\end{equation*}
$$

and $F=F(K, I)$. We assume that the following covering condition holds:

$$
\begin{equation*}
E \subseteq F \tag{11}
\end{equation*}
$$

We multiply (3) by x_{j} (for $j \in I_{k}$) to form the following system:

$$
\forall k \in K, j \in I_{k} \quad\left(\sum_{i \in I_{k}} x_{i} x_{j}=x_{j}\right)
$$

then substitute $w_{i j}=x_{i} x_{j}$ (recall the products are supposed to be ordered $i \leq j$) to get the following linear system:

$$
\begin{equation*}
\forall k \in K, j \in I_{k} \quad\left(\sum_{\substack{i \in I_{k} \\(i, j) \in F \vee(j, i) \in F}} w_{i j}=x_{j}\right) . \tag{12}
\end{equation*}
$$

We then form the problem $L_{2}(P)$ by substituting constraints (7)-(9) in $L_{1}(P)$ with (12).
Theorem 1. Provided condition (11) holds, $L_{2}(P)$ is an exact reformulation of $L_{1}(P)$.

Proof. By (12) we have

$$
\begin{array}{ll}
\forall(i, j) \in F & \left(w_{i j} \leq x_{j}\right) \\
\forall(i, j) \in F & \left(w_{i j} \leq x_{i}\right) \tag{14}
\end{array}
$$

which by (11) imply (7)-(8). In order to simplify notation in the rest of the proof, we are going to assume that $w_{i j}$ are defined for $i>j$ too, and that $w_{i j}=w_{j i}$ holds in such cases; (12) may then be written as:

$$
\begin{equation*}
\forall k \in K, j \in I_{k} \quad\left(\sum_{i \in I_{k}} w_{i j}=x_{j}\right) \tag{15}
\end{equation*}
$$

Any sum of (14) preserves the inequality sense, so:

$$
\begin{equation*}
\forall k \in K,(i, j) \in F \quad\left(\sum_{f \in I_{k} \backslash\{i\}} w_{f j} \leq \sum_{f \in I_{k} \backslash\{i\}} x_{f}\right) \tag{16}
\end{equation*}
$$

We add and subtract $w_{i j}$ from LHS of (16):

$$
\begin{equation*}
\forall k \in K,(i, j) \in F \quad\left(\sum_{f \in I_{k}} w_{f j}-w_{i j} \leq \sum_{f \in I_{k} \backslash\{i\}} x_{f}\right) \tag{17}
\end{equation*}
$$

We substitute $x_{j}=\sum_{f \in I_{k}} w_{f j}$ (which holds by (15)) in (17):

$$
\begin{equation*}
\forall k \in K,(i, j) \in F \quad\left(x_{j}-w_{i j} \leq \sum_{f \in I_{k} \backslash\{i\}} x_{f}\right) \tag{18}
\end{equation*}
$$

We add and subtract x_{i} from from RHS of (18):

$$
\begin{equation*}
\forall k \in K,(i, j) \in F \quad\left(x_{j}-w_{i j} \leq \sum_{f \in I_{k}} x_{f}-x_{i}\right) \tag{19}
\end{equation*}
$$

Finally, we substitute $1=\sum_{f \in I_{k}} x_{f}$ (which holds by (3)) in (18):

$$
\begin{equation*}
\forall k \in K,(i, j) \in F \quad\left(x_{j}-w_{i j} \leq 1-x_{i}\right) \tag{20}
\end{equation*}
$$

which, by condition (11), establishes (9).

3.1 Compactness

The number of added constraints (12) is $R=\sum_{k \in K}\left|I_{k}\right|$. The simplest worst case analysis yields a constraint set size of $O(n|K|)$, which, due to the size of $|K|$ (polynomial in n), may be worse than the $3 m$ constraints added by the usual linearization. In practice, however, assignment constraints turn up in problems where the variables have several indices, and the assignment constraint sums range over a proper subset of these indices. A reasonable average case assumption is therefore that problem variables are arranged in a d-dimensional array, and that the assignment constraints are sums ranging over e-dimensional "slices" where $e<d$ and indexed across the remaining $d-e$ dimensions. This gives rise to a set K of size $O\left(n^{\frac{d-e}{d}}\right)$ and sets I_{k} of size $O\left(n^{\frac{e}{d}}\right)$. The number of added constraints (12), in this scenario, is the product of the two sizes, i.e. $O(n)$, which compares favourably with the usual linearization.

