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Abstract

We present a general overview of some of the most recent approaches for solving
the molecular distance geometry problem, namely, the ABBIE algorithm, the DGSOL
algorithm, d.c. optimization algorithms, the geometric build-up algorithm, and the BP
algorithm.

1 Introduction

The determination of the three-dimensional structure of a molecule, especially in the protein
folding framework, is one of the most important problems in computational biology. That
structure is very important because it is associated to the chemical and biological properties
of the molecule [7, 11, 46]. Basically, this problem can be tackled in two ways: experimen-
tally, via nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography [8],
or theoretically, through potential energy minimization [19].

The Molecular Distance Geometry Problem (MDGP) arises in NMR analysis. This
experimental technique provides a set of inter-atomic distances dij for certain pairs of atoms
(i, j) of a given protein [23, 24, 33, 57, 58]. The MDGP can be formulated as follows:

Given a set S of atom pairs (i, j) on a set of m atoms and distances dij defined
over S, find positions x1, . . . , xm ∈ R

3 of the atoms in the molecule such that

||xi − xj || = dij ∀(i, j) ∈ S. (1)

When the distances between all pairs of atoms of a molecule are given, a unique three-
dimensional structure can be determined by a linear time algorithm [16]. However, because
of errors in the given distances, a solution may not exist or may not be unique. In addition
to this, because of the large scale of problems that arise in practice, the MDGP becomes
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very hard to solve in general. Saxe [51] showed that the MDGP is NP-complete even in one
spatial dimension.

The exact MDGP can be naturally formulated as a nonlinear global minimization prob-
lem, where the objective function is given by

f(x1, . . . , xm) =
∑

(i,j)∈S

(||xi − xj ||2 − d2
ij)

2. (2)

This function is everywhere infinitely differentiable and has an exponential number of local
minimizers. Assuming that all the distances are correctly given, x ∈ R

3m solves the problem
if and only if f(x) = 0.

Formulations (1) and (2) correspond to the exact MDGP. Since experimental errors may
prevent solution existence (e.g. when the triangle inequality

dij ≤ dik + dkj

is violated for atoms i, j, k), we sometimes consider an ǫ-optimum solution of (1), i.e. a
solution x1, . . . , xm satisfying

|||xi − xj || − dij | ≤ ǫ ∀(i, j) ∈ S. (3)

Moré and Wu [41] showed that even obtaining such an ǫ-optimum solution is NP-hard for
ǫ small enough.

In practice, it is often just possible to obtain lower and upper bounds on the distances
[4]. Hence a more practical definition of the MDGP is to find positions x1, . . . , xm ∈ R
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such that

lij ≤ ||xi − xj || ≤ uij ∀(i, j) ∈ S, (4)

where lij and uij are lower and upper bounds on the distance constraints, respectively.
The MDGP is a particular case of a more general problem, called the distance geometry

problem [6, 13, 14, 15, 54], which is intimately related to the Euclidean distance matrix
completion problem [1, 28, 38].

Several methods have been developed to solve the MDGP, including the EMBED algo-
rithm by Crippen and Havel [12, 25], the alternating projection algorithm by Glunt et al.
[20, 21, 22], the multi-scaling algorithm by Trosset et al. [29, 52], a stochastic/perturbation
algorithm by Zou, Bird, and Schnabel [59], variable neighborhood search-based algorithms
by Liberti, Lavor, and Maculan [35, 39], the ABBIE algorithm by Hendrickson [26, 27], the
DGSOL algorithm by Moré and Wu [41, 42, 43, 44, 45], the d.c. optimization algorithms by
An and Tao [2, 3], the geometric build-up algorithm by Dong, Wu, and Wu [16, 17, 55], and
the BP algorithm by Lavor, Liberti, and Maculan [37]. Two completely different approaches
for solving the MDGP are given in [34] (based on quantum computation) and [53] (based
on algebraic geometry).

The wireless network sensor positioning problem is closely related to the MDGP, the
main difference being the presence of fixed anchor points with known positions: results
derived for this problem can often be applied to the MDGP. Amongst the most notable,
[18] shows that the MDGP associated to a trilateration graph (a graph with an order on
the vertices such that each vertex is adjacent to the preceding 4 vertices) can be solved
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in polynomial time; [40] provides a detailed study of Semi Definite Programming (SDP)
relaxations applied to distance geometry problems.

