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Abstract

A multi-plant biomass-based energy production process is able to extract the chemical energy
from various agricultural products. Such a process consists of several plants that are able to deal
with biomasses of different types. Each type of plant has distinct mass-to-energy yields for each
particular product type. Since the scale of the process may be geographically wide, transportation
costs also have an impact on the overall profitability. Biomasses have different unit costs, and end-
products (electrical energy, refined bioethanol, but also several other cross-products of the biomasses
that are not necessarily energy-related) have different selling prices; hence, deciding the amount of
each different biomass to process in order to maximize revenues and minimize costs is a nontrivial
task. In this paper we propose a mathematical programming formulation of this problem and discuss
its application to a real-world example.

Keywords: renewable energy, biomass exploitation, mathematical programming, linear program-
ming.

1 Introduction

This paper is concerned with a mathematical programming formulation of the problem of optimally
running an energy production process based on biomasses. This model was developed for practical
reasons arising in the establishment of a bioenergy production process in central Italy. Specifically,
the involved chemical, agricultural and engineering enterprises needed to justify the profitability of the
process to banks and funding agencies. This was carried out by employing sensitivity analysis around
the optimum of the mathematical program describing the process.

The production of energy from biomasses is proving more and more popular what with the energy from
fossil carbon-based fuels being costly to both the environment and society [12]. Mathematical program-
ming is one of the main planning tool in this area. [10] examines the competitiveness of biomass-based
fuel for electrical energy opposed to carbon-based fuel. In [4], a mathematical programming approach
is proposed to localize both energy conversion plants and biomass catchments basins in provincial area.
Among the advantages of this type of energy production, there is the potential for employing wasted
materials of biological origin, like used alimentary fats and oils, agricultural waste and so on. A factory
producing energy with such materials would benefit from both the sales of the energy and the gains
obtained by servicing waste [1]. Other mathematical models for specific biomass discrete facility location
problems are developed in [6] and [3].

The biomass-based energy production process considered in this paper (see Fig. 1) involves several
processing plants of different types (for example, a solid biomass plant, a squeeze plant and a fermentation-
distillation plant). Some of these plants (e.g. solid biomass plant) produce energy. Others (e.g. the
fermentation-distillation plant) produce intermediate products which will then be routed to other plants



for further processing. There are several possible input products (e.g. agricultural products, biological
waste), obtained from different sources (e.g. direct farming or acquisition on the markets) at different unit
costs. Apart from the energetic output, there may be other output products which are sold in different
markets (e.g. molasses obtained from the fermentation-distillation plant and sold in the feed market).
The optimization problem stemming from the process is that of modelling the production process as a
net gain maximization supposing the type of plants involved and the end product demands are known.

Section 2 presents the mathematical programming formulation. In Section 3 we discuss a real-world
application of our model. Section 4 concerns some realistic improvements to the model. Section 5
concludes the paper.

2 Modelling the production process

Modelling a flowsheet as that presented in Fig. 1 presents many difficulties. Notice that the prod-
ucts can be inputs, intermediate, outputs, or both (like alcohol, which is both an output product and
an intermediate product). Likewise, processes can be intermediate or final or a combination (like the
fermentation-distillation plant). Consider also that the decision maker may choose to buy an interme-
diate product from a different source to cover demand needs, thus making the product a combination
of intermediate and input. Of course the input products may be acquired or produced at different loca-
tions and at different prices. Moreover, each flow arrow has an associated transportation cost. The time
horizon for the optimization process is one year.
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Figure 1: A typical process flowsheet.

Because essentially this problem is connected with the transportation and processing of various ma-
terials through a network, we employ a model based on multicommodity flow, which is a standard and
well-understood modelling technique in Operations Research citations: Maurizio. The main concept
in our model is the process site. A process site is a geographical location with at most one processing
plant and/or various storage spaces for different types of goods (commodities). A place where production
of a given commodity occurs is represented by a process site with a storage space. Thus, for example, a
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geographical location with two fields producing rapes and sunflowers is a process site with two storage
spaces and no processing plant. The fermentation-distillation plant is a process site with no storage
spaces and one processing plant. Each output in Fig. 1 is represented by a process site with just one
storage space for each output good. In this interpretation the concepts of input, output and intermediate
products, and those of intermediate and final process, lose importance: this is appropriate because, as we
have emphasized earlier, these distinctions are not always well-defined. Instead, we focus the attention
on the material balance and on the transformation process in each process site. Furthermore, we are
able to deal with the occurrence that a given commodity may be obtained at different costs depending
on whether it is bought or produced directly.