In the GPP problem (see Section 4.1) and the QAP (see Section 4.3), $d=2$ and $e=1$. In the scheduling problem of Section 4.2, we have $d=3$ and $e=2$. For Graph Partitioning, the decrease in formulation size can be observed in the LC columns of Table 1.

3.2 Relaxation strength

Denote by $R_{i}(P)$ the continuous relaxation of the linearization $L_{i}(P)$ for $i \in\{1,2\}$.

Corollary 1. The continuous relaxation of the compact linearization is at least as tight as that of the usual linearization, i.e. $v\left(R_{2}(P)\right) \geq v\left(R_{1}(P)\right)$.

Proof. Notice that the proof of Thm. 1 never uses the fact that x are binary variables. Therefore, we can use the same argument to prove that a point in the feasible region of $R_{2}(P)$ is also in the feasible region of $R_{1}(P)$, which immediately implies the result.

That there are indeed cases when $R_{2}(P)$ is strictly tighter than $R_{1}(P)$ should appear clear from the BB column of Table 1 reporting the comparative number of BB iterations to solve the listed instances with the two different linearizations, which is almost always strictly smaller in favour of the compact linearization.

4 Applications

In this section we shall present some applications of the compact linearization described in this paper. We perform a computational study on the

GPP, we report briefly on a computational study (Davidović et al., 2004) on the Multiprocessor Scheduling Problem with Communication Delays (MSPCD), and we provide an alternative proof of the Frieze-Yadegar formulation (Frieze and Yadegar, 1983) for the QAP.

4.1 Graph partitioning

The GPP, also called Min- k-Cut, is a well-known NP-hard problem that has many applications in several fields (Hendrickson and Kolda, 2000; Battiti and Bertossi, 1999). Many different formulations of varying sizes where the clusters have maximal given cardinality have recently been proposed and compared in (Boulle, 2004). A problem variant with node capacities has been studied in (Ferreira et al., 1996). Given an undirected graph $G=(V, H)$ and an integer $k \leq|V|$, the problem consists of finding a partition of k subsets (clusters) of V minimizing the number of edges $\{i, j\}$ where i, j belong to different clusters. To each vertex $i \in V$ and for each cluster $h \leq k$, we associate a binary variable $x_{i h}$ which is 1 if vertex i is in cluster h and 0 otherwise. We formulate the problem as follows:

$$
\left.\begin{array}{rlrl}
\min _{x} \frac{1}{2} \sum_{h \neq l \leq k} \sum_{\{i, j\} \in H} x_{i h} x_{j l} & \tag{21}\\
\forall i \in V & \sum_{h=1}^{k} x_{i h} & =1 \\
\forall h \leq k & \sum_{i \in V} x_{i h} & \geq 1 \\
\forall i \in V, h \leq k & x_{i h} & \in\{0,1\} .
\end{array}\right\}
$$

The usual linearization of this BQP involves the addition of $k^{2}|H|$ continuous variables $0 \leq w_{i j h l} \leq 1$ to the formulation, as well as the introduction of $3|H| \frac{k(k-1)}{2}$ linearization constraints of the form (7)-(9) (one for each quadratic product $w_{i j h l}=x_{i h} x_{j l}$, for all $h \neq l,\{i, j\} \in H$ - keeping in mind that $\left.w_{i j h l}=w_{j i l h}\right)$. In order to find the compact linearization, we define $E=\{((i, h),(j, l)) \mid\{i, j\} \in H \wedge i \leq j \wedge h \leq l \leq k\}, K=V$,

$$
\forall i \in V\left(I_{i}=\{(i, h) \mid h \leq k\}\right)
$$

and $F(K, I)$ defined as in (10). Since $E \subseteq F(K, I)$, Thm. 1 applies. We obtain the following $k\left(|V|^{2}-1\right)$ linearization constraints:

$$
\forall i \neq j \in V, l \leq k\left(\sum_{h=1}^{k} w_{i j h l}=x_{j l}\right)
$$

