
Networked Systems and Delay Differential
Equations
Lorenz Sahlmann

February 2016

1 Project Idea
Cyber Physical Systems incorporate the con-
nection between the physical world and com-
puting devices. This connection is often given
by a computer network, which needs hence to
be considered in the system model.

2 Stability of Networked
Control Systems

I dived into the overall subject by thoroughly
reading and working through the article

Wei Zhang, Michael S. Branicky, and Stephen
M. Phillips. Stability of Networked Control
Systems, Control Systems Magazine, IEEE 21.1
(2001): 84-99.

in order to get to know the concepts and
nomenclature of the domain, and the math-
ematical concepts involved by reconstructing
the performed calculations.
A Networked Control Systems (NCS)

is a feedback control system with sensing and
control data transmitted on a network. Sen-
sors sample the state of a plant periodically
and send their output as packets to a event-
driven controller, which calculates a control
signal as soon as the sensor data arrives. This
is then transmitted to event-driven actuators
in the plant, which perform action immedi-
ately on reception of the command.
The plant is considered to be continuous in

time by its physical nature, whereas the con-
troller is discrete in time.
This scenario has some possible issues, such

as network induced delay and loss of network
packets. For that reason, the plant output and
the controller input are not delivered at the
same time and the controller might not have
received all the plant updates when it has to
perform its control calculations. This makes

NCSs different to conventional sampled-data
systems.

2.1 Modelling of NCSs with
Network-Induced Delay

The plant (physical component) is modeled as
time continuous and the evolution of its state
x ∈ Rn by

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

which depends additionally on a control signal
u ∈ Rm provided by the discrete controller

u(kh) = −Kx(kh), k ∈ N0

or
u(kh) = −Ky(kh), k ∈ N0

if not the full state is known to the con-
troller, but only some plant output (sensor
data) y ∈ Rp. The matrices A,B,K are cho-
sen with suitable dimensions.

The network induces delays in the loop,
namely τsc between sensor and controller, as
well as τca between controller and actuator.
In case of a time-invariant controller, the

partial delays can be combined together into
a single τk = τsc,k + τca,k + tcalculation with the
processing time of the controller.

Assuming that the delay τk of each sample
k is less than the sampling period h and that
each data sample x(t) fits into a single packet,
the system equations can be written as

ẋ(t) = Ax(t) +Bu(t),
t ∈ [kh+ τk, (k + 1)h+ τk+1]

y(t) = Cx(t)
u(t+) = −Kx(t− τk)

t+ ∈ {kh+ τk, k = 0, 1, 2, ...}

1

with the piecewise constant control signal
u(t+) in the actuator.
This plant system can be solved using the

standard variation of constants method in or-
der to express the new state variables u(kh)
and x((k + 1)h) as function of their values at
the previous sampling instant.

2.2 Hybrid Systems
A more general class of systems are called hy-
brid, which consist of a continuous dynam-
ics part and discrete events. The NCS model
above can be written as such what allows ap-
plying stability theory for hybrid systems to
derive conditions for asymptotical stability de-
pending on the sampling rate h and the net-
work delay τ .

2.3 Compensation of Network
Induced Delay

If the plant and the controller have synchro-
nized clocks, the sensor-controller delay can be
determined in the controller. Using an estima-
tor to approximate the evolved full plant state
at time of reception even if only the partial
state measurements y(t) are available, one can
try to compensate the sensor-controller delay
by an estimator-predictor scheme.
Having an estimation of the full plant state

x̂(kh) for time kh, one awaits the reception
of the plant output y(kh) for this instant.
Receiving this packet at time kh + τsc,k one
can correct the former prediction x̂(kh) to
a better estimation x̄(kh). Assuming that
this estimation fulfills the equations describ-
ing the system, one forwards the estimation
to x̄(kh+ τsc,k) which is used to calculate the
control command u(kh + τsc,k). In order to
prepare the next iteration, x̄(kh) is further
forwarded to obtain a prediction of the plant
state at time (k + 1)h.

