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Abstract: This paper describes a new heuristic method for finding minimum fundamental cycle bases in biconnected, 
undirected graphs. At each iteration, a particular edge swap is applied to the spanning tree corresponding to the 
current fundamental cycle basis is computed. Our numerical experiments, obtained for square mesh graphs, show that 
this heuristic finds fundamental cycle bases with considerably lower costs compared to other available heuristics.  
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1.  INTRODUCTION 
 
Let G = (V,E) be a simple, undirected, biconnected 
graph with n nodes and m edges. A set of cycles in the 
graph is a cycle basis if it is a basis in the cycle vector 
space. The cost of a cycle is defined as the number of 

edges contained in the cycle. The cost of a set of cycles 
is the sum of the costs of each cycle in the set. Given 
any spanning tree T of G, the edges in G\T (the co-tree) 
are called chords of G w.r.t. T. Any chord uniquely 
identifies a cycle consisting of the chord itself and the 
unique path in T adjoining the two vertices incident on 
the chord. These m – n + 1 cycles are called 
fundamental cycles; they form a cycle basis which is 
called fundamental cycle basis (FCB) of G with respect 
to T. It turns out [6] that a cycle basis is fundamental if 
and only if  each cycle in the basis contains exactly one 
edge which is not contained in any other cycle in the 
basis. A minimum fundamental cycle basis is quite 
naturally an FCB having minimum cost. Finding a 
minimum FCB is referred to as the MinFCB problem. 
 
Minimum FCBs arise in a variety of application fields, 
such as VLSI design [1], periodic timetable planning 
[5], and generating minimal perfect hash functions [3], 

as well as being an interesting combinatorial 
optimization problem in itself.  
 
Let T be a spanning tree of G. Any edge e of T naturally 
partitions T in two connected components T1,T2 (this 
becomes apparent when removing e from T). The cut te 
consisting of e and all the edges of G having one 

adjacent vertex in  T1 and the other in T2 is called the 
fundamental cut of e with respect to T in G. Let e,f be 
edges of G such that e is in T and f is in E\T, and let π = 
(e,f) be an edge permutation (also called edge swap). 
We can define the action of π on the set � of all 
spanning trees of G by setting πT = T' where T' is the 
spanning tree derived from T where e has been replaced 
by f. Note that π is well-defined as an action on �  if 
and only if f is in the fundamental cut te.  
 
Since any spanning tree of G gives rise to an FCB, we 
can define a mapping m between � and the set �  of 
all FCBs of G. It turns out [6] that this mapping is 
surjective but not injective: if  te = {e,f} and π = (e,f) 
then  m(T) = m(πT). In other words, edge swaps in 
fundamental cuts of cardinality 2 induce different 
spanning trees but the same FCB.  
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The MinFCB problem is NP-hard [2]. Moreover, it is 
proved in [4] that it cannot have a PTAS unless P=NP. 
In the same work, a 2O(√(log n log log n))  approximation 
algorithm is presented. Thus, it makes sense to look for 
heuristic methods of solutions. Several heuristics for the 
MinFCB problems exist in the literature [2, 3], and all 
are based on a “spanning tree growth” strategy. This 
means that a spanning tree is constructed iteratively 
adding vertices and edges of G in the order that is likely 
to give rise to the FCB having least cost. Such 
approaches are usually very fast (and thus the only 
possible approaches for extremely large graphs) but do 

not find exceptionally good solutions. In this paper we 
shall present a different kind of heuristic for this 
problem, based on edge swaps. A good initial spanning 
tree is found and then some edge swaps are applied to it 
so that the corresponding FCB cost decreases.  
 
The rest of this paper is organized as follows: in section 
2 we shall describe the edge-swapping heuristic. In 
section 3 we shall present a structural result which 
allows an optimal implementation of the heuristic. Some 
computational results are presented in section 4. 

