Inner approximated reachability analysis

Eric Goubault, Michel Kieffer, Olivier Mullier and Sylvie Putot

LIX \& L2S - CNRS - Supélec - Univ Paris-Sud

November 24th, 2015

Motivations

Reachability of dynamical systems - central to program analysis, control theory

- Outer approximation: safety proof (but "false alarms" ?)
- Inner approximation: property falsification
- Combined inner and outer approximations: indication of the precision of estimates

In this talk

- Inner approximation of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ using:
- modal intervals and Kaucher arithmetic $\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$
- generalized mean value theorem
- zonotopes for Jacobian outer approximation $\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}\right)$
- Applications to numerical schemes and dynamical systems analysis

This can also be applied to outer-approximation (although we have already the "usual" zonotopic approximation, that we recap a bit ; and to invariant calculations.

Related work

Outer approximation has become classical
Intervals, zonotopes, support functions, ellipsoids etc.

Inner approximation is much more difficult

- Linear case [Kurzhanski-Varaiya HSCC 2000, Althoff et al. CDC 2007, Kanade et al. CAV 2009]
- Simulation-based local inner approximations [Nghiem et al. HSCC 2010]
- Box bisections [Goldsztejn-Jaulin Reliable Computing 2010, Mullier-Goubault-Kieffer-Putot RC 2013]
- Parallelepipeds [Goldsztejn-Hayes SCAN 2006]
- Order 0 generalized affine forms [Goubault-Putot SAS 2007]

Intervals, outer and inner approximations

Intervals: closed connected subsets of \mathbb{R}, noted $[x] \in \mathbf{I}$
We would like to compute range $(f,[x])=\{f(x), x \in[x]\}$.

Outer (or over) approximation

- An outer approximating extension of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over intervals is $[f]: \mathbf{I}^{n} \rightarrow \mathbf{I}$ such that

$$
\forall[x] \in \mathbf{I}^{n}, \operatorname{range}(f,[x]) \subseteq[z]=[f]([x])
$$

- Natural interval extension: replacing real by interval operations in function f.

Example: the extension of $f(x)=x^{2}-x$ on $[2,3]$ is $[f]([2,3])=[2,3]^{2}-[2,3]=[1,7]$, and can be interpreted as

$$
(\forall x \in[2,3])(\exists z \in[1,7])(f(x)=z)
$$

Inner (or under) approximation
An interval inner approximation $[z] \in \mathbf{I}$ satisfies $[z] \subseteq$ range $(f,[x])$ of the range of f over [x], can be interpreted as

$$
(\forall z \in[z])(\exists x \in[x])(f(x)=z)
$$

Generalized intervals for outer and inner approximations

Generalized intervals

- Intervals whose bounds are not ordered $\mathbf{K}=\{[a, b], a \in \mathbb{R}, b \in \mathbb{R}\}$
- Called proper if $a \leq b$, else improper

Definition (Following Goldsztejn et al. 2005)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and $[x] \in \mathbf{K}^{n}$, decomposed in $[x]_{\mathcal{A}} \in \mathbf{I}^{p}$ and $[x]_{\mathcal{E}} \in(\text { dual } \mathbf{I})^{q}$ with $p+q=n$. A generalized interval $[z] \in \mathbf{K}$ is $(f,[x])$-interpretable if

$$
\left(\forall x_{\mathcal{A}} \in[x]_{\mathcal{A}}\right)\left(Q_{z} z \in \operatorname{pro}[z]\right)\left(\exists x_{\mathcal{E}} \in \operatorname{pro}[x]_{\mathcal{E}}\right),(f(x)=z)
$$

where $Q_{z}=\exists$ if $[z]$ is proper, and $Q_{z}=\forall$ if $[z]$ is improper.

- When all intervals are proper, we get classical interval computation and an outer approximation of range (f, \mathbf{x})

$$
(\forall x \in[x])(\exists z \in[z])(f(x)=z)
$$

- When all intervals are improper, we get an inner approximation of range $(f,[x])$

$$
(\forall z \in \operatorname{pro}[z])(\exists x \in \operatorname{pro}[x])(f(x)=z)
$$

Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals:
$[x]+[y]=[\underline{x}+\underline{y}, \bar{x}+\bar{y}]$ and $[x]-[y]=[\underline{x}-\bar{y}, \bar{x}-\underline{y}]$.
Kaucher multiplication
Let $\mathcal{P}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \geqslant 0 \wedge \bar{x} \geqslant 0\},-\mathcal{P}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \leqslant 0 \wedge \bar{x} \leqslant 0\}$, $\mathcal{Z}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \leqslant 0 \leqslant \bar{x}\}$, and dual $\mathcal{Z}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \geqslant 0 \geqslant \bar{x}\}$.