which (together with the symmetry relations $\forall(i, h),(j, l) \in I_{i} ;\left(w_{i j h l}=\right.$ $\left.w_{j i l h}\right)$) replace the usual linearization constraints.
4.1.1 Validation tests Table 1 reports computational results obtained over a few problem instances, as a way to ascertain that the proposed reformulation is actually valid and as a comparison between compact and usual linearizations. The mesh instances are $\sqrt{|V|} \times \sqrt{|V|}$ square grid graphs; hypercube instances are ($\left.\log _{2}|V|\right)$-dimensional hypercubic graphs; ran-dom-0.5 is a randomly generated graph where each edge had $\frac{1}{2}$ generation probability. These results were obtained by solving the above formulations with CPLEX 8.1 (ILOG, 2002) on a 2.66 GHz Pentium IV CPU with 1GB RAM running Linux. $|V|$ is the number of nodes and $|H|$ the number of edges in the graph; k is the number of subsets of the partition. The next three columns (labelled c) denote the number of linearization constraints LC , the number of BB nodes and user time of CPU required to reach the optimal solution with the compact linearization. The last three columns (labelled u) indicate the corresponding quantities for the usual linearization. The optimal objective function values were verified to be the same for both linearizations.

Instance	\| V \|	\| H \|	k	c: LC	BB	CPU	u: LC	BB	CPU
mesh	9	12	2	24	13	0.03 s	36	13	0.1 s
			5	60	2711	3.99s	360	19666	34.22 s
			8	96	284094	783.48s	1008	317645	1498.2s
hypercube	16	32	2	64	45	0.13 s	96	63	0.38 s
			3	96	778	2.18 s	288	1570	4.68 s
			5	160	44874	125.79 s	960	400020	2882.39s
random-0.5	15	64	2	128	33	0.23 s	192	87	1.03 s
			3	192	320	2.91s	576	535	8.03 s
			5	320	11897	218.2s	1920	38034	1496.5 s

Table 1. The effect of compact linearization on the Graph Partitioning problem. CPU times printed in boldface mark best results.
4.1.2 Performance comparison In order to test the compact linearization in a more realistic setting and against better formulations than that obtained with the usual linearization, we solved the GPP with an added maximum cardinality constraint

$$
\forall h \leq k\left(\sum_{i \in V} x_{i h} \leq\left\lfloor\frac{|V|}{k}+\left(1-\frac{1}{k}\right)\right\rfloor\right)
$$

(when $k=2$, this is also referred to as the Balanced Graph Bisection problem). Several instances are publically available (Johnson et al., 1989) at http://public.research.att.com/~dsj/instances.html. As this test suite was put together to test heuristic, rather than exact, methods, only the smallest instances in the set could be solved to optimality. Consequently, the
result tables only report on a subset of the whole test suite. As the competing formulation, we chose the best-performing formulation in (Boulle, 2004) (formulation B 2 for $k=2$ and B for $k>2$). The results were obtained by CPLEX 10.0 on an AMD Athlon 64bit 1.8 GHz with 1GB RAM running Linux.