  
 
2.THE HEURISTIC 
 
The heuristic move described in this section works by 
applying a carefully chosen edge swap to an existing 
spanning tree. Let T be the initial spanning tree. Let P = 
{(e,f) | e in T and f in te s.t. |te| > 2, f ≠ e}. For all π in P 
let dπ be the cost of m(πT). Choose π in P such that dπ is 
minimum and replace T with πT. This heuristic move is 
inserted into a simple local search algorithm that 
terminates when π is the identity. Obviously, the choice 
of the initial spanning tree T is important. To this end 
any of the existing fast heuristics in [2, 3] can be used.  
 
In order to calculate the cost of an FCB given the 
corresponding spanning tree we need to calculate the 
cost of each fundamental cycle. Thus, given the set of 
chords C of cardinality m – n + 1 (where m is the 
number of edges in the graph and n the number of 
vertices), for each chord c we need to find the unique 
path connecting the vertices adjacent to c. Using “least 
common ancestor” techniques, the computational 
complexity of such an operation is O(n). Since we have 
to do this for every chord, the complexity of calculating 
the FCB cost is  O(mn).  
 
The heuristic move requires an FCB cost calculation for 
each π in P. There are n – 1 edges in a spanning tree and 
in the worst case there are m edges in a cut, so there are 
at worst mn permutations in P (but this theoretical worst 
case is never attained in undirected graphs without 
parallel edges). Hence, the complexity of computing the 
set of FCB costs {dπ} is  O(m2 n2). Finding the 
minimum dπ has complexity  O(mn) as |P| < mn.  
 
Furthermore, for each edge e in T we need to compute 
the fundamental cut te. We do this in two steps: (a) find 
the connected components T1,T2  
 
 
partitioning T which are obtained by removing e from T; 
and (b) identify the chords of G which have one 
adjacent vertex in T1 and the other in T2. Those chords 
form the fundamental cut  te. Step (a) can be carried out 
in linear time proportional to n by a simple recursive 
depth-first search of T\{e} starting from either vertex of 
e. Step (b) can be carried out in linear time proportional 
to the number of chords of G, that is, m – n + 1. Since 
we have to find the fundamental cut for each of the n – 

1 branches of T, we obtain a complexity of  O(mn).  
 
Thus, the heuristic move consists of three steps: 
calculating FCB costs, choosing the minimum FCB cost 
over a finite set, and finding fundamental cuts. All in 
all, the complexity order of the whole heuristic move is  
O(m2 n2). 
 
3.  EFFICIENT IMPLEMENTATION 
 
In settings which require repeated applications of the 
heuristic move described above (like, for example, in a 
local search framework or in a tabu search scheme), it is 
easy to note that at each repeated application we end up 
with a tree πT which differs from the initial tree T only 
by an edge swap. Most of the times this means that 
recalculating the whole set of fundamental cuts and 
FCB costs in πT is overkill, since on average most of 
these entities will remain the same. This situation calls 
for a differential calculation of the set of fundamental 
cuts and FCB costs to be carried out with respect to the 
chosen permutation π.  
 
In the rest of this section we shall state some structural 
results in graph theory (without proofs due to the size 
limitation of this paper) which will allow us to carry out 
fundamental cuts and FCB costs in function of π in an 
optimal way. To the best of our knowledge, these results 
have never been stated before. 
 
Let π = (e,f) with e in T and f in te. The following 
properties hold: 
 

1.for any edge h in T,  π changes th if and only if 
f is in th as well; 
2.π(te) =  tf ; 
3.for any edge h in T, π(th) is the symmetric 
difference of the edge sets th and te . 

 
The above properties allow us to quickly compute the 
fundamental cuts at each repeated application of the 
heuristic move, by updating the existing fundamental 
cuts. 
 
We now describe equivalent properties on the cycles. 
Let π = (e,f) with e in T and f in te, and for all chords k 
of G with respect to T let ck be the fundamental cycle in 
G defined by k. The following hold: 
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1.for any edge h which is not in te, π fixes ch; 
2.for any chord h in te , π(ch) is the symmetric 
difference of the edge sets ch and cf . 

 
By using the above properties on fundamental cycles, 
we can compute the FCB cost by updating (only when 
necessary) the fundamental cycle corresponding to each 
chord in the graph. 
 