2.4 Modelling of Packet Loss
The potential loss of data packets on the net-
work can be modeled as an Asynchronous
Dynamical System (ADS), which com-
prises continuous dynamics (described by dif-
ferential/difference equations) and discrete
dynamics (governed by finite automata). As-
suming that the non-networked system is sta-
ble, that the network is lossy only between sen-

sor and controller and that the packets contain
x(kh) to provide the full current state to the
controller, a pair of difference equations

S0 : x̄(kh) = x̄((k − 1)h)
S1 : x̄(kh) = x(kh)

is obtained.
This system can be interpreted as a switch

that closes at a certain rate r, indicating if
a message is lost (S0) or delivered (S1). In
the case of S0 the state in the controller x(kh)
is held at its previous value. For this system,
Lyaponov theory gives conditions for exponen-
tial stability.

2

3 Rigorous Integration of
Delay Differential Equa-
tions

A method for modelling Networked Control
Systems are Delay Differential Equations.
A rigorous integration scheme based on Taylor
methods is presented in

Robert Szczelina. Rigorous Integration of Delay
Differential Equations, Faculty of Mathematics
and Computer Science, Jagiellonian University.
Krakow, 2014.

The following subsection gives a summary on
this algorithm.

3.1 Summary
The goal is to calculate strict bounds to the
solution (i.e. for its values and derivatives) of
a DDE on a time interval [−1, T].

3.1.1 Setting

We restrict to a scalar DDE

ẋ = f(x(t), x(t− τ))

with a single constant delay τ = 1 and a right-
hand side f : R2 → R of class C∞. The de-
lay differential equation is assumed to admit a
unique solution x : [0, τ] → R when equipped
with the initial condition x0 : [−τ, 0]→ R.

3.1.2 Taylor Expansion

We recapitulate the following theorem from
basic calculus. Let x : D ⊂ R → R be a
(n+ 1)-times continuously differentiable func-
tion and a ∈ D. There is a c ∈ (a, t) such that
x can be developed in a (finite) series expan-
sion plus a remainder term

x(t) =
n∑
k=0

x[k](a)(t− a)k +x[n+1](c)(t− a)n+1

using the notation

x[k](a) := x(k)(a)
k!

3.1.3 Canonical (p,n)-representation

For a fixed p ∈ N>0, let Cn+1
p the set of func-

tions f : R → R which are (n + 1)-times
continuously differentiable on each subinterval

Ii = [−ih,−(i− 1)h] of [−1, 0], where h = τ/p
and i = 1, . . . , p.

We can represent a function x ∈ Cn+1
p piece-

wisely by a collection of (forward) Taylor coef-
ficients up to order n at equally spaced points

x̄0,[0] := {x(0)}
x̄i,[k] := {x[k](−ih)}

and an interval for the (Taylor) remainder
term

x̄i,[n+1] := {x[n+1](−ih+ ξ) : ξ ∈ [0, h]}

on each subinterval Ii = [−ih,−(i−1)h] where
k = 0, . . . , n.

It is sufficient to define these representations
on [−1, 0] since the equations for a current
time interval [s − τ, s] can be rescaled onto
[−1, 0]. A DDE is time invariant.
However, such a (p,n)-representation is not

unique in the sense that there can be multi-
ple elements of Cn+1

p which admit the same
coefficients.

Given a set of coefficients, one has a rigor-
ous bound (i. e. a super set interval) for the
values of the corresponding functions

x(t) ∈
n+1∑
k=0

x̄i,[k]ξk (1)

and for their derivatives

x[k](t) ∈
n+1∑
l=k

(
l

k

)
ξl−kx̄i,[l] (2)

at each point t = −ih+ ξ of the subinterval Ii
where ξ ∈ [0, h). Here, the sums are in terms
of interval arithmetic.

3.1.4 Integration of a DDE

The idea of the integration method is to com-
pute the Taylor coefficients of the solution
x̄
i,[k]
h at the next sampling point t = h, start-

ing from the (p,n)-representation of the initial
condition x0. This procedure is then repeated
on the obtained new coefficients.

The algorithm consists of two parts.

Shift part Since the time intervals [−1, 0]
and [−1 + h, h] mostly overlap, most coef-
ficients are actually shared, i. e. x̄

i,[k]
h =

x̄
(i−1),[k]
0 for i > 1 and x̄1,[0]

h = x̄
0,[0]
0 .

3

Forwarding Part The remaining coeffi-
cients need to be computed.

1. Step Compute the coefficients x̄1,[k]
h

for k = 1, . . . , n using

x̄
1,[k]
h = 1

k!x
(k)(0)

= 1
k!
dk−1

dtk−1 f(x0(0− τ), x(0)).