$[x] \times[y]$	$[y] \in \mathcal{P}$	\mathcal{Z}	$-\mathcal{P}$	$\operatorname{dual} \mathcal{Z}$
$[x] \in \mathcal{P}$	$[\underline{x y}, \overline{x y}]$	$[\bar{x} y, \overline{x y}]$	$[\bar{x} \underline{y}, \underline{x} \bar{y}]$	$[\underline{x y}, \underline{x} \bar{y}]$
\mathcal{Z}	$[\underline{x} \bar{y}, \overline{x y}]$	$[\min (\underline{x} \bar{y}, \bar{x} y)$,	$[\bar{x} \bar{y}, x y]$	0
$-\mathcal{P}$	$[\underline{x} \bar{y}, \bar{x} \underline{y}]$	$[\underline{x} \bar{y}, \underline{x y}]$	$[\overline{x y}, \underline{x y}]$	$[\overline{x y}, \bar{x} \underline{y}]$
$\operatorname{dual} \mathcal{Z}$	$[\underline{x y}, \bar{x} \underline{y}]$	0	$[\overline{x y}, \underline{x} \bar{y}]$	$[\max (\underline{x y}, \overline{x y})$,
			$\min (\underline{x} \bar{y}, \bar{x} \underline{y})]$	

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by an arithmetic expression with single occurrences of variables. Then for $[x] \in \mathbf{K}^{n}, f([x])$, computed using Kaucher arithmetic, is ($\left.f,[x]\right)$-interpretable.

Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals:
$[x]+[y]=[\underline{x}+\underline{y}, \bar{x}+\bar{y}]$ and $[x]-[y]=[\underline{x}-\bar{y}, \bar{x}-\underline{y}]$.
Kaucher multiplication
Let $\mathcal{P}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \geqslant 0 \wedge \bar{x} \geqslant 0\},-\mathcal{P}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \leqslant 0 \wedge \bar{x} \leqslant 0\}$, $\mathcal{Z}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \leqslant 0 \leqslant \bar{x}\}$, and dual $\mathcal{Z}=\{[x]=[\underline{x}, \bar{x}], \underline{x} \geqslant 0 \geqslant \bar{x}\}$.

$[x] \times[y]$	$[y] \in \mathcal{P}$	\mathcal{Z}	$-\mathcal{P}$	dual \mathcal{Z}
$[x] \in \mathcal{P}$	$[\underline{x y}, \overline{x y}]$	$[\bar{x} y, \overline{x y}]$	$[\bar{x} \underline{y}, \underline{x} \bar{y}]$	$[\underline{x y}, \underline{x} \bar{y}]$
\mathcal{Z}	$[\underline{x} \bar{y}, \overline{x y}]$	$[\min (\underline{x} \bar{y}, \bar{x} y)$,	$[\bar{x} \bar{y}, x y]$	0
$-\mathcal{P}$	$[\underline{x} \bar{y}, \bar{x} \underline{y}]$	$[\underline{x} \bar{y}, \underline{x y}]$	$[\overline{x y}, \underline{x y}]$	$[\overline{x y}, \bar{x} \underline{y}]$
$\operatorname{dual} \mathcal{Z}$	$[\underline{x y}, \bar{x} \underline{y}]$	0	$[\overline{x y}, \underline{x} \bar{y}]$	$[\max (\underline{x y}, \overline{x y})$,
				$\min (\underline{x} \bar{y}, \bar{x} \underline{y})]$

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by an arithmetic expression with single occurrences of variables. Then for $[x] \in \mathbf{K}^{n}, f([x])$, computed using Kaucher arithmetic, is ($f,[x]$)-interpretable.

Example: $[z]=[x] \times[y]=0$ when $[x] \in \mathcal{Z}$ and $[y] \in$ dual \mathcal{Z}

Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case $\mathcal{Z} \times$ dual \mathcal{Z})
$[z]=[x] \times[y]=0$ when $[x] \in \mathcal{Z}=\{[x], \underline{x} \leqslant 0 \leqslant \bar{x}\}$ (e.g. [-5,4]) and $[y] \in \operatorname{dual} \mathcal{Z}=\{[x], \underline{x} \geqslant 0 \geqslant \bar{x}\}$ (e.g. [1,-1]).