The aim of this paper is to present a general overview of some of the most recent
approaches for solving the MDGP, namely, the ABBIE algorithm, the DGSOL algorithm,
d.c. optimization algorithms, the geometric build-up algorithm, and the BP algorithm.

2 ABBIE algorithm

In [26, 27], Hendrickson describes an approach to the exact MDGP that replaces a large
optimization problem, given by (2), by a sequence of smaller ones. He exploits some combi-
natorial structure inherent in the MDGP, which allows him to develop a divide-and-conquer
algorithm based on a graph-theoretic viewpoint.

If the atoms and the distances are considered as nodes and edges of a graph, respectively,
the MDGP can be described by a distance graph and the solution to the problem is an
embedding of the distance graph in an Euclidean space. When some of the atoms can be
moved without violating any distance constraints, there may be many embeddings. The
graph is then called flexible or otherwise rigid.

If the graph is rigid or does not have partial reflections, for example, then the graph has
a unique embedding. These necessary conditions can be used to find subgraphs that have
unique embeddings. The problem can then be solved by decomposing the graph into such
subgraphs, in which the minimization problems associated to the function (2) are solved.
The solutions found for the subgraphs can then be combined into a solution for the whole
graph.

This approach to the MDGP has been implemented in a code named ABBIE and tested
on simulated data provided by the bovine pancreatic ribonuclease A, a typical small protein
consisting of 124 amino acids, whose three-dimensional structure is known [47]. The data
set consists of all distances between pairs of atoms in the same amino acid, along with 1167
additional distances corresponding to pairs of hydrogen atoms that were within 3.5 Å of
each other. It was used fragments of the protein consisting of the first 20, 40, 60, 80 and 100
amino acids as well as the full protein, with two sets of distance constraints for each size
corresponding to the largest unique subgraphs and the reduced graphs. These problems
have from 63 up to 777 atoms.

3 DGSOL algorithm

In [43], Moré and Wu formulated the exact MDGP in terms of finding the global minimum
of a similar function to (2),

f(x1, . . . , xm) =
∑

(i,j)∈S

wij(||xi − xj ||2 − d2
ij)

2, (5)

where wij are positive weights (in numerical results wij = 1 was used).
Following the ideas described in [56], Moré and Wu proposed an algorithm, called DG-

SOL, based on a continuation approach for global optimization. The idea is gradually
transform the function (5) into a smoother function with fewer local minimizers, where an

3



optimization algorithm is then applied to the transformed function, tracing their minimiz-
ers back to the original function. For other works based on continuation approach, see
[9, 10, 30, 31, 32, 49].

The transformed function 〈f〉λ, called the Gaussian transform, of a function f : R
n → R

is defined by

〈f〉λ(x) =
1

πn/2λn

∫

Rn

f(y) exp

(

−||y − x||2
λ2

)

dy, (6)

where the parameter λ controls the degree of smoothing. The value 〈f〉λ(x) is a weighted
average of f(x) in a neighborhood of x, where the size of the neighborhood decreases as λ

decreases: as λ → 0, the average is carried out on the singleton set {x}, thus recovering the
original function in the limit. Smoother functions are obtained as λ increases.

This approach to the MDGP has been implemented and tested on two artificial models
of problems, where the molecule has m = s3 atoms located in the three-dimensional lattice

{(i1, i2, i3) : 0 ≤ i1 < s, 0 ≤ i2 < s, 0 ≤ i3 < s}

for an integer s ≥ 1. In numerical results, it was considered m = 27, 64, 125, 216.
In the first model, the ordering for the atoms is specified by letting i be the atom at the

position (i1, i2, i3),
i = 1 + i1 + si2 + s2i3,

and the set of atom pairs whose distances are known, S, is given by

S = {(i, j) : |i − j| ≤ r}, (7)

where r = s2. In the second model, the set S is specified by

S = {(i, j) : ||xi − xj || ≤
√

r}, (8)

where xi = (i1, i2, i3) and r = s2. For both models, s is considered in the interval 3 ≤ s ≤ 6.
In (7), S includes all nearby atoms, while in (8), S includes some of nearby atoms and

some relatively distant atoms.
It was showed that the DGSOL algorithm usually finds a solution from any given starting

point, whereas the local minimization algorithm used in the multistart methods is unreliable
as a method for determining global solutions. It was also showed that the continuation
approach determines a global solution with less computational effort that is required by the
multistart approach.