Since the structure of f leads to derivatives of
the form

x(k+1)(t) =: F(k)

(
x(t− τ), . . . , x(k)(t− τ),

x(t), . . . , x(k)(t)
)

one can replace the second factor by

x[k](0) =: 1
k!F(k−1)

(
0!x[0]

0 (−τ), . . .

. . . , (k − 1)!x[k−1]
0 (−τ), 0!x0, . . .

. . . , (k − 1)!x[k−1](0)
)

what we write for simplicity as

=: F [k−1]
(
x

[0]
0 (−τ), . . . , x[k−1]

0 (−τ),

x0, . . . , x[k−1](0)
)

These expressions can be efficiently computed
using automatic differentiation (with in-
terval arithmetic), since all coefficients needed
are known at the time of computation.

2. Step Compute an enclosure for the re-
mainder coefficient, i. e.

x̄
1,[n+1]
h =

{
x[n+1](ξ) : ξ ∈ [0, h]

}
(3)

having by the mean value theorem, that there
is a ζ ∈ (0, ξ) such that

x[n+1](ξ) =
1

n+1F
[n]
(
x(−τ), . . . , x[n](−τ), x(0), . . . , x[n](0)

)
+ F [n+1]

(
x(−τ + ζ), . . . , x[n+1](−τ + ζ),

x(ζ), . . . , x[n+1](ζ)
)
· ξ.

For the evaluation of x[n+1]([0, h]), one needs
to compute a rough enclosure of x[n+1]([0, h]),
since the equation depends on itself.
All other parameters have either been cal-

culated in step 1 or, in the case of x[k]([0, h])
and x[k]([−τ, h − τ]), can be computed with
the formulae (1) and (2) given above.

3. Step Finally, compute the rigorous
bound x̄

0,[0]
h = x̄h(0) 3 x(h) for the solution

at t = h as

x̄
0,[0]
h =

n+1∑
k=0

x̄
1,[k]
h hk

3.2 Numerical Issues
The algorithm presented above works on in-
tervals. However, simple interval arithmetic
leads easily to inaccurate results.

Noteworthy are the so called wrapping ef-
fect, which causes overestimations by repre-
senting issues in the chosen basis, and the de-
pendency problem, which appears when two
different occurrences of the same variable are
treated as if they were two distinct variables.
Advanced techniques like Lohner’s method or
zonotopes can reduce their impact.

3.3 Variable Delay
The algorithm presented above can be adopted
to a variable delay.

Up to now we had an arbitrary but (for all
iterations) fixed τ in the DDE.

ẋ = f(x(t), x(t− τ)) (4)

Now we assume that τ can vary over a certain
range from one iteration to another, i. e. we
have τ = τj ∈ [τmin, τmax] at integration iter-
ation j, starting at t =

∑j
l=1 τl. This means

that τ is known at each integration iteration.
The initial condition needs to be given on

[−τmax, 0] (therefore we set τ0 := τmax) and
p ∈ N needs to be fixed such that (τmax −
τmin) > 1

p .
At integration iteration j, three different

cases need to be distinguished:

1. If τj+1 = τj , the algorithm can be applied
as explained in section 3.1.

2. If τj+1 < τj , do the interpolation step
given below in the first iteration of the
integration procedure to obtain a repre-
sentation of the initial condition on the
smaller grid of size hj+1 = τj+1

p . Continue
then with the usual algorithm on the new
coefficients and grid.

3. If τj+1 > τj , do the interpolation step
given below. In order only to interfere
with the solution on the last interval, we

4

impose the condition hj+1(p−1) ≤ τj , i.e.
τj+1 ≤ p

p−1τj .

3.3.1 Interpolation Step

If the changing of τ demands an interpola-
tion step, the first iteration of the integration
scheme is altered in the following way

Shift Part

1. For i = 1 one can just set

x̄
1,[0]
hj+1

= x̄
0,[0]
hj

This holds also for k > 0, but these coef-
ficients x̄0,[k]

hj
need to be computed in the

forward part first.

