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Abstract. A recent industrial challenge for traffic information providers
is to be able to compute point-to-point shortest paths very efficiently on
road networks involving millions of nodes and arcs, where the arc costs
represent travelling times that are updated every few minutes when new
traffic information is available. Such stringent constraints defy classic
shortest path algorithms. In this paper we review some existing methods
that address this scenario and propose a new Polynomial-Time Approx-
imation Scheme heuristic.

Mots-Clefs. Shortest Paths; PTAS; Dynamic Road Networks.

1 Introduction

A current problem faced by traffic information providers is that of offering GPS
terminal enabled drivers a source-destination path subject to the following con-
straints: (a) the path should be fast in terms of travelling time; (b) the travelling
times (weights on the edges) vary according to traffic information being available
on part of the road network; (c) the graph topology is fixed; (d) traffic infor-
mation data are updated at regular time intervals; (e) answers to path queries
should be computed in real time. Given these constraints, point-to-point SPP
(PPSPP) algorithms defined on static graphs are only useful as long as the
computation speed of a single point-to-point shortest path is much faster than
the edge weight update rate. In practical terms, the solution run of a PPSPP
algorithm must be of a few milliseconds in graphs with several million nodes.

In this paper we briefly survey some of the most relevant results for finding
PPSPs in dynamic graphs (Sect. 2) and we propose a new Polynomial-Time Ap-
proximation Scheme (PTAS) heuristic which performs well in practice (Sect. 3).
Our algorithm is based on Dijkstra-type searches performed on clusters of nodes;
such clusters are defined on such a way that we are able to give a bound on the
solution performance, but small enough to accelerate the search enough to be
practically useful within the given time constraints.

2 Literature review

Consider a weighted directed graph G = (V,A, c) (where c : A → R+) which
represents a road network evaluated by travelling times (so the graph may not
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be Euclidean). Assuming that c changes every few minutes, that the cardinality
of V is very large (several million vertices), and that each shortest path request
must be answered in a few seconds, current technology does not allow us to find
an exact optimum [5] in the brief time window before the next change of the
weight function (if one removes the constraints on c changing every few minutes,
some practically efficient algorithms are [18,10]). We assume some lower and
upper bounding functions λ, µ : A → R+ for c are known. Some interesting
results in computing shortest paths satisfying various robustness requirements
are given in [16,17,22]. None of these, however, yields algorithms that can answer
point-to-point shortest path requests within little time in very large graphs.

2.1 Early history

The first citation we could find concerning the SPP on dynamic graphs with time-
dependent edge weight changes is [2] (a good review of this paper can be found
in [6], p. 407): Dijkstra’s algorithm [5] is extended to the dynamic case through
a recursion formula based on the assumption that the network G = (V,A) has
the FIFO property: for each pair of time instants t, t′ with t < t′:

∀ (u, v) ∈ A τuv(t) + t ≤ τuv(t′) + t′,

where τuv(t) is the travelling time on the arc (u, v) starting from u at time t.
The FIFO property is also called the non-overtaking property, because it basically
says that if A leaves u at time t and B at time t′ > t, B cannot arrive at v before
A using the arc (u, v).

Although FIFO networks are useful for the study of those means of trans-
portation where overtaking is rare (such as trains), modelling of car transporta-
tion yields networks which do not necessarily have the FIFO property. For the
SPP on general transportation networks, early studies dealt with a specific type
of fastest paths (whose length is called interzonal travelling times) defined as
shortest paths between centroids of node clusters roughly corresponding to a
graph partition minimizing the number of inter-cluster links (typically, these are
the links corresponding to cutsets of minimum size, and hence those most likely
to be congested) [12]. Two cases were dealt separately: the shortening [15] and
the lengthening [11] of an edge, with the latter being more difficult to treat [12].
In the case of increasing edge weight (i.e. longer travelling time associated with
an edge), a partial solution was given for the cases where two node clusters i, j
were separated by a congested cutset C: the travelling time tij is then defined
as min

{p,q}∈C
(tip + tpq + tqj) [11].