4 D.C. optimization algorithms

In [2, 3], An and Tao proposed an approach for solving the exact MDGP, based on the d.c.
(difference of convex functions) optimization algorithms. They worked in Mm,3(R), the
space of real matrices of order m× 3, where for X ∈ Mm,3(R), Xi (resp., Xi) is its ith row
(resp., ith column). By identifying a set of positions of atoms x1, . . . , xm with the matrix
X, XT

i = xi for i = 1, ..., m, they expressed the MDGP by

0 = min







σ(X) :=
1

2

∑

(i,j)∈S,i<j

wijθij(X) : X ∈ Mm,3(R)







, (9)
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where wij > 0 for i 6= j and wii = 0 for all i. The pairwise potential θij : Mm,3(R) → R is
defined for problem (1) by either

θij(X) =
(

d2
ij − ||XT

i − XT
j ||2

)2
(10)

or
θij(X) =

(

dij − ||XT
i − XT

j ||
)2

, (11)

and for problem (4) by

θij(X) = min 2

{

||XT
i − XT

j ||2 − l2ij

l2ij
, 0

}

+ max 2

{

||XT
i − XT

j ||2 − u2
ij

u2
ij

, 0

}

. (12)

Similarly to (2), X is a solution if and only if it is a global minimizer of problem (9)
and σ(X) = 0.

While the problem (9) with θij given by (11) or (12) is a nondifferentiable optimization
problem, it is a d.c. optimization problem.

An and Tao demonstrated that the d.c. algorithms can be adapted for developing
efficient algorithms for solving large-scale exact MDGPs. They proposed various versions
of d.c. algorithms that are based on different formulations for the problem. Due its local
character, the global optimality cannot be guaranteed for a general d.c. problem. However,
the fact that the global optimality can be obtained with a suitable starting point motivated
them to investigate a technique for computing good starting points for the d.c. algorithms
in the solution of (9), with θij defined by (11).

The algorithms have been tested on three sets of data: the artificial data from Moré
and Wu [43] (with up to 4096 atoms), 16 proteins in the PDB [5] (from 146 up to 4189
atoms), and the data from Hendrickson [27] (from 63 up to 777 atoms). Using these data,
they showed that the d.c. algorithms can efficiently solve large-scale exact MDGPs.

5 Geometric build-up algorithm

In [17], Dong and Wu proposed the solution of the exact MDGP by an algorithm, called
the geometric build-up algorithm, based on a geometric relationship between coordinates
and distances associated to the atoms of a molecule. It is assumed that it is possible to
determine the coordinates of at least four atoms, which are marked as fixed; the remaining
ones are non-fixed. The coordinates of a non-fixed atom a can be calculated by using the
coordinates of four non-coplanar fixed atoms such that the distances between any of these
four atoms and the atom a are known. If such four atoms are found, the atom a changes its
status to fixed. More specifically, let b1, b2, b3, b4 be the four fixed atoms whose Cartesian
coordinates are already known. Now suppose that the Euclidean distances among the atom
a and the atoms b1, b2, b3, b4, namely da,bi

, for i = 1, 2, 3, 4, are known. That is,

||a − b1|| = da,b1 ,

||a − b2|| = da,b2 ,

||a − b3|| = da,b3 ,

||a − b4|| = da,b4 .
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Squaring both sides of these equations, we have:

||a||2 − 2aT b1 + ||b1||2 = d2
a,b1 ,

||a||2 − 2aT b2 + ||b2||2 = d2
a,b2 ,

||a||2 − 2aT b3 + ||b3||2 = d2
a,b3 ,

||a||2 − 2aT b4 + ||b4||2 = d2
a,b4 .

By subtracting one of these equations from the others, it is obtained a linear system that
can be used to determine the coordinates of the atom a. For example, subtracting the first
equation from the others, we obtain

Ax = b, (13)

where

A = −2







(b1 − b2)
T

(b1 − b3)
T

(b1 − b3)
T






,

x = a,

and

b =











(

d2
a,b1

− d2
a,b2

)

−
(

||b1||2 − ||b2||2
)

(

d2
a,b1

− d2
a,b3

)

−
(

||b1||2 − ||b3||2
)

(

d2
a,b1

− d2
a,b4

)

−
(

||b1||2 − ||b4||2
)











.

Since b1, b2, b3, b4 are non-coplanar atoms, the system (13) has a unique solution.

