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Motivations

Reachability of dynamical systems - central to program analysis, control theory
@ Outer approximation: safety proof (but “false alarms” ?)
@ Inner approximation: property falsification

@ Combined inner and outer approximations: indication of the precision of estimates

In this talk

@ Inner approximation of f : R” — R using:

e modal intervals and Kaucher arithmetic (f : R" — R)
o generalized mean value theorem
o zonotopes for Jacobian outer approximation (f : R” — RP)

@ Applications to numerical schemes and dynamical systems analysis

This can also be applied to outer-approximation (although we have already the “usual”
zonotopic approximation, that we recap a bit ; and to invariant calculations.

v
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Related work

Outer approximation has become classical

Intervals, zonotopes, support functions, ellipsoids etc.

Inner approximation is much more difficult

o Linear case [Kurzhanski-Varaiya HSCC 2000, Althoff et al. CDC 2007, Kanade et al.
CAV 2009]

Simulation-based local inner approximations [Nghiem et al. HSCC 2010]

Box bisections [Goldsztejn-Jaulin Reliable Computing 2010,
Mullier-Goubault-Kieffer-Putot RC 2013]

Parallelepipeds [Goldsztejn-Hayes SCAN 2006]
Order 0 generalized affine forms [Goubault-Putot SAS 2007]
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Intervals, outer and inner approximations

Intervals: closed connected subsets of R, noted [x] € |

We would like to compute range(f, [x]) = {f(x), x € [x]}.

Outer (or over) approximation

o An outer approximating extension of f : R" — R over intervals is [f] : 1" — | such
that
V[x] € 1", range(f, [x]) € [2] = [f]([x])
o Natural interval extension: replacing real by interval operations in function f.
Example: the extension of f(x) = x* — x on [2,3] is [f]([2,3]) = [2,3]* — [2,3] = [1, 7],

and can be interpreted as

(Vx € [2,3]) 3z € [1,7]) (F(x) = 2).

Inner (or under) approximation

An interval inner approximation [z] € | satisfies [z] C range(f,[x]) of the range of f over
[x], can be interpreted as

(Vz € [2]) (3x € [x]) (f(x) = z).

v
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Generalized intervals for outer and inner approximations

Generalized intervals

@ Intervals whose bounds are not ordered K = {[a, b], a € R, b € R}

o Called proper if a < b, else improper

Definition (Following Goldsztejn et al. 2005)

Let f : R" — R be a continuous function and [x] € K", decomposed in [x]4 € I and
[x]e € (dual 1)? with p 4+ g = n. A generalized interval [z] € K is (f, [x])-interpretable if

(Vx4 € [x]4) (Q-z € pro [z]) (3xe € pro [x]e), (f(x) = 2)

where Q, = 3 if [z] is proper, and Q, =V if [z] is improper.

@ When all intervals are proper, we get classical interval computation and an outer
approximation of range(f, x)

(vx € [x]) (3z € [2]) (f(x) = 2).
@ When all intervals are improper, we get an inner approximation of range(f, [x])
(Vz € pro [z]) (3x € pro [x]) (f(x) = z).
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Kaucher arithmetic [Kaucher 1980] on generalized intervals
Kaucher addition extends addition on classical intervals:
X+ =Kx+yx+yland [x] - [y] =[x —y,x —y].

Kaucher multiplication

Let P={[x] = [x,X], x 2 0AX >0}, =P ={[x] =[x,X], x <OAX <0},
Z=A{x]=[x,x], x<0 g X}, and dual Z = {[x] = [x,X], x > 0> x}.

XIxWl | [vleP Z —-P dualZ

Xl €P | [xy,xy] [xy. xy] [xy, xv] [xy, xy]
Pl ol Bl RR

dualZ | [xy,%y] 0 [x7, x7] [Efnx((xf%;;))]

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let f : R” — R be given by an arithmetic expression with single occurrences of variables.
Then for [x] € K", f([x]), computed using Kaucher arithmetic, is (f, [x])-interpretable.
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|
Kaucher arithmetic [Kaucher 1980] on generalized intervals
Kaucher addition extends addition on classical intervals:
X+ D]=[x+yx+yland [x] - [y] =[x -y, X — y].

