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1 Introduction

Given a Binary Linear Programming (BLP) problem in the following general
form:

minx cx

s.t. Ax ≤ b

x ∈ {0, 1}n,



























[P ] (1)

(where x are the decision variables, c is a rational cost n-vector, A is a rational
m × n matrix, and b is a rational m-vector), the convex hull is the convex
combination of all feasible integral points; its importance lies in the fact that
the relaxed solution of the continuous relaxation of (1) subject to the convex
hull of all its feasible integral points is integer.

In view of providing an explicit representation of the convex hull by listing all
the facets, it is interesting to describe the integral feasible region in terms of
interior points, i.e. hypercube vertices which are feasible in (1) and such that
all their adjacent hypercube vertices are also feasible in (1) and exterior points,
for which there is at least one infeasible adjacent hypercube vertex. Whereas
interior points belong to trivial facets of the convex hull (i.e. those facets which
are also hypercube facets), exterior points define all the non-trivial facets. In
this work we use a particular type of rounding along the hypercube edges
(called flattening) to derive all exterior points of the feasible region of BLPs.
We also show how to exploit this characterization to derive practically useful
valid inequalities passing through hypercube vertices, and their relation to
Balas’ intersection cuts [1]. Other works in the literature which are closely
related to this topic are geometric [3] and canonical [2] cuts; both of these also
pass through hypercube vertices, and therefore also identify exterior points.
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The main idea in this work is that if an intersection point p between a hyper-
plane Aix = bi (arising from the inequality Aix ≤ bi of the relaxed feasible
polyhedron) with the edge segments of the unit hypercube is not integral, then
it has a unique fractional component. The two integral neighbouring hyper-
cube points x1, x2 are then separated by Aix = bi; assuming Aix1 ≤ bi and
Aix2 > bi, and supposing that x1 is feasible in (1), we “flatten” the constraint
Aix ≤ bi in the direction of the feasible point x1. Flattening inequalities are
designed to intersect feasible integral points, hence they are likely to provide
fast convergence for a cutting plane algorithm whenever the current relaxed
solution is near a hypercube edge; however, because they are not guaranteed
to be valid cuts, they need to be paired with general-purpose valid cuts sepa-
rating the current relaxed solution, such as intersection cuts [1].

Let Cn = (V,E) be the graph structure of the unit hypercube in n dimensions,
and ι : V → {0, 1}n be the (invertible) map sending each vertex of the hyper-
cube graph into the corresponding unit hypercube vertex in Euclidean space.
We denote the set of adjacent vertices of v as δ(v). Given distinct x, y ∈ R

n we
let [x, y] be the closed segment joining x, y ((x, y) is an open segment, (x, y] and
[x, y) are semi-closed segments). For each {u, v} ∈ E we let [u, v] = [ι(u), ι(v)],
and [u, v] be the line containing [u, v]. We denote by Hn = {ι(v) | v ∈ V } and
by H̄n =

⋃

{u,v}∈E[u, v]. Given a set T ∈ R
n of n linearly independent points,

we let (π(T ), π0(T )) ∈ R
n+1 be a vector (π1, . . . , πn, π0) such that πx = π0

is the hyperplane passing through all the points in T . Given y 6∈ aff(T ), let
(π(T, y), π0(T, y)) ∈ R

n+1 be such that πx = π0 for all x ∈ T and πy > π0. For
all j ∈ {1, . . . , n} we denote by ej the j-th unit coordinate direction vector
(01, . . . , 1j, . . . , 0n), and let e =

∑n
j=1 ej be the vector with all entries set to 1.

Let F = {x ∈ {0, 1}n | Ax ≤ b} be the feasible region of problem P , which
we assume to be non-empty, and F̄ = {x ∈ [0, 1]n | Ax ≤ b} its continuous
relaxation. The continuous relaxation P̄ of P is the problem min{cx | x ∈ F̄}.
Let F ◦ = {x ∈ F |δ(ι−1(x)) ∈ F} be the integral interior of F , namely the
set of hypercube points feasible in P such that their n adjacent points in Cn

are also feasible in P . For all i ∈ {1, . . . ,m} let Ai be the i-th row of A, so
that Aix ≤ bi is the i-th problem constraint; let Ri = {x ∈ R

n | Aix = bi}
and R̄i = {x ∈ R

n | Aix ≤ bi}. Given a solution x′ of P̄ , let I(x′) be the set of
active constraint indices.