 
4.  COMPUTATIONAL RESULTS 
 
We have carried out extensive numerical experiments 
on square mesh graphs with side N. Each such graph has 

N2  vertices and 2N(N – 1) edges. We have found these 
graphs to be a hard challenge for the MinFCB problem. 
The following table lists N, the FCB cost found by the 
heuristic (inserted in a local search scheme) of the 
corresponding N-square mesh graph, and the 
computational time required to perform the 
computation. By comparison, we have also listed the 
computational result of our own implementation of the 
NT heuristic for the MinFCB problem described in [3]. 
All the tests have been carried out on a Pentium 4 
2.66GHz machine with 1GB RAM and running linux. 
The source code, in C++, has been compiled by gcc v. 
3.0. 
 

N FCB Cost CPU time Deo: FCB 
cost 

Deo: CPU 
time 

5 720.01s 780.01s 
10 4760.5s 5180.05s 
15 1320 00:00:06 15880.24s 
20 2652 00:00:44 3636 00:00:01
25 4592 00:03:16 6452 00:00:02
30 6962 00:09:11 11638 00:00:04
35 10012 00:28:07 16776 00:00:08
40 13530 01:18:27 28100 00:00:13
45 18040 03:20:45 35744 00:00:24
50 23028 06:51:43 48254 00:00:37
55 28662 12:39:25 62026 00:00:48
60 34986 22:30:04 92978 00:01:06

 
The results table above shows that the edge-swapping 
heuristic obtains much better solutions than its tree-
growth based counterpart, albeit at a considerable 
computational time cost. This indicates that edge-
swapping is convenient either when the graph is not 
huge, or when there is a considerable need for a very 
good solution. Tree-growing heuristic should be used in 
very large graphs. 
 
5.  CONCLUSION 
 
In this paper we gave a short description of the 
MinFCB problem, we proposed a new heuristic move 
based on swapping edges of the spanning tree 
corresponding to the current FCB, we established some 
properties of FCBs which help build an efficient  
implementation of the algorithm, and we gave some 
computational results concerning the application of the 
above-mentioned heuristic move (inserted within a local 
search scheme) to N-square mesh graphs. We compared 
these results with the best-known “tree-growth” based 
heuristic for the MinFCB problem. From the 
comparison it is apparent that “tree-growth” heuristics 
are much faster than edge-swapping heuristics, but they 
attain worse results in terms of FCB cost.  
 
Obtaining lower bounds for the MinFCB problem is a 
hard task. The best lower bound found so far is the 
algebraic bound  4(n – 1)2 on n-square mesh graphs, 
derived from the number of “small squares” in the 
mesh. 

 
A tabu search implementation built around the above-
mentioned heuristic move is currently under way.  
 
 
 
6.  REFERENCES 
 
[1] Brambilla, A. and Premoli, A., “Rigorous Event-
Driven (RED) Analysis of Large-Scale Nonlinear RC 
Circuits”, IEEE Transactions on Circuits and Systems-I, 
48(8):938-947, August 2001. 
[2] Deo, N., Prabhu, G.M., and Krishnamoorthy, M.S. 
“Algorithms for generating Fundamental Cycles in a 
Graph”, ACM Transactions on Mathematical Software, 
8(1):26-42, March 1982. 
[3] Deo, N., Kumar, N., and Parsons, J., “Minimum-
length Fundamental-cycle Set Problem: New Heuristics 
and an Empirical Investigations”, Congressus 
Numerantium, 107:141-154, December 1995. 
[4] Galbiati, G., and Amaldi, E., “On the 
Approximability of the Minimum Fundamental Cycle 
Basis Problem”, submitted to Workshop on 
Approximation and Online Algorithms (WAOA03), 
Budapest, Sept. 2003. 
[5] Liebchen, C., “Finding Short Integral Cycle Bases 
for Cyclic Timetabling”, TU Berlin, Institut für 
Mathematik, Internal report 2003/12, June 2003. 
[6] Sysło, M., “On some Problems related to 
Fundamental Cycle Sets of a Graph”, in Chartrand, R. 
(ed.), Theory of Applications of Graphs, 577-588, 
Wiley, New York, 1981. 

 