Kaucher multiplication

Let P={[x] = [x,X], x 2 0AX >0}, =P ={[x] =[x,X], x <OAX <0},
Z=A{x]=[x,x], x<0 g X}, and dual Z = {[x] = [x,X], x > 0> x}.

XIxWl | [vleP Z —-P dualZ
Xl eP | [xy,xy] [xy. xy] [xy, xy] [xy, xy]
-P [ﬂa ?X] [gv KX] [W? KX] [Wv YXL
dualZ | [xy,%y] 0 [x7, x7] [Efnx((;y%;;))]

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let f : R” — R be given by an arithmetic expression with single occurrences of variables.
Then for [x] € K", f([x]), computed using Kaucher arithmetic, is (f, [x])-interpretable.

/\m\.u € PARIS-SACUAY

Example: [z] = [x] x [y] = 0 when [x] € Z and [y] € dual Z
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Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case Z x dual Z)

[z] =[x] X [y] =0 when [x] € Z = {[x], x <0< X} (e.g. [-5,4]) and
y] € dual Z ={[x], x > 0 > X} (e.g. [1,-1]).

Definition (reminder)

Let f : R" — R and [x] € K", which we can decompose in [x]4 € I” and [x]¢ € (dual 1)7
with p 4+ g = n. A generalized interval [z] € K is (f, [x])-interpretable if

(Vx4 € [x]a) (Q:z € pro [2]) (3xe € pro [x]¢e), (f(x) = z)

where Q, = 3 if [z] is proper, and Q. =V otherwise.
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Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case Z x dual Z)

[z =[x] X [¥y] =0 when [x] € Z = {[x], x <0< X} (e.g. [-5,4]) and
[y] € dual Z ={[x], x> 0>X} (e.g. [1,-1]).

Definition (reminder)

Let f : R* =R and [x] €1 and [y] € (dual I). A generalized interval [z] € K is
(f,[x] x [y])-interpretable if

(vx € [x]) (Qez € pro [2]) (By € [V]), (F(x,y) = x x y = 2)

where Q, = 3 if [z] is proper, and Q, =V otherwise.
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Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case Z x dual Z)

[z] = [x] X [¥y] =0 when [x] € Z = {[x], x <0< X} (e.g. [-5,4]) and
[y] € dual Z ={[x], x> 0>X} (e.g. [1,-1]).

Definition (reminder)

Let f : R* =R and [x] €1 and [y] € (dual I). A generalized interval [z] € K is
(f,[x] x [y])-interpretable if

(Vx € [x]) (Vz € pro [2]) (By € [V]), (f(x,y) = x x y = 2)

where Q, = 3 if [z] is proper, and Q, =V otherwise.

Let us suppose [z] improper:

@ computing [z] = [x] x [y] consists in finding [z] such that Vx € [x], Vz € pro [z],
Jy €profyl,z=xxy;

o instanciating the property for 0 € [x], we get Vz € pro [2], (3y € pro [y]) z= 0.

Thus [z] is necessarily 0.
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Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

o Interpretable as outer approximation when all intervals are proper (interval
arithmetic), but may be insufficiently accurate because of dependency problem

@ Interpretable as inner approximation when all intervals are proper and f is given by
an arithmetic expression with single occurences of variables

Example (dependency problem in outer approximation)

Let f(x) = x — x, then [f]([-1,1]) = [-1,1] — [-1,1] = [-2, 2]

Example (single-occurence limitation in inner approximation)

Let f(x) = x* — x, we want an inner approximation of range(f, [2,3]). But due to the
two occurrences of x, f([3,2]) with Kaucher arithmetic is not (f, [x])-interpretable.