Definition (reminder)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $[x] \in \mathbf{K}^{n}$, which we can decompose in $[x]_{\mathcal{A}} \in \mathbf{I}^{p}$ and $[x]_{\mathcal{E}} \in(\text { dual } \mathbf{I})^{q}$ with $p+q=n$. A generalized interval $[z] \in \mathbf{K}$ is $(f,[x])$-interpretable if

$$
\left(\forall x_{\mathcal{A}} \in[x]_{\mathcal{A}}\right)\left(Q_{z} z \in \operatorname{pro}[z]\right)\left(\exists x_{\mathcal{E}} \in \operatorname{pro}[x]_{\mathcal{E}}\right),(f(x)=z)
$$

where $Q_{z}=\exists$ if $[z]$ is proper, and $Q_{z}=\forall$ otherwise.

Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case $\mathcal{Z} \times$ dual \mathcal{Z})
$[z]=[x] \times[y]=0$ when $[x] \in \mathcal{Z}=\{[x], \underline{x} \leqslant 0 \leqslant \bar{x}\}$ (e.g. [-5,4]) and
$[y] \in$ dual $\mathcal{Z}=\{[x], \underline{x} \geqslant 0 \geqslant \bar{x}\}$ (e.g. $[1,-1])$.

Definition (reminder)
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $[x] \in \mathbf{I}$ and $[y] \in($ dual $\mathbf{I})$. A generalized interval $[z] \in \mathbf{K}$ is $(f,[x] \times[y])$-interpretable if

$$
(\forall x \in[x])\left(Q_{z} z \in \operatorname{pro}[z]\right)(\exists y \in[y]),(f(x, y)=x \times y=z)
$$

where $Q_{z}=\exists$ if $[z]$ is proper, and $Q_{z}=\forall$ otherwise.

Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case $\mathcal{Z} \times$ dual \mathcal{Z})
$[z]=[x] \times[y]=0$ when $[x] \in \mathcal{Z}=\{[x], \underline{x} \leqslant 0 \leqslant \bar{x}\}$ (e.g. [-5,4]) and
$[y] \in$ dual $\mathcal{Z}=\{[x], \underline{x} \geqslant 0 \geqslant \bar{x}\}$ (e.g. $[1,-1])$.

Definition (reminder)
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $[x] \in \mathbf{I}$ and $[y] \in($ dual $\mathbf{I})$. A generalized interval $[z] \in \mathbf{K}$ is $(f,[x] \times[y])$-interpretable if

$$
(\forall x \in[x])(\forall z \in \operatorname{pro}[z])(\exists y \in[y]),(f(x, y)=x \times y=z)
$$

where $Q_{z}=\exists$ if $[z]$ is proper, and $Q_{z}=\forall$ otherwise.
Let us suppose $[z]$ improper:

- computing $[z]=[x] \times[y]$ consists in finding [z] such that $\forall x \in[x], \forall z \in$ pro [z], $\exists y \in \operatorname{pro}[y], z=x \times y$;
- instanciating the property for $0 \in[x]$, we get $\forall z \in \operatorname{pro}[z],(\exists y \in \operatorname{pro}[y]) z=0$. Thus [z] is necessarily 0 .

Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

- Interpretable as outer approximation when all intervals are proper (interval arithmetic), but may be insufficiently accurate because of dependency problem
- Interpretable as inner approximation when all intervals are proper and f is given by an arithmetic expression with single occurences of variables

Example (dependency problem in outer approximation)
Let $f(x)=x-x$, then $[f]([-1,1])=[-1,1]-[-1,1]=[-2,2]$

Example (single-occurence limitation in inner approximation)
Let $f(x)=x^{2}-x$, we want an inner approximation of range $(f,[2,3])$. But due to the two occurrences of $x, f([3,2])$ with Kaucher arithmetic is not $(f,[x])$-interpretable.