2.2 Dijkstra’s algorithm: uni- and bi-directional

Dijkstra’s algorithm (see [5]) solves the single source shortest path problem in
static directed graphs with non-negative weights in polynomial time; it also solves
the problem in the presence of negative weights, but it may require exponential
time in the worst case. Dijkstra’s algorithm is a so-called labeling method.
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The labeling method for the SPP [7] finds shortest paths from the source
to all vertices in the graph; the method works as follows: for every vertex
v it maintains its distance label d(v), parent node p(v), and status S(v) =
{unreached, explored, settled}. Initially d(v) = ∞, p(v) = NIL, and S(v) =
unreached for every vertex v. The method starts by setting d(s) = 0 and S(s) =
explored; while there are labeled (i.e. explored) vertices, the method picks an
explored vertex v, relaxes all outgoing arcs of v, and sets S(v) = settled.
To relax an arc (v, w), one checks if d(w) > d(v) + c(v, w) and, if true, sets
d(w) = d(v) + c(v, w), p(w) = v, and S(w) = explored. If the length function
is non-negative, the labeling method terminates with correct shortest path dis-
tances and a shortest path tree; its efficiency depends on the rule to choose a
vertex to scan next. We say that d(v) is exact if it is equal to the distance from
s to v; it is easy to see that if one always selects a vertex v such that, at the
selection time, d(v) is exact, then each vertex is scanned at most once. Dijkstra
[5] observed that if the cost function c is non-negative and v is an explored vertex
with the smallest distance label, then d(v) is exact; so, we refer to the labeling
method with the minimum label selection rule as Dijkstra’s algorithm. If c is
non-negative then Dijkstra’s algorithm scans vertices in nondecreasing order of
distance from s and scans each vertex at most once; for the point-to-point SPP,
we can terminate the labeling method as soon as the target node is settled.
The algorithm requires O(m + n log n) time if the queue is implemented as an
heap data structure such as binary heaps or Fibonacci heaps [8].

One basic variant of Dijkstra’s algorithm for the point-to-point SPP is bidi-
rectional search; instead of building only one shortest path tree rooted at source
node s, we also build a shortest path tree rooted at target node t on the re-
verse graph Ḡ : (V, Ā) where (u, v) ∈ Ā ⇔ (v, u) ∈ A. As soon as one node v
becomes settled in both searches, we are guaranteed that the concatenation of
the shortest s → v path found in the forward search and of the shortest v → t
path found in the backward search is a shortest s → t path. Since we can think
of Dijkstra’s algorithm as exploring nodes in circles centered at s with increasing
radius until t is reached (see Fig. 1), the bidirectional variant is faster because
it explores nodes in two circles centered at both s and t, until the two circles
meet (see Fig. 2); the area within the two circles, which represents the number
of explored nodes, will then be smaller than in the unidirectional case, up to a
factor of two.

We note here that all speed-up techniques based on finding shortest paths
in Euclidean graphs [21] cannot be applied either, since the typical arc cost
function, the arc travelling time at a certain time of the day, does not yield a
Euclidean graph.

2.3 Dynamic Node Routing

Separator-based multi-level methods for the SPP have been used by many au-
thors; we refer to [13] for the basic variant. The main idea behind separator-based
methods is to define, given a subset of the vertex set V ′ ⊂ V , the shortest path
overlay graph G′ = (V ′, A′) with the property that A′ is a minimal set of edges
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Fig. 1. Schematic representation of Dijkstra’s algorithm search space

Fig. 2. Schematic representation of bidirectional Dijkstra’s algorithm search space.

such that ∀u, v ∈ V ′ the shortest path length between u and v in G′ is equal
to the shortest path length between u and v in G. Usually, the set of separator
nodes V ′ is chosen in such a way that the subgraph induced by V \ V ′ con-
sists of small components of similar size. In a bidirectional query algorithm, the
components containing source and target node are wholly searched, but starting
from the separator nodes only edges of the overlay graph G′ are considered. This
approach can be generalized and applied in a hierarchical way, building several
levels of overlay graphs with node sets V = V0 ⊇ V1 ⊇ · · · ⊇ VL so that the
following property is mantained: ∀ℓ ≤ L− 1, for all node pairs s, t ∈ Vℓ the part
of the shortest path between s and t that lies outside the level ℓ components to
which s and t belong is entirely included in the level ℓ + 1 overlay graph.