2. For i > 1, interpolate the coefficients onto
the grid given by the new τj+1:

x̄
i,[k]
hj+1

=
{
x

[k]
hj

(−(i− 1)hj+1)
}

⊆
n+1∑
l=k

(
l

k

)
ξl−kx̄

η,[l]
hj

where ξ ∈ [0, hj), such that −ηhj + ξ =
−(i − 1)hj+1 for each i = 2, . . . , p and
0 < k ≤ n+ 1.

For k = n + 1 the formula simply reduces to
the corresponding remainder interval.

Forward Part All other coefficients and the
remainder interval can be obtained with the
already known procedure based on the inter-
polated values.

3.3.2 Continue

One can then continue with the usual algo-
rithm starting from x̄

i,[k]
hj+1

since τ was sup-
posed to stay constant for the time interval
[0, τj+1]. Once τ changes again restart the al-
gorithm as explained above.

3.4 Multivariate Version
We are now interested in adapting the Taylor
method integration scheme to delay differen-
tial equation whose initial condition depends
on parameters. A first approach uses the mul-
tivariate version of the Taylor expansion.

3.4.1 Setting

Consider for an arbitrary but fixed τ > 0 the
real-valued DDE

ẋ = f(x(t), x(t− τ))

with initial condition for t ∈ [−τ, 0]

x(t) = x0(t, α1, . . . , αm).

The initial condition is supposed to depend
on k ∈ N parameters αi ∈ R, where α0 is
associated to t.

3.4.2 Taylor Model

One can develop x in a Taylor series expansion
around the origin as

x(t, α1, . . . , αk) =∑
|K|≤n

1
K!∂

Kx(0, . . . , 0) · (t, α1, . . . , αm)K+

+R(t, α1, . . . , αk)

having appear all partial derivatives up to or-
der n and using common multi-index notation
for K ∈ Nk+1. The remainder term is given
by

R(t, α1, . . . , αk) =∑
|K|=n+1

∂Kx(c)
K! · (t, α1, . . . , αm)K

for a certain c ∈ {s(t, α1, . . . , αk)T : s ∈ [0, 1]},
where the partial derivatives of order n + 1
appear.

3.4.3 (p,n)-Representation

The general idea is adapted from above: rep-
resent a function (here the solution and the
initial condition) by the coefficients of its Tay-
lor series on the equidistant grid {−i τp : i =
0, . . . , p}. We develop around each grid point
up to order n and obtain a remainder term of
order n+ 1.

To represent a function, one needs all its
Taylor coefficients. Unfortunately, their num-
ber grows exponentially, as demonstrated by
the following lemma.
Lemma 1 (Number of Coefficients). Let
n, k ∈ N (zero included). Then there are

(n+ k)!
k!n!

multi indices K with |K| ≤ n.

5

Proof. For n = 0 there is only one multi index
(all components zero). For n = 1 there are
k. For n > 1, one can choose k arbitrary ele-
ments from Nk1 with putting back and without
considering the order. One has Nkn =

(
k+n−1
n

)
possibilities to do so.
Summing up leads to

∣∣Nk≤n∣∣ = 1 + k +
n∑
i=2

(
k + i− 1

i

)
= n+ 1

k

(
n+ k

n+ 1

)
= (k + n)!

k!n!

The forward propagation of the coefficients
demands the evaluation of the derivatives of
the DDE’s right hand side f . From the multi-
dimensional chain rule, the Faa di Bruno for-
mula, cf.

G. M. Constantine and T. H. Savits. A
Multivariate Faa Di Bruno Formula With
Applications, Transactions Of The American
Mathematical Society. Volume 348, Number 2,
February 1996.

we can follow that all possible partial deriva-
tives and hence all multivariate Taylor coeffi-
cients of the initial condition get involved.
Obviously, this approach is rather expen-

sive, since a large number of coefficients need
to be treated at each iteration step. For that
reason, we consider another approach in the
following section.

3.5 Zonotopic Rigorous DDE In-
tegration

We consider again the setting of the previous
section of the DDE with a parameter depen-
dent initial condition. To determine a over-
approximation of the solutions which still de-
pends on the parameters, we follow a zono-
topic approach representing the intervals by
affine forms, which are presented in

Eric Goubault and Sylvie Putot. A Zonotopic
Framework For Functional Abstractions, Formal
Methods in System Design. Volume 47, Number
3, January 2016.