Instance	$\|V\|$	$\|H\|$	$\mathbf{c}: f^{*}$	BB	CPU	B2: f^{*}	BB	CPU
example1	6	8	2	2	0.00	2	3	0.00
example2	4	6	4	4	0.00	4	5	0.00
Breg100.04	100	150	4	14	$\mathbf{0 . 2 4}$	4	48	0.56
Breg100.08	100	150	8	249	$\mathbf{0 . 5 7}$	8	249	0.96
Breg100.20	100	150	16	8957	9.13	16	3669	$\mathbf{4 . 9 9}$
Breg500.12	500	750	12	795	$\mathbf{1 5 . 9 6}$	12	1546	29.26
Breg500.16	500	750	16	4715	$\mathbf{5 9 . 2 7}$	16	7917	126.48
Breg500.20	500	750	20	47118	$\mathbf{5 4 9 . 5 6}$	20	64065	906.73
Cat.0352	352	351	1	50	1.56	1	23	$\mathbf{1 . 3 5}$
Cat.0702	702	701	1	100	6.05	1	28	$\mathbf{4 . 4 6}$
Cat.1052	1052	1051	1	150	8.96	1	40	$\mathbf{1 . 4 7}$
G124.02	124	149	13	322	$\mathbf{0 . 5 6}$	13	155	0.79
G124.04	124	318	63	122369	$\mathbf{4 4 2 . 3 5}$	63	268034	787.80
G124.08*	124	620	183	3.3×10^{6}	31.18%	182	5.1×10^{6}	33.36%
G250.01	250	331	29	8125	$\mathbf{2 9 . 2 5}$	29	792579	1203.84
G500.005 ${ }^{\dagger}$	500	625	49	1046477	$\mathbf{8 6 5 7 . 0 4}$	50	2.1×10^{6}	8802.07
Grid100.10	100	180	10	259	$\mathbf{0 . 8 4}$	10	107	0.86
Grid.900	900	1740	30	110533	$\mathbf{8 9 7 4 . 1 7}$	30	247843	18210.57
RCat.134	134	133	1	12	$\mathbf{0 . 2 4}$	1	4	0.41
RCat.554	554	553	1	24	3.61	1	2	$\mathbf{2 . 4 9}$
W-grid100.20	100	200	20	2146	$\mathbf{4 . 4 2}$	20	2044	4.45

Table 2. Comparative results for $k=2$ for the Balanced Graph Bisection problem. CPU times printed in boldface mark best results. * The instance G124.08 was not solved to optimality: both runs were interrupted after 10 h CPU time; the CPU time column contains the integrality gap at termination. ${ }^{\dagger}$ The instance G500.05 was solved to optimality only with the compact linearization; the integrality gap at termination for formulation B2 was 25.6%.

Table 2 gives the results for $k=2$. The columns describe, in order: instance name, number of nodes $|V|$, number of edges $|H|$, and: optimal objective function value f^{*}, number of Branch-and-Bound nodes (BB), user time in seconds (CPU) for the compact linearization (labelled c) and for Boulle's B2 formulation (labelled B2). Table 3 gives the results for $k=3$, and Table 4 for $k=4$. In the latter case, the test set was restricted to include only those instances which were solved to optimality by at least one formulation. The performance difference is more definite with $k>2$ partly because Boulle's formulation B has a comparatively bigger size than formulation B2 (by contrast, formulation B is valid for all k, whereas formulation B 2 is only valid for $k=2$).

It is easy to see from the results in Tables 2-4 that in general the compact linearization outperforms Boulle's formulations B2/B. This is due to formulation size as well as formulation strength: Boulle's formulations are

Instance	$\|V\|$	$\|H\|$	$\mathbf{c}: f^{*}$	BB	CPU	B: f^{*}	BB	CPU
example1	6	8	5	16	0.01	5	4	0.01
example2	4	6	4	4	0.00	4	7	0.00
Breg100.04	100	150	16	11784	$\mathbf{5 9 . 4 9}$	16	128948	802.07
Breg100.08	100	150	19	41345	$\mathbf{1 9 9 . 9 4}$	19	297377	1872.68
Breg100.20	100	150	23	632113	$\mathbf{2 6 4 2 . 2 6}$	27	973348	33.68%
Breg500.0*	500	750	62	105404	$\mathbf{7 7 . 4 \%}$	79	68413	90.68%
Breg500.12*	500	750	72	37934	$\mathbf{8 2 . 7 7 \%}$	88	32179	89.39%
Breg500.16*	500	750	70	34642	$\mathbf{8 0 . 9 1 \%}$	87	33683	88.85%
Breg500.20*	500	750	78	48926	$\mathbf{8 3 . 2 5 \%}$	89	34687	89.13%
Cat.0352	352	351	5	621122	2717.55	5	63806	$\mathbf{2 1 1 3 . 8 9}$
Cat.0702*	702	701	6	551272	$\mathbf{4 4 . 7 2 \%}$	6	80775	48.23%
Cat.1052	1052	1051	-	-	-	2	204	$\mathbf{9 8 . 0 0}$
G124.02	124	149	18	1911	$\mathbf{9 . 6 4}$	18	8720	54.02
G124.04*	124	318	91	308390	$\mathbf{3 8 . 3 8 \%}$	97	341905	54.28%
G250.01*	250	331	42	293064	$\mathbf{1 6 . 5 3 \%}$	49	220903	41.26%
G500.005*	500	625	76	56753	$\mathbf{5 7 . 8 8 \%}$	84	60406	76.48%
Grid100.10	100	180	18	4826	$\mathbf{3 3 . 2 9}$	18	7066	78.94
Grid.900*	900	1740	63	12152	$\mathbf{7 4 . 6 \%}$	64	4834	84.89%
RCat.134	134	133	2	78	$\mathbf{0 . 8 2}$	2	6	1.51
RCat.554	554	553	2	87	$\mathbf{6 . 0 1}$	2	127	14.66
W-grid100.20		100	200	34	556582	$\mathbf{4 4 3 2 . 8 8}$	36	755551
27.91%								