A solution: mean-value theorem & affine arithmetic J
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Affine arithmetic (outer-approximation by zonotopes)

Affine form

For a quantity x :

X=x + Zx,—s,—, where Vi, x; € R and ¢; € [-1,1].

i=1

% takes its value in [xo — >0, [xil, %0 + >0, [xil] -

v
Zonotopes (joint range of affine forms)
Several forms for quantities x;, sharing common noise symbols ¢;:
& :X6+X{51 +...+X,';5,,,
v
15
% = 20—4er 423 +3e 10 X
£ POLYTECHNIQUE
y 10 —2¢;1 +e2 —&4 1

B v
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Affine arithmetic (outer-approximation by zonotopes)

Assignment x := [a, b]

Centered form using a fresh noise symbol e,41 € [-1,1],

(a+b)  (b-a)

T 2 omt

Affine operations (interpreted exactly; no new noise symbol)

For A € R, we have

A4y = (Ao + y0) + Z()\Xi + yi)ei.

i=1

Multiplication

Possible (simple) version of the multiplication (note the 7: noise symbol):

n
o 1
Xy = xoyo + Z(Xiyo + yixo) €i + > Z | xiyj + Xyi | m-

i=1 1<i j<n

(and similar “linearizations” of non-linear operations)
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Generalized mean-value theorem

@ To each component [x];, i = 1,...,n of the input box [x] € K", associate ¢;, by

f(e) = S+ K where [ = L, X1

@ Derive f° of the vector & = (51, ... &n) from f : R” — R, for some input [x] € K".

Generalized mean-value theorem

Let f : R" — R be differentiable, [x] € K". Suppose {g—g(e), e € [-1, 1]”} C [Af].
Then, ¥(t1,...,t,) € pro e = [-1,1]",

(el [en]) = F (1, - . ., +Z[A] [ei] — ti)

is (f,[x])-interpretable. In particular,
o if 1’~€(~[17 —1]"), computed with Kaucher arithmetic, is improper, then

pro f°([1,—1]") is an inner approximation of {f°(¢), € € [—1,1]"} = range(f, [x]).
e if f5([—1,1]") is proper, then it is an outer approximation of range(f, [x]).

7/ N\
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Generalized affine forms and inner range computation

Generalized affine forms

@ The generalized mean-value theorem defines generalized affine forms: for
f:R" > R,

Fo(ty, .. ta) + Z[A,-]([s,-] —t;),

where {g—’:(EL €€ [—1,1]"} C [A)]

@ We want an inductive computation of these forms on arithmetic expressions
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Generalized affine forms and inner range computation

Generalized affine forms

@ The generalized mean-value theorem defines generalized affine forms: for
f:R" > R,

(..., tn +Z[A] ([e]] — t:),

where {3—5(5)7 ce [—1,1]"} C A

@ We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)
@ The partial derivatives [A;] are evaluated with intervals

o Example: f(x) = x* — x, x € [2,3], thus f*(e1) = (2.5 + 0.5¢1)* — (2.5 + 0.5¢1).
We get f°(e1) = 3.75 + [1.5, 2.5]¢1, that can be interpreted as:

pro(3.75 + [1.5,2.5][1, —1]) C £([~1,1]) C 3.75 + [1.5,2.5][1, 1]
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Generalized affine forms and inner range computation

Generalized affine forms

@ The generalized mean-value theorem defines generalized affine forms: for
f:R" > R,

(..., tn +Z[A] ([e]] — t:),

where {3—5(5)7 ce [—1,1]"} C A

@ We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)
@ The partial derivatives [A;] are evaluated with intervals

o Example: f(x) = x* — x, x € [2,3], thus f*(e1) = (2.5 + 0.5¢1)* — (2.5 + 0.5¢1).
We get f°(e1) = 3.75 + [1.5, 2.5]¢1, that can be interpreted as:

pro(3.75 + [1.5, —~1.5]) C f([~1,1]) C 3.75 + [-2.5,2.5]

E. Goubault, M. Kieffer, O. Mullier and S. Putot (LIX Inner approximated reachability analysis November 24th, 2015 12 /24



Generalized affine forms and inner range computation

Generalized affine forms
@ The generalized mean-value theorem defines generalized affine forms: for
f:R" 5 R,
)‘-5(1.“17 ey t,,) =+ Z[A,]([é‘,] — t,'),
i=1
where {‘3—‘;(5), €€ [—1,1]”} C [Af].