The algorithm for rigorous integration given in
the thesis which is summarized in section 3.1
can directly be adapted to affine arithmetic by
replacing the interval arithmetic operations by
their corresponding affine forms. The adap-
tion is straight forward and further explained
and illustrated by an example hereafter.

3.5.1 Setting

Consider for an arbitrary but fixed τ > 0 the
real-valued DDE

ẋ = f(x(t), x(t− τ))

with initial condition on t ∈ [−τ, 0]

x(t) = x0(t, β1, . . . , βL)

The initial condition is assumed to depend on
parameters βj ∈ [bj,1, bj,2], which parameter-
ize a whole family of initial functions. Ex-
pressed as affine form, βj can be represented
by m + 1 parameters αi ∈ R and the noise
symbols εi ∈ [−1, 1]:

βl = α0 +
mj∑
i=1

αiεi

The initial condition can then be written in
dependence of all these noise symbols as

x0(t, β) = x0(t, ε0, . . . , εm)

Remark: This is different to the case of the
multivariate version where α0 was associated
to the time t.

3.5.2 Algorithm

We keep to describe the solution and the
initial condition of the DDE by their (p,n)-
representation. However this time, the coef-
ficients x̄i,[k] are expressed as affine forms in-
stead of simple intervals.

Shift Part The shift part does not involve
any interval operation and can hence be used
without any adaptions.

The Forward Part The forward part does
involve several interval operations. Additions
and scalar multiplication are straight forward
and interval multiplication is done using the
affine variant. This can create new noise sym-
bols which need to be considered in the follow-
ing.

The derivative obtained by automatic dif-
ferentiation needs to handle affine forms as
parameters. Since the automatic differentia-
tion algorithm is internally doing only basic
arithmetic operations, these can be replaced
by their affine variants.

6

The most advanced calculation needed in
this part is the calculation of a rough enclo-
sure. For this standard algorithms found in
literature can be used. They don’t need to
do their calculations in affine arithmetic, it is
sufficient to express their result as affine form
and to continue the procedure.

3.5.3 Example

To demonstrate how the algorithm for the rig-
orous integration of a delay differential equa-
tion can be adapted to affine forms, we con-
sider the following example DDE

ẋ(t) = −x(t) · x(t− τ)
=: f (x(t), x(t− τ))

x(t) = x0(t;β) = (1 + βt)2 t ∈ [−τ, 0]

Considering β ∈
[1

3 , 1
]
gives a family of pos-

sible initial functions. We want to calculate
an envelope which contains the solutions for
every β on the time interval

[
0, 1

3
]
.

On t ∈ [0, τ] the exact solution of the DDE
is given by

x(t) = exp
(
− 1

3β

(
(1 + (t− 1)β)3

− (1− β)3
))

It can be obtained by separation of variables
and replacing x(t− τ) by the initial function

ẋ(t)
x(t) = −x(t− 1) = −x0(t− 1)

= − (1 + (t− 1)β)2

Integration and x(0) = x0(0) = 1 lead to

ln |x(t)| = −
∫ t

0
(1 + (s− 1)β)2

ds

= − 1
3β

(
(1 + (t− 1)β)3 − (1− β)3

)
For later use we note

ḟ(x(t), x(t− τ)) =
− ẋ(t)x(t− τ)− x(t)ẋ(t− τ)

and

f̈(x(t), x(t− τ)) = −2ẋ(t− τ)ẋ(t)
− x(t− τ)ẍ(t)− x(t)ẍ(t− τ)

In the following, we fix τ = 1 and denote by
�, ⊕ and 	 interval operations in the sense of
affine arithmetic.

Using affine arithmetic, the parameter β can
be written as β = 2

3 + 1
3ε1 = α0 + α1ε1 with

the noise symbol ε1 ∈ [−1, 1]. The initial con-
dition is rewritten in dependance of the noise
symbols ε1 and ε2,

x0(t; ε1, ε2) = 1 + 2t (α0 + α1ε1)︸ ︷︷ ︸
=β

+

+ t2
(
α2

0 + 1
2α

2
1 + 2α0α1ε1 + 1

2α
2
1ε2

)
︸ ︷︷ ︸

=β2

having β2 = β � β = 1
2 + 4

9ε1 + 1
18ε2.