In [20], an arbitrary subset V ′ = V ′(V ) of V is considered instead of sep-
arator nodes; in practice, the set is chosen in such a way that it contains the
most important nodes, i.e. those that appear “more often” on shortest paths.
This yields a smaller set V ′, more uniformly distributed over the whole graph,
and thus G′ will be smaller, resulting in a smaller space consumption and a
faster query algorithm. However, since in this case V \ V ′ is no longer made of
small isolated components, the query algorithm is not as simple as in canonical
separator-based methods. From a theoretical point of view the same principle
holds: we might want to explore nodes from source and target until the queue in
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Dijkstra’s algorithm only contains nodes that are covered by V ′ (i.e. there is at
least one node v ∈ V ′ on the shortest path from the root to any leaf of the cur-
rent partial shortest path tree), and then switch to the overlay graph G′, or to a
higher level in the overlay graph hierarchy in the case of a multi-level approach.
This, however, does not yield good results in practice, because we cannot tell in
advance how many nodes we will have to explore until the whole partial shortest
path tree is covered by V ′. The main challenge is therefore to compute the set
of all covering nodes for the partial shortest path tree T rooted at s as quickly
as possible.

Many possible strategies are suggested in [20], including an aggressive variant
which stops the search whenever a node in V ′ is encountered, and which yields
a superset of the covering nodes. Another cited technique is “Stall-on-Demand”
(see Figure 3), which works as follows: the search from a node u ∈ V ′ is stopped
as soon as the node is settled. However, if such a node u is reached at some
time via another path, then it is woken up and a breadth-first search is started
from that node in order to stall all nodes v for which it can be proven that
the tentative path found so far is suboptimal — and this is certainly the case
if the shortest path from s to v passes through u. The Dijkstra search is then
pruned at stalled nodes. Once the set of all covering nodes for a given level of
the overlay graph has been computed, the search can switch to the next level,
until the shortest path is found (this is guaranteed to happen at the topmost
level). The choice of level node sets V = V0, V1, . . . , VL, where Vi = V ′(Vi−1) for
all i > 0, is critical for query times. The Highway Hierarchies algorithm [19] is
employed in [20].

Fig. 3. Example of the Stall-on-Demand technique (see Ex. 21).

21 Example

Consider the following example of the Stall-on-Demand technique applied to the
case illustrated in Fig. 3. All edges have cost 1 except (s, v) and (s, x) with cost
10; square nodes belong to V ′, and bold edges belong to the search tree T rooted
at s. We assume that the arc (v, w) is relaxed before (v, u); when u is woken up
by v it stalls v and w, and when w is woken up by x it stalls x and y. Only u is
then returned as covering node.

The main advantage of this approach is that overlay graphs can be computed
in a very short time; besides, if a few arc costs change there is no need to
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recompute the whole overlay graphs, but only a small part of them — the part
which is affected by the change. Certainly, if the changed arc does not belong to
the partial shortest path tree of a given node, the construction phase from that
node need not be repeated. In particular, during the pre-processing phase we
build for each node v a list of all nodes that can be affected if the cost of one of
the outgoing arcs from v changes. The construction phase is repeated only when
necessary; the authors of [20] claim that the update process takes on average up
to a few dozen milliseconds for each arc cost change. After the update step the
bidirectional query algorithm will correctly compute shortest paths. The total
speed-up, with respect to a “pure” bidirectional Dijkstra’s algorithm, is of about
three orders of magnitude.

2.4 A
∗ for dynamic scenarios

Goal directed search, also called A∗, is a search technique which is similar to
Dijkstra’s algorithm, but which adds a potential function to the priority key of
each node in the queue. This function applied on a node v should be an estimate
of the distance to reach the target from v; A∗ then works exactly as Dijkstra’s
algorithm, but the use of a potential function has the effect of giving priority to
nodes that are (supposedly) closer to target node t. If the potential function π
is such that π(v) ≤ d(v, t)∀v ∈ V , where d(v, t) is the distance from v to t, then
A∗ always finds shortest paths. A∗ is guaranteed to explore no more nodes than
Dijkstra’s algorithm: if π(v) is a good approximation from below of the distance
to target, A∗ efficiently drives the search towards the destination node, i.e. the
search space is not a circle centered at s, bu an ellipse directed towards t (see
Fig. 4); if π(v) = 0∀v ∈ V , A∗ behaves exactly like Dijkstra’s algorithm, ie. it
explores the same nodes. In [14] it is shown that A∗ is equivalent to Dijkstra’s
algorithm on a graph with reduced costs, i.e. cπ(u, v) = c(u, v) − π(u) + π(v).
A∗ was first applied in a time-dependent scenario with the FIFO property in
[1]; a much more efficient version, presented in [3], makes use of landmarks to
compute the potential function.