@ We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)
@ The partial derivatives [A;] are evaluated with intervals

o Example: f(x) = x? — x, x € [2,3], thus f*(e1) = (2.5 + 0.561)* — (2.5 4 0.5¢1).
We get f°(e1) = 3.75 + [1.5, 2.5]e1, that can be interpreted as:

pro([5.25,4.25]) C f([~1,1]) C [1.25,6.25]

V.
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Generalized affine forms and inner range computation

Generalized affine forms

@ The generalized mean-value theorem defines generalized affine forms: for
f:R" - R,

FE(tn, ..o ta) + Z[A,—]([s,—] —t;),

where {%(5)7 ce [—1,1]"} C Al

@ We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

@ The partial derivatives [A;] are evaluated with intervals

o Example: f(x) = x* — x, x € [2,3], thus f(e1) = (2.5 + 0.5¢1)* — (2.5 + 0.5¢1).
We get f°(e1) = 3.75 + [1.5, 2.5]¢1, that can be interpreted as:

[4.25,5.25] C f([~1,1]) C [1.25,6.25]

@ Solves the single-occurence limitation but not quite the dependency problem

v
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Generalized affine forms and inner range computation

Generalized affine forms

@ The generalized mean-value theorem defines generalized affine forms: for
f:R" - R,

FE(t, ..o t) + Z[A;]([z—:;] —t;),

where {‘g—:(s), RS [71,1]"} C [A]]

@ We want an inductive computation of these forms on arithmetic expressions

Here, order 1 generalized affine forms

@ Inductive computations with zonotopic outer-approximations of quantities and
partial derivatives A; : more precise that order 0

@ When computing the inner range of a scalar function as above, we use only the
interval range [A/]

@ But in general we have f : R” — R” and thus vectors of generalized affine forms

@ Order 1 forms code some dependency between the components of f or ° : allows us
to define joint inner range (see end of talk)

v
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First-order generalized affine vectors

Definition (first-order generalized vector)
A first-order generalized affine vector for x = (x1,...,x,) is a triple
(Z,c,J) € M(n+ m+1,p) x R? x (M(n, p))"+m+i:
@ Column k of Z = (ZyZ.Z,) describes the affine form outer-approximating xx
@ c is the center
o Element ji x of J = (JoJ.J;) describes the affine form outer-approximating % (one
of the previous A;: column k of J is an affine vector over-approximating %)

Property

With matrix notations, a first-order generalized affine vector
(Z,c,d) € M(n4+ m+1,p) x R? x (M(n, p))"™™" abstracts f : R" — RP, if ¢ = £(0)
and

fe(e) =20 + ' Zee +Z)m

(Ve € [e]) (3n € [n]), {8»‘5

1
e (E) = tJ,',o + tJ,',gE + tJ,',n’mVI' =1,...,n ( )

v
(Z, ¢, J) defines a simultaneous outer approximation of f°(g) and (g—:);(e), rer)é;g?mﬂN,?,{g
the same parametrization in the € and 1 noise symbols.
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Inductive construction of a sound abstraction: assignment

We now want to inductively build a sound abstraction of any arithmetic expression.

Example: Consider assignments x; := [2,3] and x> := [3,4].
@ The affine forms outer approximating x; and x» are X1 = g + %51 and % = % + %52,
thus
Z=(3+da I+la)
© The centers are c = ( 3 ).

Ni= O

)

Assignment £, := [a, b] with a < b and corresponding new noise symbol &;
=(f,f1:=[a,b]) : R" = R"* is

O NI

@ The Jacobian over-approximation is J = (

If (Z,c,J) abstracts f : R” — IR, an abstraction of '

7' = 7 % + )

d = c i )

J = J b;a < i-th line
0

v
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Inductive construction of a sound abstraction: affine operations

Example (Consider now x3 := 3x1 — x2)

@ The outer approx. of quantities x; are Z = ( % + %81 % + %82 4+ %El — %82 )

)

Affine operations ' = (f, fj.; := Aifi + Xofj) : R" — RPF! where (A1, \2) € R?

o Thecentersarec=( 3 1 4 ).

2 2
0
1
2

m‘ I olw
.

1
@ The Jacobian is J = ( (5)

7 7 ME+ g )
c c A6 + Aag )
i + Aajij

Jl

Il
«

)\ljn,i + /\2jn,j

Affine operations are exact.