We determine the coefficients for the (p =
3, n = 1)-representation of x0 in affine form:

x̄
0,[0]
0 = x0(0) = 1

x̄
1,[0]
0 = x0

(
− 1

3
)

=
(

1− β
3

)2
= 1− 2

3β + 1
9β

2

= 11
18 −

14
81ε1 + 1

162ε3

x̄
1,[1]
0 = ẋ0

(
− 1

3
)

= 2β
(

1− β
3

)
= 29

27 + 10
27ε1 + 1

27ε4

x̄
2,[0]
0 = x0

(
− 2

3
)

=
(

1− 2β
3

)2
= 1− 4

3β + 4
9β

2

= 1
3 −

20
81ε1 + 2

81ε5

x̄
2,[1]
0 = ẋ0

(
− 2

3
)

= 2β
(

1− 2β
3

)
= 22

27 + 2
27ε1 + 2

27ε6

x̄
3,[0]
0 = x0

(
− 3

3
)

= (1− β)2 = 1− 2β + β2

= 1
6 −

2
9ε1 + 1

18ε7

x̄
3,[1]
0 = ẋ0

(
− 3

3
)

= 2β(1− β)
= 5

9 −
2
9ε1 + 1

9ε8

and the remainder interval for every i ∈
{1, 2, 3}

x̄
i,[2]
0 = β2 = 1

2 + 4
9ε1 + 1

18ε2

using ẋ0(t) = 2β (1 + βt) and ẍ0(t) = 2β2.
We perform one iteration step of the algo-

rithm to determine the coefficients of the so-
lution x at t = h = 1

3 . Most coefficients are

7

t

−1 − 2
3 − 1

3 0 1
3

2
3 1

1
3
2
3
1

β

0.0

0.5

1.0

1.5
x

(t
,β

)

Figure 1: Exact envelope of the initial condition and the solution of the DDE. The obtained
rigorous bound at t = 1

3 is indicated.

obtained by shifting:

x̄
1,[0]
h = x̄

0,[0]
0

x̄
2,[0]
h = x̄

1,[0]
0

x̄
3,[0]
h = x̄

2,[0]
0

x̄
2,[1]
h = x̄

1,[1]
0

x̄
3,[1]
h = x̄

2,[1]
0

The rest is calculated in the forward part

x̄
1,[1]
h = f(x(0), x0(−1)) = −x̄1,[0]

h � x̄3,[0]
0

= − 1
6 + 2

9ε1 −
1

18ε7

As depicted in figure 1, the connection of
initial function and corresponding solution is
continuous (x0(0) = x(0)), but their deriva-
tives are not (ẋ0(0) 6= ẋ(0)).
The new remainder interval is determined

by

x̄
1,[2]
h ⊆ 1

2! ẍ(0) + 1
2!x

(3)([0, h])� [0, h]
= 1

2 ḟ(x(0), x0(−1))
+ 1

2 f̈(x([0, h]), x0([−1, h− 1]))� [0, h]
= 1

2F1 + 1
2F2 � [0, h]

where by (automatic) differentiation we have

F1

(
x

3,[0]
0 , x

3,[1]
0 , x

1,[0]
h , x

1,[1]
h

)
:=

d

dt
f(x(0), x0(−1))

= −x̄1,[1]
h � x̄3,[0]

0 	 x̄1,[0]
h � x̄3,[1]

0

= − 325
648 + 4

27ε1 + 1
54ε7 −

1
9ε8 + 11

216ε12

and

F2

(
x

[0]
0 ([−1, h− 1]), x[1]

0 ([−1, h− 1]),

x
[2]
0 ([−1, h− 1]), x[0]([0, h]),

x[1]([0, h]), x[2]([0, h])
)

= −2 · x[1]
0 ([−1, h− 1])� x[1]([0, h])

	 2 · x[2]
0 ([−1, h− 1])� x[0]

0 ([−1, h− 1])
� 2 · x[2]([0, h])	 x[0]([0, h])

For this expression, we need to calculate upper
bounds in affine form of the coefficients over
the interval [0, h] = 1

6 + 1
6ε9

x
[0]
0 ([−1, h− 1]) = (1 + β � [−1, h− 1])2

= 79
324 −

20
81ε1 −

8
81ε9 + 4

81ε13 + 49
324ε14

x
[1]
0 ([−1, h− 1]) = 2β � (1 + β � [−1, h− 1])