Fig. 4. Schematic representation of A∗ algorithm search space

Landmarks have first been proposed in [9]; they are a preprocessing tech-
nique which is based on the triangular inequality. The basic principle is as fol-
lows: suppose we have selected a set L ⊂ V of landmarks, and we have pre-
computed distances d(v, ℓ), d(ℓ, v)∀v ∈ V, ℓ ∈ L; the following triangle inequal-
ities hold: d(u, v) + d(v, ℓ) ≥ d(u, ℓ) and d(ℓ, u) + d(u, v) ≥ d(ℓ, v). Therefore
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πt(u) = maxℓ∈L{d(u, ℓ) − d(t, ℓ), d(ℓ, t) − d(ℓ, u)} is a lower bound for the dis-
tance d(u, t), and it can be used as a potential function which preserves optimal
paths. Bidirectional search can be implemented, using some care in modifying
the potential function so that it is consistent for the forward and backward search
(see [10]). A∗ with the potential function described above is called ALT. It is
straightforward to note that, if arc costs can only increase with respect to their
original value, the potential function associated with landmarks is still a valid
lower bound, and in [3] this idea is applied to a real road network in order to
analyse the algorithm’s performances.

Two different approaches are considered; the first one is to update the pre-
processing information, i.e. update distances to and from landmarks whenever
an arc cost changes. Required time for this operation is greatly dependent on the
number of updated arcs, their relative importance (urban edge, motorway, etc.)
and their position with respect to landmarks, but it is a costly operation if sev-
eral motorway edges are perturbed. The other possible approach is to compute
paths without updating distances to and from landmarks; the algorithm’s effi-
ciency decreases with respect to the non-dynamic graph case, depending again
on the number and type of perturbed edges. The authors of [3] report that,
if 1000 motorway edges out of 42.6 millions edges are perturbed, roughly 95%
of queries become slower, but ALT still yields an order of magnitude of speed
increase with respect to bidirectional Dijkstra.

3 Polynomial-Time Approximation Scheme

For s, t ∈ V we denote the set of all paths (s, . . . , t) from s to t by P (s, t) and
the set of all shortest paths from s to t on a graph weighted by function f
by P ∗

f (s, t); when the weighting function is c, we will omit the subscript, i.e.
P ∗(s, t) = P ∗

c (s, t). Given U ⊆ V such that s, t ∈ U , let G[U ] be the subgraph
of G induced by U . The set of all paths between s and t in G[U ] is denoted by
P [U ](s, t) and the set of all shortest paths between s and t in G[U ] weighted
by function f is denoted by P ∗

f [U ](s, t); as before, we will write P ∗[U ](s, t) =
P ∗

c [U ](s, t). We naturally extend c to be defined on paths p = (v1, . . . , vk) by

c(p) =
∑k−1

i=1 c(vi, vi+1), and in a similar way for

3.1 Guarantee regions

Let Gλ = (V,A, λ) and Gµ = (V,A, µ) be the graph G weighted by the lower
and upper bounding functions λ, µ.

31 Definition

For K > 1, s, t ∈ V and any path p ∈ P (s, t), we define the guarantee region as:

Γst(K, p) = {v ∈ V |v ∈ p ∨ ∃ q ∈ P (s, t) (v ∈ q ∧ λ(q) <
1

K
µ(p))}.

Prop. 32 points at a way to compute valid guarantee regions for any given
path p ∈ P (s, t).
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32 Proposition

For K > 1, s, t ∈ V , p ∈ P (s, t), p∗ ∈ P ∗(s, t) and r∗ ∈ P ∗[Γst(K, p)](s, t), we
have c(r∗) ≤ Kc(p∗).

Proof. Suppose there is a path q ∈ P (s, t) containing a node v 6∈ Γst(K, p) such
that c(r∗) > Kc(q). For q∗ ∈ P ∗

µ [Γst(K, p)](s, t) We have the chain λ(q) ≤ c(q) <
1
K

c(r∗) ≤ 1
K

c(q∗) ≤ 1
K

µ(q∗) ≤ 1
K

µ(p), which implies that all nodes of q are in
Γst(K, p) by definition: including v, which is a contradiction.