/ N\
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Inductive construction of a sound abstraction: multiplication

Example (Consider now xs := x1x3)

IS 23 5 1 83 23 5 5
o Values X4 = 10 =+ 751 — 552 —+ [_Z’ 1] = 3 + T€1 — 162 =+ §7]1

_ 5 1 7 1 3 1 83 23 5 5
Z=(3+30 s+38 4+3a-z0 FTHFa—jot+im)

o Centerc= (32 1 4 10).
@ Jacobian j,-4 = &1],-3 +f<3ji1, i=1,...,2

o 5 1 3 3 1 1 23 3 1
J1a = (§ + 561)5 + (4+ 581 — 552)5 =% + 561 — z€2

(39 4 Briete)
=\ L = _5_1
2 2 7~ af1 )
Multiplication f' = (f, f,; := fif;) : R” — RP*?

zZ = (z 2y)

¢ = c C,'Cj)

21 + 2if1j
’ _ .
J o= J

2jjn,i + Zijn,j

Inner approximated reachability analysis
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Interpretation as an inner-approximation

5 1 7 1 3 1 83 23 5 5
Z=(3+4+38a i+38 4+3a—30 B+Zea-20+3im)

217 g
1 g 3 23,3 1
o 5 7 o 5 5 + 561 — 7€2
c=(3 3 4 10) J—<8 R T S P
2 2 7 3¢1

Inner-approximation of the range of x3(x1,x2) and xa(x1, x2) for (x1, x2) € [2,3] x [3,4]
Vk =1...4,pro(ck + [ju][L, 1] + [][L, —11) € [ € e + [ad[=1, 1] + ] # [-1,1])
@ Uses Kaucher multiplication rule [x] x [y] for [y] = [1, —1] € dual Z

o Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z X dual Z = 0)

o Exact for x3 (affine operations only):

pro(4 + 2[1, 1 - %[1, 1)) C range(xs, [2,3] % [3,4]) 4 + %[1, _1- %[1, 1]

7/ N\

E. Goubault, M. Kieffer, O. Mullier and S. Putot (LIX Inner approximated reachability analysis November 24th, 2015 17 / 24



Interpretation as an inner-approximation

5 1 7 1 3 1 83 23 5 5
Z=(3+3a ;+32 4+3a-—za F+Fa-—jatim)
1 0 3 23 3 1
— (5 1 —( 2 ER S L
c=(3 3 4 10) J—<0 J T S
2 2 7 3¢1

Inner-approximation of the range of x3(x1,x2) and xa(x1, x2) for (x1, x2) € [2,3] x [3,4]
Vk =1...4,pro(ck + [ju][L, 1] + [][L, —11) € [ € e + [ad[=1, 1] + ] # [-1,1])
@ Uses Kaucher multiplication rule [x] x [y] for [y] = [1, —1] € dual Z

o Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z X dual Z = 0)

o Exact for x3 (affine operations only):

3 3 1 1 33 11
= Z _NC C - = _- =
pro(4+ 13, —31+ [5,—51) C range(s, [2,3] x [3,4]) C 4+ [5, 2] + [, 1]
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Interpretation as an inner-approximation

51 741 3 1 83, 23 5 5
Z=(3+3a f+ie 4+da-30 B+Za-2a+

1
4 10)J:(6

(9
—~

|
[IEN]
NI O
NIw
=8
NIw

)

i

|

ENE

m

N
\—/

Inner-approximation of the range of x3(x1,x2) and xa(x1, x2) for (x1, x2) € [2,3] x [3,4]
Vk =1...4, pro(ck + [k][L, —1] + [i][1, =1]) € [x] € ek + [l [=1, 1] + [o] * [-1,1])
o Uses Kaucher multiplication rule [x] X [y] for [y] = [1,—1] € dual Z

@ Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z x dual Z =0)

@ Exact for x3 (affine operations only):

[2,6] = pro([6,2]) C range(xs, [2,3] x [3,4]) C [2, 6]

/ \
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Interpretation as an inner-approximation