= 37
54 −

2
27ε1 −

4
27ε9 + 2

27ε15 + 11
54ε16

x
[2]
0 ([−1, h− 1]) = 2β2 = 1

2 + 4
9ε1 + 1

18ε2

8

Additionally, we need a rough enclosure of
x[2] ([0, h]), which we guess as

x̃
1,[2]
h = 1

2 · [−1, 0] = − 1
4 + 1

4ε11

in order to determine the remaining coeffi-
cients using formulae (1) and (2)

x[0] ([0, h]) =

x̄
1,[0]
h ⊕

(
x̄

1,[1]
h � [0, h]

)
⊕
(
x̃

1,[2]
h � [0, h]2

)
= 277

288 + 1
27ε1 −

1
108ε7 −

1
24ε9 −

1
288ε10

+ 1
96ε11 + 5

108ε17 + 5
288ε18

and

x[1] ([0, h]) = x̄
1,[1]
h ⊕

(
2 · [0, h]� x̃1,[2]

h

)
= − 1

4 + 2
9ε1 −

1
18ε7 −

1
12ε9 + 1

12ε11 + 1
12ε19

Thus we have

F2 = − 4219
7776 −

1319
972 ε1 −

277
2592ε2 + 83

972ε7

+ 7
216ε9 + 1

288ε10 − 71
288ε11 + 2

81ε13 + 49
648ε14

+ 1
27ε15 + 11

108ε16 − 5
108ε17 − 5

288ε18

− 37
324ε19 − 461

972ε20 − 59
216ε21 − 1159

7776ε22

and for the new remainder coefficient

x̄
1,[2]
h = 1

2F1 + 1
2F2 � [0, h] =

− 27493
93312 −

455
11664ε1 −

277
31104ε2 + 191

11664ε7

− 1
18ε8 −

3967
93312ε9 + 1

3456ε10 − 71
3456ε11

+ 11
432ε12 + 1

486ε13 + 49
7776ε14 + 1

324ε15

+ 11
1296ε16 − 5

1296ε17 − 5
3456ε18 − 37

3888ε19

− 461
11664ε20 − 59

2592ε21 − 1159
93312ε22 + 24331

93312ε23

We finally obtain the rigorous bound for the
value of the solution after one (sub-)time step
as

x̄
0,[0]
h =

2∑
k=0

hk · x̄1,[k]
h

= x̄
1,[0]
h ⊕

(
h · x̄1,[1]

h

)
⊕
(
h2 · x̄1,[2]

h

)
= 765659

839808 + 7321
104976ε1 −

277
279936ε2 −

1753
104976ε7

− 1
162ε8 −

3967
839808ε9 + 1

31104ε10 − 71
31104ε11

+ 11
3888ε12 + 1

4374ε13 + 49
69984ε14 + 1

2916ε15

+ 11
11664ε16 − 5

11664ε17 − 5
31104ε18 − 37

34992ε19

− 461
104976ε20− 59

23328ε21− 1159
839808ε22 + 24331

839808ε23

This means that

x
(1

3 ;β
)
∈ γ

(
x̄

0,[0]
h

)
=
[5965

7776 ,
443549
419904

]
≈ [0.767, 1.056]

for every β ∈
[1

3 , 1
]
.

The exact interval obtained using the ex-
plicit solution of the DDE is given by
[0.840, 0.988].

4 Literature
Further related literature includes

Clement E. Falbo, Some Elementary Methods
for Solving Functional Differential Equations.

giving an introduction to integrating DDEs
and

Larry F. Shampine, and Sylvester Thompson.
Numerical Solution of Delay Differential
Equations, Delay Differential Equations. 2009.

A Matlab-Toolbox for solving DDEs is pre-
sented in

Nicolas W. Bauer et al. Networked Control
Systems Toolbox: Robust Stability Analysis
Made Easy, 3rd IFAC Workshop on Distributed
Estimation and Control in Networked Systems.
2012.

For Taylor models, a suggested reading is

Martin Berz, and Kyoko Makino. Verified
Integration of ODEs and Flows Using
Differential Algebraic Methods on High-Order
Taylor Models, Reliable Computing. 1998.

and some examples and applications are pre-
sented in

Xiaoqing Jin et al. Powertrain Control
Verification Benchmark, 17th International
Conference on Hybrid Systems: Computation
and Control. ACM, 2014.

9