We represent the process sites by a set V of vertices of a graph G = (V,A) where the set of arcs A
is given by the logistical connections among the locations. To each vertex v ∈ V we associate a set of
commodities H−(v) which may enter the process site, and a set of commodities H+(v) which may leave it.
Thus, for example, the squeeze plant is a process site vertex where H−(squeeze plant) = {rape, sunflower}
and H+(squeeze plant) = {oil, expeller}. Furthermore, we let H =

⋃
v∈V (H−(v) ∪ H+(v)) be the set

of all commodities involved in the production process, and we partition V = V0 ∪ V1 into V0, the set of
process sites with an associated processing plant, and V1 = V \V0. Fig. 2 is the graph derived from the
example in Fig. 1.
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Figure 2: The graph derived from the example in Fig. 1. maurizio, change a bit

We assume the following to be known parameters:

• cvk: cost of supplying vertex v with a unit of commodity k (negative costs are associated with
output nodes, as these represent selling prices; a negative cost may also be associated to the input
node “waste”, since waste disposal is a service commodity);

• Cvk: maximum quantity of commodity k in vertex v;

• τuvk: transportation cost for a unit of commodity k on the arc (u, v);

• Tuvk: transportation capacity for commodity k on arc (u, v);
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• λvkh: cost of processing a unit of commodity k into commodity h in vertex v;

• πvkh: yield of commodity h expressed as unit percentage of commodity k in vertex v;

• dvk: demand of commodity k in vertex v.

It is clear that certain parameters make sense only when associated to a particular subset of vertices,
like e.g. the demands may only be applied to the vertices representing the outputs. In this case, the
corresponding parameter should be set to 0 in all vertices for which it is not applicable.

The decision variables are:

• xvk: quantity of commodity k in vertex v;

• yuvk: quantity of commodity k on arc (u, v);

• zvkh: quantity of commodity k processed into commodity h in vertex v.

Since the output demands are known a priori, we would like to minimize the total operation costs
subject to demand satisfaction. There are three types of costs:

• cost of supplying vertices with commodities:

γ1 =
∑
k∈H

∑
v∈V

cvkxvk;

• transportation costs:
γ2 =

∑
k∈H

∑
(u,v)∈A

τuvkyuvk;

• processing costs:
γ3 =

∑
v∈V

∑
k∈H−(v)

∑
h∈H+(v)

λvkhzvkh,

so the objective function is

min
3∑

i=1

γi(x, y, z). (1)

We need to make sure that some material conservation equations are enforced in each process site
where a plant is installed: ∑

k∈H−(v)

πvkhzvkh = xvh, ∀v ∈ V0, h ∈ H+(v). (2)

Notice that these constraints do not actually enforce a conservation of mass, for in most processing plants
a percentage of the input quantities goes to waste; but it is nonetheless a conservation law subject to the
yield properties of the particular transformation process of the plant.

Secondly, the quantity of processed commodity must not exceed the quantity of input commodity in
each vertex: ∑

h∈H+(v)

zvkh ≤ xvk, ∀v ∈ V0, k ∈ H−(v). (3)
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Furthermore, we need the quantity of input commodity in each vertex to be consistent with the
quantity of commodity in the vertex itself, and similarly for output commodities:∑

u∈V :(u,v)∈A

yuvk = xvk, ∀v ∈ V, k ∈ H−(v) (4)

∑
u∈V :(v,u)∈A

yvuh = xvh, ∀v ∈ V, h ∈ H+(v). (5)

Finally, we have the bounds on the variables:

dvk ≤ xvk ≤ Cvk, ∀v ∈ V, k ∈ H (6)
0 ≤ yuvk ≤ Tuvk, ∀(u, v) ∈ A, k ∈ H (7)
zvkh ≥ 0, ∀v ∈ V, k ∈ H−(v), h ∈ H+(v) (8)

and some fixed variables for irrelevant vertices:

xvk = 0, ∀v ∈ V1, k ∈ H\(H−(v) ∪H+(v)) (9)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H−(v), (10)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H+(u). (11)

The main advantage to this model is that it can be easily extended to deal with more commodities
and plants in a natural way, by adding appropriate vertices or changing the relevant H−(v),H+(v) and
related parameters.