2 The flattening operator

For i ≤ m and {u, v} ∈ E, we consider the set Nuv
i = Ri∩ [u, v]. The following

facts hold:

(1) Nuv
i is either a single point, or empty, or the whole segment [u, v].

(2) If |Nuv
i | = 1, Ri is a separating hyperplane for the singleton sets {ι(u)},
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{ι(v)}; furthermore, Aiι(u) ≤ bi ⇔ (ι(v) − ι(u))Ai > 0, and Aiι(u) >

bi ⇔ (ι(v) − ι(u))Ai < 0.
(3) If Nuv

i = [u, v], then (ι(v) − ι(u))Ai = 0 and both ι(u), ι(v) are in R̄i.

For all i ≤ m let
Ni =

⋃

{u,v}∈E

Nuv
i .

Lemma 1 For all i ≤ m and p ∈ Ni, there exists at most one component of
p that is fractional.

For i ≤ m and p ∈ Ni such that p is not integral, we denote by f(p) the unique
fractional component index of p. Define:

⌊p⌋= (p1, . . . , ⌊pf(p)⌋, . . . , pn).

⌈p⌉= (p1, . . . , ⌈pf(p)⌉, . . . , pn).

For integral p, we let ⌊p⌋ = ⌈p⌉ = p and f(p) = −1. For {u, v} ∈ E we
define u < v if there is j ≤ n such that (ι(v) − ι(u)) = ej, and u > v if
there is j ≤ n such that (ι(v) − ι(u)) = −ej. Assuming u < v and f(p) ≥ 0,
it is straightforward to show that ⌊p⌋ = ι(u) and ⌈p⌉ = ι(v); furthermore,
(⌈p⌉ − ⌊p⌋) = ef(p).

To each p ∈ Ni (i ≤ m) we associate the “closest” feasible integral point. For
i ≤ m and p ∈ Ni we define the flattening of p as:

Φ(p) =



























⌊p⌋ if ⌊p⌋ ∈ R̄i, ⌈p⌉ 6∈ R̄i

⌈p⌉ if ⌈p⌉ ∈ R̄i, ⌊p⌋ 6∈ R̄i

{⌊p⌋, ⌈p⌉} if ⌊p⌋, ⌈p⌉ ∈ R̄i

Let N =
⋃

i≤m Ni be the set of all intersection points of the hyperplanes
defining the problem constraints with the unit hypercube edges. The flattening
of N is Φ(N) = {Φ(p) | p ∈ N} ∩ F̄ .

Theorem 2 {F ◦, Φ(N)} is a partition of F .

The main limitation of Thm. 2 is that for any given i ≤ n and {u, v} ∈ E,
|Nuv

i | is generally not polynomial in n, but depends on the number of edges

in the unit hypercube, which is
∑n

d=1

(

n

d

)

d.

We recall that a facet of P is a hyperplane πx = π0 such that dim aff({x | πx =
π0} ∩ conv(F )) = n. The following results characterizes the extent to which
flattened points can be used to derive facets of conv(F ).
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Theorem 3 Assume dim aff(F ) = n. Let W ⊆ Φ(N) such that (a) |W | = n,
(b) ∀ w ∈ F ◦ (π(W )w 6= π0(W )). Then π(W )x = π0(W ) is a facet of conv(F ).

In practice, Thm. 3 cannot really be used to derive facets because testing con-
dition (b) would yield exponential time complexity. We can, however, derive
some cutting planes by flattening just one point at a time.

Proposition 4 For i ≤ m and p ∈ Ni such that p is not integral, let q1, . . . , qn−1

be the vertices adjacent to p in the (n − 1)-dimensional polyhedron Ri ∩ H̄n,
and W = {Φ(p), q1, . . . , qn−1}. Then π(W, p)x ≤ π0(W, p) is a cutting plane
for P .

The cutting planes described in Prop. 4 are called flattening inequalities. Their
most interesting feature is that they always pass through a polyhedron vertex.
It is reasonable to expect that they should contribute to a faster convergence of
cutting planes type algorithms by accelerating the identification of the optimal
integral solution specially towards the end of the search (when the relaxed
optima are expected to be nearer hypercube edges).

3 Conclusion

In this paper we discussed a characterization of the feasible region of Binary
Linear Programming problems in terms of interior and exterior points, and
showed that this characterization is useful to derive some cutting planes.
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