_ 5 1 7 1 3. _ 1 83 23 _ 5 5
Z—(2+2€1 5t382 4d+3a—3820 T+ Ta 462+8771)

1 3 23 3 1

5 0 5 T+*5177|€2
c 5 7 ] [
7(2 2 4 0) 7(2 é 21 1512 1111 )

Inner-approximation of the range of x3(x1,x2) and xa(x1, x2) for (x1,x2) € [2,3] X [3,4]
Vk =1...4, pro(ck + [ik][L, —1] + [i][1, =1]) € [x] € ek + [uel[=1, 1] + [ow] * [-1,1])

@ Uses Kaucher multiplication rule [x] X [y] for [y] = [1, —1] € dual Z

o Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z x dual Z =0)

@ Exact for x3 (affine operations only):

[2,6] = pro([6,2]) C range(xs, [2,3] x [3,4]) C [2, 6]

o for xa: [ju=2 +3e1— 3] €[4, 2] and [foa = -2 — len] € [, -1]:

pro(10+4, 2J[1, ~1]+[~ >, ~1][L, ~1]) € ] € 1044, 2][~1, 1+ [~ 3, ~1][-1,1]
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Interpretation as an inner-approximation
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Inner-approximation of the range of x3(x1,x2) and xa(x1, x2) for (x1,x2) € [2,3] X [3,4]
Vk =1...4, pro(ck + [ik][L, —1] + [i][1, =1]) € [x] € ek + [uel[=1, 1] + [ow] * [-1,1])

@ Uses Kaucher multiplication rule [x] X [y] for [y] = [1, —1] € dual Z

o Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z x dual Z =0)

@ Exact for x3 (affine operations only):

[2,6] = pro([6,2]) C range(xs, [2,3] x [3,4]) C [2, 6]

o for xa: [ju=2 +3e1— 3] €[4, 2] and [foa = -2 — len] € [, -1]:

15 1
pro(10 + [4, ~4] + [1,~1]) € [u] C 10+ [, D]+ [-3,5
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Interpretation as an inner-approximation

5 1 7 1 3 1 83 23 5 5
Z=(3+3a 4302 4+3a-—30 F+Fa—ja+tim)

1 3 2,3, _ 1
c=(3 340y u=(g 0 & T
2 2 ) 3¢1
Inner-approximation of the range of x3(xi1, x2) and xa(x1, x2) for (x1, x2) € [2, 3] x [3, 4]

Vk =1...4, pro(cx + [k][L, —1] + [i][L, =1]) € [x] € ek + [l [= 1, 1] + [a] * [-1,1])
o Uses Kaucher multiplication rule [x] X [y] for [y] = [1, —1] € dual Z

o Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z x dual Z = 0)

e Exact for x3 (affine operations only):

[2,6] = pro([6,2]) C range(xs, [2,3] x [3,4]) C [2, 6]

o for xa: [?14 = % + %61 — %62] € [47 1?5] and [;24 = —% — %61] € [—%,—1]:

[5,15] C [xa]  [1,19]
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|
Joint inner range of a vector function
Algorithm to compute a set of boxes proved to be in the image of f:
@ Based on input set bisection + a sufficient condition for a box § to be in range(f, x).

@ Only needs an outer approximation of the Jacobian of f
o Goldzstejn-Jaulin 2010 (f : R" — R"), MGKP 2013 (extension f : R" — RR”)

()—{f(X) X €x}

—

\ ()~

X+Td,x—x,§—f(x))

XECOLE
LN POLTECHNIQUE
fs(X)
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Characterization of the joint inner range of order 1 affine vectors: example

Example
Let x = (x1,x2) € [2,3] x [3,4] and

F(x) = ( X — 2x1x )

x23 — 2X1X2

Joint inner range of the corresponding order 1 affine vectors (see paper for computation
and inner range of components : costly but rarely needed

(%)
&

15 5
ECOLE
0 i ‘ POLYTECHNIQUE
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Implementation and experiments