3 A real-world application

The model described in Section 2 is a Linear Programming (LP) problem, which can be solved by using
one of several LP solvers. Using our model we solved an instance derived from a real world application
within the “Marche Bioenergia” project (the administrative Italian region where this project took place
is called “Marche”). This project consists in the study of replacement/integration of the traditional crops
(beetroots, wheat) with new crops exploitable by biomass-based energy production plants, as represented
in Fig. 1. The target territory consists of some 40,000 ha of land around San Severino Marche, a small
village in the center of Italy. One of the aims of the “Marche Bioenergia” project was that of estimating
the real value of the national economical incentive to produce electric energy from agricoltural products
(so-called green certificates). With our model, we can do this by looking at the reduced cost attained at
the optimum by the non-basic variables zvkh corresponding to unused power plants.

The processing costs λvkh and the transformation yields πvkh take the values summarized in Tables 1,
2, 3 and 4. In particular Table 1 lists the yields and agricultural costs of the crops: such data have
been obtained in collaboration with the regional farmers association “Coldiretti” of Ancona (the main
city of the Marche region). Table 2 lists the yields and transformation costs of the intermediate plants
(also supplied by “Coldiretti”), whereas Table 3 lists the yields and transformation costs of the power
plants supplied directly by the “Marche Bioenergia” firm: large-scale solid biomass and Otto cycle plants
(10 MW each) and small-scale Diesel cycle and biogas plants (1 MW each). Finally, Table 4 lists the
prices −cvk of the final products obtained from “Sole 24 Ore” (1st June 2006 issue), the most important
financial journal in Italy. The transportation cost τuvk have been set equal to 10 euro/ton for all products
and 10 euro/MWh for electric power since the territory considered is relatively small. All capacities, Cvk

and Tuvk, and all demands dvk are considered unbounded: the problem is bounded anyway by the total
available land (40,000 ha).

We remark that most data in our model is financial and physical process related, and is thus subject
to errors. However, as was mentioned in the introduction, the main application purpose of our study was
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Crop Cost (euro/ha) Yield (ton/ha)
wood 1,000 130.00
rape 445 2.27

sunflower 697 2.25
soy 470 3.40

maize 704 6.00
herb 600 7.08

beetroots 1,360 33.70
wheat 473 4.00

Table 1: The agricultural costs and yields of considered crops.

Plant Cost (euro/ton) Output Yield
squeeze 18.00 oil 35%

expeller 65%
pellet 70.00 pellet 95%

digestion 10.00 biogas 0.38%
fermentation-distillation 5 alcohol 20%

molasses 80%
dry 7.30 fodder 75%

Table 2: The processing costs and the yields of the intermediate plants.

Plant Cost (euro/ton) Yield (MWh/ton)
Diesel cycle 23.00 4.25%

Solid biomass 10.00 1.07%
Biogas 50.00 1.00%

Otto cycle 8.70 2.87%

Table 3: The processing costs and the yields of the final power plants.

Product Market Price (euro/ton)
pellet heating 150

electrical power electricity 150 (euro/MWh)
molasses feed 100
fodder feed 115
rape oil food 550

rape expeller food 150
sunflower oil food 650

sunflower expeller food 125
wheat food 135

Table 4: The prices of the final products sold in different markets.

to justify profitability of the enterprise to banks and funding agencies. It turned out that in practice an
approximated cost estimate was enough to attain this purpose, even without considering randomness of
data. On the other hand, obtaining robust solutions of LPs subject to uncertain data reduces to solving
another LP [2], so it is computationally as tractable as solving the original one.

We solved (in a few seconds Maurizio: find seconds) the LP model described in Section 2 to
optimality on the instance presented here using the AMPL [5] modelling language and the CPLEX [7]
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solver. The obtained solution is shown graphically in Fig. 3.
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Figure 3: The optimal solution obtained with the LP model.

In the proposed optimal solution, about half of the agricultural resources (21.728,60 ha of land) is
devoted to traditional market (rapes for food and feed markets). Slightly less than half of the total
land is used to grow wood and beetroots for supplying the solid biomass and the Otto cycle plants,
respectively. No other biomass-based energy plant is profitable: from post-optimality sensitivity analysis
we infer that in order to produce electricity with a biogas plant, production costs should decrease by 317
euro/MWh (reduced cost of variable zvkh, where v =biogas production plant, k =gas, h =electricity);
and in order to produce electricity with a Diesel cycle plant, production costs should decrease by 153
euro/MWh. Finally, comparing the our optimal solution and the solution associated to current traditional
agricultural production (represented in Fig. 4), we notice that exploitation of crops providing biomass for
power production more than doubles the total gain (from about 48 million of euro to about 107 million
of euro).

4 Model improvements

The model of Sect. 2 relies on some simplifications of real-world conditions. A more realistic model can
be obtained as follows.