Table 3. Comparative results for $k=3$ for the Graph Partitioning problem. CPU times printed in boldface mark best results. * Neither formulation found the optimum within 2 hours of user CPU time; the "winner" is the formulation which found the best solution and the smallest integrality gap. ${ }^{\dagger}$ The compact linearization found the optimum whereas Boulle’s formulation B did not. \ddagger The compact linearization formulation for Cat. 1052 was too large to fit in the memory allocated to AMPL (Fourer and Gay, 2002).

Instance	$\|V\|$	$\|H\|$	$\mathbf{c}: f^{*}$	BB	CPU	B: f^{*}	BB	CPU
example1	6	8	5	20	0.02	5	20	0.02
example2	4	6	6	6	0.01	6	0	$\mathbf{0 . 0 0}$
Breg100.08*	100	150	23	524764	$\mathbf{6 1 2 3 . 1 8}$	29	329819	42.17%
Cat.0702	702	701	3	4530	$\mathbf{1 4 5 . 0 0}$	3	2859	586.59
G124.02	124	149	23	62674	$\mathbf{5 3 7 . 8 6}$	23	336911	3910.27
Grid100.10	100	180	20	5841	$\mathbf{1 3 9 . 7 0}$	20	15824	524.33
RCat.134	134	133	3	248	$\mathbf{2 . 3 0}$	3	26	2.63
RCat.554	554	553	3	417	$\mathbf{1 8 . 2 5}$	3	104	24.24

Table 4. Comparative results for $k=4$ for the Graph Partitioning problem. CPU times printed in boldface mark best results. ${ }^{*}$ This instance was solved to optimality only with the compact linearization; the CPU time column for Boulle's formulation B contains the integrality gap after 2 hours of user CPU time.
based on a set of constraints whose form is similar to (9). This means that they are in fact "big M"-type constraints, which are generally known to often yield a comparatively poor LP relaxation bounds.

4.2 Multi-processor Scheduling with Communication Delays

The MSPCD arises in parallel computing. It involves scheduling dependent tasks with communication delays, which are due to data transfer, onto a homogeneous, arbitrarily connected multiprocessor architecture such that the
total completion time is minimum. The problem is complicated by the fact that communication delays between tasks also depend on what processors the tasks are being executed on; namely, we assume that the connections among the processors do not form a complete graph, so transferring data between non-adjacent processors takes a time proportional to the distance between them. The MSPCD can be formulated as follows:

$$
\begin{align*}
& \min _{y, t} \quad \max _{j \leq n}\left\{t_{j}+L_{j}\right\} \\
& \forall j \leq n \\
& \forall k \leq p \\
& \forall k \leq p, s \geq 2 \\
& \sum_{j=1}^{n} y_{j k}^{s}-\sum_{j=1}^{n} y_{j k}^{s-1} \leq 0 \tag{22}\\
& \forall j \leq n, i \in \delta^{-}(j) \quad t_{i}+L_{i}+\sum_{k=1}^{p} \sum_{s=1}^{n} \sum_{l=1}^{p} \sum_{r=1}^{n} \gamma_{i j}^{k l} y_{i k}^{s} y_{j l}^{r} \leq t_{j} \\
& \forall i, j \leq n, k \leq p, s \leq n-1 t_{i}+L_{i}-\alpha\left[2-\left(y_{i k}^{s}+\sum_{r=s+1}^{n} y_{j k}^{r}\right)\right] \leq t_{j} \\
& \forall j \leq n \\
& \forall j, s \leq n, k \leq p \\
& \left.\begin{array}{c}
T^{L}-L_{j} \leq t_{j} \\
y_{j k}^{s} \in\{0,1\} \quad, t_{j} \geq 0,
\end{array}\right\}
\end{align*}
$$