33 Proposition

Let p∗ ∈ P ∗
µ(s, t) be a shortest s → t path in Gµ, and p ∈ P (s, t) be another

(different) s → t path. If p∗ ⊂ Γst(K, p) then Γst(K, p∗) ⊆ Γst(K, p).

Proof. By definition, for all v ∈ Γst(K, p∗) either v ∈ p∗ or there is q ∈ P (s, t)
such that v ∈ q and λ(q) < 1

K
µ(p∗) ≤ 1

K
u(p). In the first case v ∈ Γst(K, p) by

hypothesis; in the second case v ∈ Γst(K, p) by its own definition.

Although the result only holds if p∗ ∈ P ∗
µ(s, t), p∗ ⊂ Γst(K, p), Prop. 33 is

useful to characterize the choice of the initial path p (namely, the shortest path
in Gµ) that will be used to build a guarantee regions. It is possible to show by
counterexample that guarantee regions generated by shortest paths in Gµ are
not always minimal. The trouble with the guarantee regions defined above is
that, although only a pre-processing step, building all guarantee regions for all
node pairs in a very large graph is not a feasible task with current technology.
We deal with this problem by covering V with clusters V1, . . . , Vk.

34 Definition

A covering V1, . . . , Vk of V is valid if for all i ≤ k there is are two selected (not
necessarily distinct) vertices si, ti ∈ Vi such that for all other vertices v ∈ Vi

there are paths p ∈ P (v, si), q ∈ P (ti, v) entirely contained in Vi.

For all i ≤ k let σi = maxv∈Vi,p∈P∗

µ (v,si) c(p) and τi = maxv∈Vi,p∈P∗

µ (ti,v) c(p)) be
the costs of the longest shortest path in Gµ from v to si and respectively from
ti to v over all v ∈ Vi.

35 Definition

Given a valid covering V1, . . . , Vk of V , for K > 1, i 6= j ≤ k and any path
p ∈ P (si, tj), we define the guarantee region as:

ΓViVj
(K, p) = {v ∈ V |v ∈ p∪Vi∪Vj∨∃ q ∈ P (si, tj) (v ∈ q∧λ(q) <

1

K
(µ(p)+σi+τj))}.

We have the following theorem:

36 Theorem

Given a valid covering V1, . . . , Vk of V , for K > 1, i 6= j ≤ k, p ∈ P (si, tj), p∗ ∈
P ∗(u, v), and r∗ ∈ P ∗[ΓViVj

(K, p)](u, v) for all u, v ∈ V we have c(r∗) ≤ Kc(p∗).
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Proof. Suppose there is a path q ∈ P (u, v) containing a node w 6∈ ΓViVj
(K, p)

such that c(r∗) > Kc(q). By definition of Gλ we have λ(q) ≤ c(q). By definition
of q we have c(q) < 1

K
c(r∗). For q∗ ∈ P ∗

µ [ΓViVj
(K, p)](u, v) we also have, by

definition of Gµ and by optimality of r∗, c(r∗) ≤ c(q∗) ≤ µ(q∗). Furthermore,
since q∗ is shortest, µ(q∗) ≤ µ(p) + σi + τj , which proves that all the vertices of
q, including w, are in ΓViVj

(K, p(si, tj)). By contradiction the result follows.

A result similar to Prop. 33 holds for ΓViVj
(K, p∗) when p∗ ∈ P ∗

µ(si, tj), and
serves as a hint to choose our initial path.

37 Proposition

Given a valid covering V1, . . . , Vk of V , for i 6= j ≤ k let p∗ ∈ P ∗
µ(si, tj) be a

shortest si → tj path in Gµ, and p ∈ P (si, tj) be another (different) si → tj
path. If q∗ ⊂ ΓViVj

(K, p) then ΓViVj
(K, p∗) ⊆ ΓViVj

(K, p).

Proof. By definition, for all v ∈ ΓViVj
(K, p∗) we have v ∈ p∗ ∨ v ∈ Vi ∨ v ∈ Vj

or there is q ∈ P (s, t) such that v ∈ q and l(q) < 1
K

µ(q∗) ≤ 1
K

µ(p). In the first
case v ∈ ΓViVj

(K, p) by hypothesis; in all other cases v ∈ ΓViVj
(K, p) by its own

definition.