• Some of the plants considered in this paper produce electricity. These have very specific properties
and behaviours [8, 9], among which:

1. in a true market situation (i.e. no subsidization), electricity prices vary during the course of a
single day, as demand rises and subsides;

2. some electricity production plants are often designed to produce electricity and heat (which is
either stored or conveyed directly into buildings in the area) — such plants are called Combined
Heat Power (CHP);
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3. CHPs generate heat and electricity at the same hour and same location.

• Transportation costs do not depend linearly on the distances due to the different means of trans-
portation used [11]. For very short transportation distances, tractors may be used, which have
higher transportation cost than lorries, used for medium to long distances; for very long trans-
portation distances, trains or ships are used. More generally, the geography of the production
process region deeply influences the costs of the single process activities; [11] suggests a method-
ology that combines Geographical Information Systems (GIS) software with process analysis to
estimate these costs.

It turns out that the model in Sect. 2 can be extended to accommodate all of the above features.
As regards the variability of energy prices during the course of a day and of the year, this can be dealt
with in two ways: by employing storage space, or by explicitly adding a time dependency in the model.
The former involves adding biomass storage space near the electricity plants (the energyPRO model [8]
proposes an electricity plant planning methodology that locally optimizes each plant over a yearly time
horizon with hourly time-steps). For the latter, consider the time set T = {1, . . . , 8760} of hours in a
365-day year. We reindex the cost parameters cvk to ct

vk for all v ∈ V, k ∈ H, t ∈ T , the decision variables
x, y, z to xt

vk, yt
uvk, zt

vkh for all appropriate u, v ∈ V , k, h ∈ H, t ∈ T . We rewrite γ1, γ2, γ3 (terms of the
objective function) as follows:

γ1 =
∑
t∈T

∑
k∈H

∑
v∈V

ct
vkxt

vk

γ2 =
∑
t∈T

∑
k∈H

∑
(u,v)∈A

τuvkyt
uvk

γ3 =
∑
t∈T

∑
v∈V

∑
k∈H−(v)

∑
h∈H+(v)

λvkhzt
vkh.

All constraints (3)-(11) are changed accordingly (all occurrences of decision variables x, y, z and param-
eters c gain an index t and a quantifier ∀t ∈ T is added to each constraint). This provides a model that
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can be exactly decomposed in |T | separate LPs as that of Sect. 2, i.e. one for each hour t ∈ T . Although
it may be possible to solve this problem every hour, it would not be reasonable to expect to change input
or transported quantities every hour. Thus, we “connect” the decomposed LPs by means of equality
constraints on input and transported quantities. We assume that for each vertex v ∈ V and commodity
k ∈ K the input quantity xt

vk can be changed every χvk hours, and that transporting commodity k on
the arc (u, v) takes ξuvk hours (for simplicity we suppose that χvk, ξuvk are divisors of |T |). We then
have:

∀v ∈ V, k ∈ H, i ≤ |T |
χvk

, t1 < t2 ∈
{
|T |
χvk

(i− 1), . . . ,
|T |
χvk

i

}
xt1

vk = xt2
vk (12)

∀(u, v) ∈ A, k ∈ H, i ≤ |T |
ξvk

, t1 < t2 ∈
{
|T |
ξvk

(i− 1), . . . ,
|T |
ξvk

i

}
yt1

uvk = yt2
uvk. (13)

Constraints (12)-(13) simply state that input and transported quantities may only change at predeter-
mined times. The solution of such a large-scale LP is not practically unreasonable using commercial-
strength LP solvers such as CPLEX [7].

The combined production of electricity and heat (point 2 in the list above) can be dealt by our model
by simply introducing an output process site representing heat, and adapting the λ and π parameters
relative to the CHP, various inputs and heat output to reflect the situation. As a consequence of point
3 in the list above, this modelling is not wholly satisfactory, as generation of heat is time-dependent
because it is linked to the generation of electricity: but again this time dependency can be dealt with by
using process sites representing heat storage capacity or simply adding to the plant cost parameter.

Nonlinear transportation costs are already fully dealt with by our model, for with each arc we associate
a transportation cost which is not unitary but rather depends on the vertices adjacent to the arc. Since
the arc length is not used anywhere in the model, each arc can be assigned its proper cost.

5 Conclusion

In this paper we described a Linear Programming (LP) model for running a biomass-based energy produc-
tion process, with a real-world application. Our model makes it possible to double the profit associated
to traditional agricultural production. The financial benefit was so large that “Marche Bioenergia” was
able to self-finance the project without having to seek economical incentives.
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