A solution: mean-value theorem \& affine arithmetic

Affine arithmetic (outer-approximation by zonotopes)

Affine form
For a quantity x :

$$
\hat{x}=x_{0}+\sum_{i=1}^{n} x_{i} \varepsilon_{i}, \quad \text { where } \forall i, x_{i} \in \mathbb{R} \text { and } \varepsilon_{i} \in[-1,1] .
$$

\hat{x} takes its value in $\left[x_{0}-\sum_{i=1}^{n}\left|x_{i}\right|, x_{0}+\sum_{i=1}^{n}\left|x_{i}\right|\right]$.

Zonotopes (joint range of affine forms)
Several forms for quantities x_{i}, sharing common noise symbols ε_{j} :

$$
\hat{x}^{i}=x_{0}^{i}+x_{1}^{i} \varepsilon_{1}+\ldots+x_{n}^{i} \varepsilon_{n}
$$

$$
\begin{aligned}
\hat{x} & =20-4 \varepsilon_{1} \quad+2 \varepsilon_{3}+3 \varepsilon_{4} \\
\hat{y} & =10-2 \varepsilon_{1}+\varepsilon_{2}
\end{aligned}-\varepsilon_{4} .
$$

Affine arithmetic (outer-approximation by zonotopes)

Assignment $x:=[a, b]$
Centered form using a fresh noise symbol $\varepsilon_{n+1} \in[-1,1]$,

$$
\hat{x}=\frac{(a+b)}{2}+\frac{(b-a)}{2} \varepsilon_{n+1} .
$$

Affine operations (interpreted exactly; no new noise symbol)
For $\lambda \in \mathbb{R}$, we have

$$
\lambda \hat{x}+\hat{y}=\left(\lambda x_{0}+y_{0}\right)+\sum_{i=1}^{n}\left(\lambda x_{i}+y_{i}\right) \varepsilon_{i}
$$

Multiplication
Possible (simple) version of the multiplication (note the η_{1} noise symbol):

$$
\hat{x} \hat{y}=x_{0} y_{0}+\sum_{i=1}^{n}\left(x_{i} y_{0}+y_{i} x_{0}\right) \varepsilon_{i}+\frac{1}{2} \sum_{1 \leqslant i, j \leqslant n}\left|x_{i} y_{j}+x_{j} y_{i}\right| \eta_{1} .
$$

(and similar "linearizations" of non-linear operations)

Generalized mean-value theorem

- To each component $[x]_{i}, i=1, \ldots, n$ of the input box $[x] \in \mathbf{K}^{n}$, associate ε_{i}, by

$$
\hat{x}_{i}\left(\varepsilon_{i}\right)=\frac{\underline{x}_{i}+\bar{x}_{i}}{2}+\frac{\bar{x}_{i}-\underline{x}_{i}}{2} \varepsilon_{i} \text {, where }[x]_{i}=\left[\underline{x}_{i}, \bar{x}_{i}\right]
$$

- Derive f^{ε} of the vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ from $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, for some input $[x] \in \mathbf{K}^{n}$.

Generalized mean-value theorem
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable, $[x] \in \mathbf{K}^{n}$. Suppose $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$. Then, $\forall\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{pro} \varepsilon=[-1,1]^{n}$,

$$
\tilde{f}^{\varepsilon}\left(\left[\varepsilon_{1}\right], \ldots,\left[\varepsilon_{n}\right]\right)=f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

is $(f,[x])$-interpretable. In particular,

- if $\tilde{f^{\varepsilon}}\left([1,-1]^{n}\right)$, computed with Kaucher arithmetic, is improper, then pro $\tilde{f}^{\varepsilon}\left([1,-1]^{n}\right)$ is an inner approximation of $\left\{f^{\varepsilon}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\}=\operatorname{range}(f,[x])$.
- if $\tilde{f}\left([-1,1]^{n}\right)$ is proper, then it is an outer approximation of range $(f,[x])$.

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

- The partial derivatives $\left[\Delta_{i}\right]$ are evaluated with intervals
- Example: $f(x)=x^{2}-x, x \in[2,3]$, thus $f^{\varepsilon}\left(\epsilon_{1}\right)=\left(2.5+0.5 \varepsilon_{1}\right)^{2}-\left(2.5+0.5 \varepsilon_{1}\right)$. We get $\tilde{f}^{\varepsilon}\left(\varepsilon_{1}\right)=3.75+[1.5,2.5] \varepsilon_{1}$, that can be interpreted as:

$$
\operatorname{pro}(3.75+[1.5,2.5][1,-1]) \subseteq f([-1,1]) \subseteq 3.75+[1.5,2.5][-1,1]
$$