where p is the number of processors, n is the number of tasks, $\delta^{-}(j)$ is the set of immediate predecessors of task j, L_{j} is the length of task $j, \gamma_{i j}^{k l}$ is the communication delay between tasks i and j when they are executed on processors k and l, α is a sufficiently large penalty coefficient, $y_{j k}^{s}$ is a binary variable set to 1 if task j is the s-th process to be executed on processor k and t_{j} is a continuous variable indicating the starting time of process $j . T^{L}$ is a lower bound on the total completion time calculatd either with Load Balancing or with a Critical Path Method (CPM) applied to the task precedence graph where the arcs are weighted by the running times L_{j}. The usual linearization of this formulation is obtained by replacing each product $y_{j l}^{r} y_{i k}^{s}$ by a variable $w_{i j k l}^{s r}$ and adding constraints (7)-(9) to the model.

The sets $\delta^{-}(j)$ define a digraph topology on the tasks given by $G=$ (V, A), where $(i, j) \in A$ if task i has to be completed before task j begins. The problem variables are indexed by triplets (i, s, k), where $i, s \leq n$ and $k \leq p$. We define E to be the set of pairs of triplets $\{(i, s, k),(j, r, l)\}$ such that there is an $\operatorname{arc}(i, j)$ in A. We define $K=\{1, \ldots n\}$,

$$
\forall k \in K\left(I_{k}=\{(k, h, s) \mid h \leq p \wedge s \leq n\}\right)
$$

$F(K, I)$ as in (10), and note that condition (11) is satisfied. Thus, by Thm. 1, on multiplying the assignment constraints $\forall j \leq n\left(\sum_{k=1}^{p} \sum_{s=1}^{n} y_{j k}^{s}=1\right)$ by all problem variables $y_{i l}^{r}$, we obtain a set of $O\left(n^{4} p\right)$ constraints

$$
\forall i, j, r \leq n, l \leq p\left(\sum_{k=1}^{p} \sum_{s=1}^{n} w_{i j l k}^{r s}=y_{i l}^{r}\right)
$$

which reformulate the $3 n^{4} p^{2}$ constraints of the usual linearization. The comparative computational results, discussed in (Davidović et al., 2004) indicate user CPU time improvements of one to two orders of magnitude.

4.3 Quadratic Assignment problem

In this section we show that the application of the compact linearization to the QAP Koopmans-Beckmann formulation (Koopmans and Beckmann, 1957) yields the Frieze-Yadegar formulation (Frieze and Yadegar, 1983). This provides a validation of the compact linearization as well as an alternative (and in our opinion, simpler) proof of validity of the Frieze-Yadegar formulation.

The QAP can be formulated as follows:

$$
\left.\begin{array}{rlrl}
\min _{x} & \sum_{i, j, k, l}^{n} a_{i j} b_{k l} x_{i k} x_{j l} & +\sum_{i, j}^{n} c_{i j} x_{i j} \\
\forall i \leq n & \sum_{j=1}^{n} x_{i j} & =1 \tag{23}\\
\forall j \leq n & \sum_{i=1}^{n} x_{i j} & =1 \\
\forall i, j \leq n & x_{i j} & \in\{0,1\},
\end{array}\right\}
$$

where $\left(x_{i j}\right)$ is an $n \times n$ array of binary variables and $A=\left(a_{i j}\right), B=$ $\left(b_{i j}\right), C=\left(c_{i j}\right)$ are given $n \times n$ matrices. This is known as the KoopmansBeckmann formulation (Koopmans and Beckmann, 1957). We multiply both sets of assignment constraints by each problem variable $x_{k l}(k, l \leq n)$. We then linearize the resulting products by requiring $\forall i, j, k, l \leq n\left(w_{i j k l}=\right.$ $\left.x_{i j} x_{k l}\right)$. We define $E=\{((i, j),(k, l)) \mid i \leq k \wedge j \leq l\}, K=\{1, \ldots, n\}$, $I_{k}=\{1, \ldots, n\}$ for all $k \in K, F(K, I)$ as in (10), note that $E \subseteq F(K, I)$, and obtain the following linearization constraints:

$$
\begin{aligned}
& \forall i, k, l \leq n\left(\sum_{j=1}^{n} w_{i j k l}=x_{k l}\right) \\
& \forall j, k, l \leq n\left(\sum_{i=1}^{n} w_{i j k l}=x_{k l}\right) .
\end{aligned}
$$