@ Order 0 and order 1 affine vectors implemented as an abstract domain in the Apron
library for static analysis (http://apron.cri.ensmp.fr/library)
o calls the Taylorl+ abstract domain [Ghorbal-Goubault-Putot 2009, 2010] for zonotopic
over-approximation
o available at http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/hsccl4.html
e joint inner approximation as a separate prototype

o Application to the reachability of (discrete) dynamical systems

EcoLE
Y POLYTECHNIQUE

E. Goubault, M. Kieffer, O. Mullier and S. Putot (LIX Inner approximated reachability analysis November 24th, 2015 20 /24


http://apron.cri.ensmp.fr/library
http://www.lix.polytechnique.fr/Labo/ Sylvie.Putot/hscc14.html

I ——
Example: a Newton algorithm

Consider x(k 4 1) = 2x(k) — ax(k)?, for a € [1.95,2.] and x(0) = 0.6, iterated until
Ix(k + 1) — x(k)| < 5.10™*. This iteration should converge to 1/a.

@ Outer approximation: the stopping criterion of the loop is always satisfied after 4
iterations (|x(4) — x(3)| € [-2.6107*,2.6107%]).
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Example: a Newton algorithm

Consider x(k 4 1) = 2x(k) — ax(k)?, for a € [1.95,2.] and x(0) = 0.6, iterated until

Ix(k + 1) — x(k)| < 5.10™*. This iteration should converge to 1/a.
@ Outer approximation: the stopping criterion of the loop is always satisfied after 4

iterations (|x(4) — x(3)| € [-2.6107*,2.6107%]).
@ Inner approximation: there exist some inputs for which the criterion is not satisfied
for the first 3 iterations (for instance, [-7.7107%, —4.1107%] C x(3) — x(2)).
@ When the criterion is satisfied, [.4999244, .5127338] C x(4) C [0.499831, 0.512906].
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Example: a Newton algorithm

Consider x(k 4 1) = 2x(k) — ax(k)?, for a € [1.95,2.] and x(0) = 0.6, iterated until
Ix(k + 1) — x(k)| < 5.10™*. This iteration should converge to 1/a.

@ Outer approximation: the stopping criterion of the loop is always satisfied after 4
iterations (|x(4) — x(3)| € [-2.6107*,2.6107%]).
@ Inner approximation: there exist some inputs for which the criterion is not satisfied

for the first 3 iterations (for instance, [-7.7107%, —4.1107%] C x(3) — x(2)).

@ When the criterion is satisfied, [.4999244, .5127338] C x(4) C [0.499831, 0.512906].
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I ——
Example: good behaviour on this highly non linear Householder iteration

x(k + 1) = x(k) + x(K) (%h(k) v gh(kf)

with h(k) = 1 — ax(k)? and a € [16,20], starting from x(0) = [, &].
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Comparable accuracy of inner and outer approximations, and stability along iterations.
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-
Reachability of discrete dynamical systems: FitzHugh-Nagumo neuron
model (100 iterates of Euler time-discretization scheme)
xi(k+1)=xi(k)+h (xl(k) - # — xo(k) + %)
xo(k + 1) = xa(k) + h (0.08(x1 (k) + 0.7 — 0.8x2(k)))
where h = 0.2, and (x1(0), x2(0)) = [1,1.25] x [2.25,2.5].

2.5 - - =
TF "
T L
2+ .
1.5 - b
1 L -
0.5 — -1
Inner approximation
Outer approximation ~_~_"_*
o = | 1 I I
-3 -2.5 -2 -1.5 -1 -0.5 o 0.5 1 1.5

Analysis takes 11 sec, [—.737783, —.716137] C x;(100) C [—.857537, —.595651]; ‘ $eRecmiaue
[.450016,.506109] C x,(100) C [.429873, .542796].
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Conclusion and future work

@ Inner approximation scheme
o order of accuracy of outer approximated zonotopes
e cost remains linear with respect to over-approximated zonotopes
@ Reachability analysis of continuous dynamical systems
o in the paper, indirect method by over approximation of the Jacobian by Taylor Models
o direct set integration (work in progress)
@ Reachability analysis of hybrid systems: interpretation of guard conditions (work in
progress)

o in the paper (HSCC 2014), first ideas for inner approximation of the range of noise
symbols in order to satisfy the constraints, instead of the [-1,1] ranges
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