38 Example

We give an example of the fact that Γst(K, p∗) and ΓViVj
(K, p∗) may fail to

have minimal size. We take s = A, t = E,K = 6
5 in the graph of Fig. 38. Since

Fig. 5. Nodes A, B, D, E are in set ΓAE(1.2, (ABDE)).

the shortest path from A to E in Gµ is p∗ = (A,B,D,E), those nodes are
included in ΓAE(6/5, p∗). Furthermore, µ(A,B,D,E) = 270, and that the path
p ∈ P (A,E), p = (A,B,C,E) in Gλ has cost λ(p) = 224 < 5

6270 = 225, hence
ΓAE(6/5, p∗) = {A,B,C,D,E}. However, it is easy to see that the set Γ ′ =
{A,B,D,E} has a smaller size and is enough to guarantee the approximation
property.

3.2 Computing the node sets

It is obvious, for the way we have defined Γst(K, p) and ΓViVj
(K, p) in definition

31 and 35, that the most difficult (and expensive) part during the computation
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of those sets is computing all paths p ∈ P (s, t)|λ(p) < H, where H is a given
quantity whose value depends wether we are in the unclusterized or in the clus-
terized case. Computing H itself is not too difficult, since it requires computing
p∗ ∈ P ∗(s, t) and, in the clusterized graph, upper bounds to the cost of short-
est paths in a small set of nodes. These upper bound can be computed with a
slightly modified version of Dijkstra’s algorithm: for example, if we want to cal-
culate τi = maxv∈Vi,p∈P∗

µ (ti,v) c(p)) we just jave to apply Dijkstra on subgraph

Gµ[Vi] with ti as source node; the cost of the last settled node is our τi.
We will now see how we can compute the set of all nodes that belong to a path

from a node s to a node t with total cost < H, adding some lines to Dijkstra’s
algorithmm and applying it on the reverse graph (note that, with straightforward
changes, the same holds true on the original graph). Let us define the limited-
width shortest paths tree Tu,L from a given node u of width L as the the shortest
paths tree that contains all nodes v|p∗ ∈ P ∗(u, v) ⇒ λ(p∗) < L. Given a graph
G = 〈V,A〉 with cost function for edges λ(i, j), let us define the reverse graph
G = 〈V,A〉 where (i, j) ∈ A ⇐⇒ (j, i) ∈ A with cost function λ(i, j) = λ(j, i). We
will call l[v] Dijkstra’s algorithm label of a node v ∈ Ts,L computed on the direct
graph, i.e. l[v] = λ(p∗) where p∗ ∈ P ∗(s, v), and l[v] Dijkstra’s algorithm label
of a node v computed on the reverse graph, i.e. l[v] = λ(p∗) where p∗ ∈ P ∗(v, t).
We assume to set l[v] = ∞ if v /∈ Ts,L, and l[v] = ∞∀v ∈ V . Algorithm 3.2
computes the desired set.

We can prove its correctness.

39 Proposition

Algorithm 3.2 returns only and all nodes on a path p ∈ P (s, t)|λ(p) < H

Proof. First, we note that this algorithm is a modification of Dijkstra’s algorithm
which simply adds some lines that not inficiate the correctness of Dijkstra’s
algorithm; there is one additional terminating condition on the main loop: the
algorithm stops if it has settled a node u with l[u] > H. First part: algorithm
3.2 returns all nodes on a path p ∈ P (s, t)|λ(p) < H. Suppose there is a node
u /∈ S, u ∈ q where q ∈ P (s, t) is such that λ(q) < H; since there is a path from s
to t with cost < H, we have that d(u, t) < H, and so node u is scanned because
the additional terminating condition on the main loop does not apply. Also, we
have that d(s, u)+d(u, t) ≤ λ(q) by optimality. Thus, when the node is scanned,
the test on line 11 holds true since l[u] + l[u] = d(s, u)+ d(u, t) ≤ λ(q) < H, and
u is added to S, which is an absurd.