By Thm. 1, we can use the above constraints to replace the usual linearization constraints $\forall i, j, k, l \leq n\left(w_{i j k l} \leq x_{i j} \wedge w_{i j k l} \leq x_{k l} \wedge w_{i j k l} \geq x_{i j}+x_{k l}-1\right)$. The resulting linearization is the Frieze-Yadegar formulation (Frieze and Yadegar, 1983).

5 Conclusion

In this paper we derive a compact linearization for 0-1 problems involving products of binary variables subject to assignment constraints. Our result provides a substantial improvement over the usual linearization of 0-1 products, both in terms of size and relaxation strength. We show the application of the compact linearization to: (a) the graph partitioning problem, where we provide a computational study showing that the compact linearization yields a formulation which is superior to other formulations in the literature; (b) the multiprocessor scheduling problem with communication delays, where we refer to a computational study that has already been made available as a technical report (Davidović et al., 2004); (c) the quadratic assignment problem, where we derive a new proof of the Frieze-Yadegar formulation.

Acknowledgments

I am very grateful to two anonymous referees for their extensive comments which led to substantial improvements.

References

K. Allemand, K. Fukuda, T.M. Liebling, and E. Steiner. A polynomial case of unconstrained zero-one quadratic optimization. Mathematical Programming, 91:49-52, 2001.
R. Battiti and A. Bertossi. Greedy, prohibition and reactive heuristics for graph partitioning. IEEE Transactions on Computers, 48(4):361-385, 1999.
J.E. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical Report, Management School, Imperial College London, 1998.
M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and Engineering, 5:315-333, 2004.
A. Caprara and G. Lancia. Structural alignment of large-size proteins via lagrangian relaxation. In Proceedings of 6th RECOMB, pages 100-108. ACM Press, 2002.
A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem. INFORMS Journal on Computing, 11:125-137, 1999.
T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Mathematical programmingbased approach to scheduling of communicating tasks. Technical Report G-2004-99, Cahiers du GERAD, 2004.
C.E. Ferreira, A. Martin, C. Carvalho de Souza, R. Weismantel, and L.A. Wolsey. Formulations and valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming, 74:247-266, 1996.
R. Fortet. Applications de l'algèbre de boole en recherche opérationelle. Revue Française de Recherche Opérationelle, 4:17-26, 1960.
R. Fourer and D. Gay. The AMPL Book. Duxbury Press, 2002.
A.M. Frieze and J. Yadegar. On the quadratic assignment problem. Discrete Applied Mathematics, 5:89-98, 1983.
P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related Areas. Springer, Berlin, 1968.
B. Hendrickson and T. Kolda. Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing, 21 (6):2048-2072, 2000.

ILOG. ILOG CPLEX 8.0 User's Manual. ILOG S.A., Gentilly, France, 2002.
D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated annealing: An experimental evaluation; part i, graph partitioning. Operations Research, 37:865-892, 1989.
T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of economic activities. Econometrica, 25:53-76, 1957.
M.W. Padberg and M.P. Rijal. Location, Scheduling, Design and Integer Programming. Kluwer, Dordrecht, 1996.
H. Sherali and E. Brown. A quadratic partial assignment and packing model and algorithm for the airline gate assignment problem. In P. Pardalos and H. Wolkowicz, editors, Quadratic Assignment and related problems, pages 343-364. American Mathematical Society, 1994.
H.D. Sherali and W.P. Adams. A tight linearization and an algorithm for 0-1 quadratic programming problems. Management Science, 32(10):1274-1290, 1986.
H.D. Sherali and Y. Lee. Tighter representations for set partitioning problems. Discrete Applied Mathematics, 68:153-167, 1996.