If the exact distances between all pairs of atoms are given, this approach can determine
the coordinates of all atoms of the molecule in linear time [16].

Dong and Wu implemented such an algorithm, but they verified that it is very sensitive
to the numerical errors introduced in calculating the coordinates of the atoms. In [55], Wu
and Wu proposed the updated geometric build-up algorithm showing that, in this algorithm,
the accumulation of the errors in calculating the coordinates of the atoms can be controlled
and prevented. They have been tested the algorithm with a set of problems generated using
the known structures of 10 proteins downloaded from the PDB data bank [5], with problems
from 404 up to 4201 atoms.

6 BP algorithm

In [37], Lavor, Liberti, and Maculan propose an algorithm, called branch-and-prune (BP),
based on a discrete formulation of the exact MDGP. They observe that the particular struc-
tures of proteins makes it possible to formulate the MDGP applied to protein backbones
as a discrete search problem. They formalize this by introducing the discretizable molec-
ular distance geometry problem (DMDGP), which consists of a certain subset of MDGP
instances (to which most protein backbones belong) for which a discrete formulation can be
supplied. This approach requires that the bond lengths and angles, as well as the distances
between atoms separated by three consecutive bond lengths are known.
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In order to describe a backbone of a protein with m atoms, in addition to the bond
lengths di−1,i, for i = 2, . . . , m, and the bond angles θi−2,i, for i = 3, . . . , m, it is necessary
to consider the torsion angles ωi−3,i, for i = 4, . . . , m, which are the angles between the
normals through the planes defined by the atoms i − 3, i − 2, i − 1 and i − 2, i − 1, i.

It is known that [48], given all the bond lengths d1,2, . . . , dm−1,m, bond angles θ13, . . . , θm−2,m,
and torsion angles ω1,4, . . . , ωm−3,m of a molecule with m atoms, the Cartesian coordinates
(xi1 , xi2 , xi3) for each atom i in the molecule can be obtained using the following formulae:









xi1

xi2

xi3

1









= B1B2 · · ·Bi









0
0
0
1









, ∀i = 1, . . . , m,

where

B1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, B2 =









−1 0 0 −d1,2

0 1 0 0
0 0 −1 0
0 0 0 1









,

B3 =









− cos θ1,3 − sin θ1,3 0 −d2,3 cos θ1,3

sin θ1,3 − cos θ1,3 0 d2,3 sin θ1,3

0 0 1 0
0 0 0 1









,

and

Bi =









− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cos ωi−3,i − cos θi−2,i cos ωi−3,i − sinωi−3,i di−1,i sin θi−2,i cos ωi−3,i

sin θi−2,i sinωi−3,i − cos θi−2,i sinωi−3,i cos ωi−3,i di−1,i sin θi−2,i sinωi−3,i

0 0 0 1









,

for i = 4, ..., m.
Since all the bond lengths and bond angles are assumed to be given in the instance, the

Cartesian coordinates of all atoms of a molecule can be completely determined by using the
values of cos ωi−3,i and sinωi−3,i, for i = 4, ..., m.

For instances of the DMDGP class, for all i = 4, ..., m, the value of cosωi−3,i can be
computed by the formula

cos ωi−3,i =
d2

i−3,i−2 + d2
i−2,i − 2di−3,i−2di−2,i cos θi−2,i cos θi−1,i+1 − d2

i−3,i

2di−3,i−2di−2,i sin θi−2,i sin θi−1,i+1
, (14)

which is just a rearrangement of the cosine law for torsion angles [50] (p. 278), and all the
values in the expression (14) are given in the instance. This allows to express the position
of the i-th atom in terms of the preceding three, giving 2m−3 possible conformations, which
characterizes the discretization of the problem.

The idea of the BP algorithm is that at each step the i-th atom can be placed in two
possible positions. However, either of both of these positions may be infeasible with respect
to some constraints. The search is branched on all atomic positions which are feasible with
respect to all constraints; by contrast, if a position is not feasible the search scope is pruned.

The algorithm has been tested on the artificial data from Moré and Wu [43] (with up to
216 atoms) and on the artificial data from Lavor [36] (a selection from 10 up to 100 atoms).
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7 Conclusion

This paper surveys some of the methods to solve the Molecular Distance Geometry Problem,
with particular reference to five existing algorithms: ABBIE, DGSOL, the DCA approach,
the geometric build-up algorithm and the BP algorithm.
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