Second part: algorithm 3.2 returns only nodes on a path p ∈ P (s, t)|λ(p) < H.
Suppose there is a node u ∈ S such that 6 ∃q ∈ P (s, t) such that λ(q) < H,u ∈ q.
Since u ∈ S, then it has been added on line 12, which means that l[u]+ l[u] < H.
In this case, for the way we have defined l[u] and l[u], we can concatenate the
shortest paths from s to u and from u to t to build a s → t path with cost
l[u] + l[u] < H. The absurd follows.

Time requirements for Algorithm 3.2 are roughly the same as applying two
times Dijkstra’s algorithm on the original graph, thus O(|A| + |V | log |V |) with
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Algorithm 1 Find only and all nodes on a path with total cost < H from a
node s to a node t

1: Build Ts,H on graph Gλ

2: Q ← {t}
3: l[t] ← 0
4: S ← φ
5: E ← φ
6: stop = false

7: if l[t] 6= ∞ then

8: while Q 6= φ ∧ ¬stop do

9: extract x ← arg minq∈Q{l[q]}
10: E ← x
11: if l[x] + l[x] < H then

12: S ← S ∪ {x}
13: end if

14: if l[x] ≥ H then

15: stop = true

16: end if

17: for all arcs (x, y) ∈ A do

18: if y /∈ E then

19: if y /∈ Q then

20: l[y] ← l[x] + λ(x, y)
21: Q ← Q ∪ {y}
22: else if l[x] + λ(x, y) < l[y] then

23: l[y] ← l[x] + λ(x, y)
24: end if

25: end if

26: end for

27: end while

28: end if

29: return S

Fibonacci’s heaps, but each Dijkstra’s execution can be stopped whenever we
reach a distance of H from source node, so effective running time greatly depends
on H, which in turns depends on the choice of K and graph’s topology: the higher
K, the lower the execution time. Space requirements are linear in |V |: in addition
to Dijkstra’s linear space requirements, we only need to store each node’s label
in the direct search before applying the reverse search. Note that keeping track
of the whole Dijkstra’s shortest paths trees is not needed.

3.3 Computational results

We used a subgraph of France’s road network, roughly corresponding to Île-de-
France (i.e. Paris and surroundings), to validate our approach. This subgraph
has roughly 300.000 vertices and 800.000 edges. We ran several bidirectional
Dijkstra searches [18] on the full graph and on guarantee regions to assess the
usefulness of our heuristic, with source and destination node chosen at random,
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and for each source-destination pair we repeated the query 5 times with arc costs
generated at random with a uniform distribution each time; upper bounds on
arc costs are between 5-10 times lower bounds. We recorded solution quality and
CPU times in Table 1. For each value of K (first column), we indicate the average
number D of nodes explored in bi-directional Dijkstra searches n the full graph,
the average number R of nodes explored in bi-directional Dijkstra searches on
the guarantee regions, the average percentage increase P of the approximated
solution value with respect to the optimum (0% means that the approximated
solution is optimal), the average CPU time savings C in percentage of the CPU
times taken by the exact algorithm (0% means as slow as the exact algorithm).

K D R P C
3 74559 74532 0% 0%
4 74779 74219 0% 0%
5 74651 65126 0% 8.39%
6 74739 39282 0% 46.85%
7 74647 5609 0.07% 93.86%

Table 1. Computational results on unclustered graph: mean values.

To validate the clustered approach, we generated a valid covering of V , and
then, for some random cluster pairs, compared the number of explored and
settled nodes between a bidirectional Dijkstra search and a bidirectional Dijkstra
search constrained to the guarantee regions, where source and destination node of
Dijkstra’s search where chosen randomly in their respective cluster, performing
5 queries with arc costs generated at random for each source-destination pair.
Results are reported in Table 2 (same column labels as Table 1); cluster size was
set to 500 nodes.

K D R P C
6 74493 73262 0% 0%
7 74605 66804 0% 5.83%
8 74129 56761 0% 20.35%
9 74436 34091 0.02% 54.26%
10 74494 13978 1.20% 82.05%

Table 2. Computational results on clustered graph: mean values

4 Conclusion

In this paper we surveyed some of the methods used in computing fast point-to-
point shortest paths on dynamic road networks, and proposed a new Polynomial-
Time Approximation Scheme heuristic based on limiting a Dijkstra-type search
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within a set of regions whose definition ensures a desired approximation guar-
antee.
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