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

- The partial derivatives $\left[\Delta_{i}\right]$ are evaluated with intervals
- Example: $f(x)=x^{2}-x, x \in[2,3]$, thus $f^{\varepsilon}\left(\epsilon_{1}\right)=\left(2.5+0.5 \varepsilon_{1}\right)^{2}-\left(2.5+0.5 \varepsilon_{1}\right)$. We get $\tilde{f}^{\varepsilon}\left(\varepsilon_{1}\right)=3.75+[1.5,2.5] \varepsilon_{1}$, that can be interpreted as:

$$
\operatorname{pro}(3.75+[1.5,-1.5]) \subseteq f([-1,1]) \subseteq 3.75+[-2.5,2.5]
$$

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

- The partial derivatives $\left[\Delta_{i}\right]$ are evaluated with intervals
- Example: $f(x)=x^{2}-x, x \in[2,3]$, thus $f^{\varepsilon}\left(\epsilon_{1}\right)=\left(2.5+0.5 \varepsilon_{1}\right)^{2}-\left(2.5+0.5 \varepsilon_{1}\right)$. We get $\tilde{f}^{\varepsilon}\left(\varepsilon_{1}\right)=3.75+[1.5,2.5] \varepsilon_{1}$, that can be interpreted as:

$$
\operatorname{pro}([5.25,4.25]) \subseteq f([-1,1]) \subseteq[1.25,6.25]
$$

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

- The partial derivatives $\left[\Delta_{i}\right]$ are evaluated with intervals
- Example: $f(x)=x^{2}-x, x \in[2,3]$, thus $f^{\varepsilon}\left(\epsilon_{1}\right)=\left(2.5+0.5 \varepsilon_{1}\right)^{2}-\left(2.5+0.5 \varepsilon_{1}\right)$. We get $\tilde{f}^{\varepsilon}\left(\varepsilon_{1}\right)=3.75+[1.5,2.5] \varepsilon_{1}$, that can be interpreted as:

$$
[4.25,5.25] \subseteq f([-1,1]) \subseteq[1.25,6.25]
$$

- Solves the single-occurence limitation but not quite the dependency problem

Generalized affine forms and inner range computation

Generalized affine forms

- The generalized mean-value theorem defines generalized affine forms: for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f^{\varepsilon}\left(t_{1}, \ldots, t_{n}\right)+\sum_{i=1}^{n}\left[\Delta_{i}\right]\left(\left[\varepsilon_{i}\right]-t_{i}\right)
$$

where $\left\{\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon), \varepsilon \in[-1,1]^{n}\right\} \sqsubseteq\left[\Delta_{i}\right]$.

- We want an inductive computation of these forms on arithmetic expressions

Here, order 1 generalized affine forms

- Inductive computations with zonotopic outer-approximations of quantities and partial derivatives Δ_{i} : more precise that order 0
- When computing the inner range of a scalar function as above, we use only the interval range $\left[\Delta_{i}\right.$]
- But in general we have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and thus vectors of generalized affine forms
- Order 1 forms code some dependency between the components of f or f^{ε} : allows us to define joint inner range (see end of talk)

First-order generalized affine vectors

Definition (first-order generalized vector)
A first-order generalized affine vector for $x=\left(x_{1}, \ldots, x_{p}\right)$ is a triple $(Z, c, J) \in \mathcal{M}(n+m+1, p) \times \mathbb{R}^{p} \times(\mathcal{M}(n, p))^{n+m+1}:$

- Column k of $Z={ }^{t}\left(Z_{0} Z_{\varepsilon} Z_{\eta}\right)$ describes the affine form outer-approximating x_{k}
- c is the center
- Element $j_{i, k}$ of $J={ }^{t}\left(J_{0} J_{\varepsilon} J_{\eta}\right)$ describes the affine form outer-approximating $\frac{\partial \times^{k}}{\partial \varepsilon_{i}}$ (one of the previous Δ_{i} : column k of J is an affine vector over-approximating $\frac{\partial x}{\partial \varepsilon_{i}}$)

Property

With matrix notations, a first-order generalized affine vector
$(Z, c, J) \in \mathcal{M}(n+m+1, p) \times \mathbb{R}^{p} \times(\mathcal{M}(n, p))^{n+m+1}$ abstracts $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, if $c=f^{\varepsilon}(0)$ and

$$
(\forall \varepsilon \in[\varepsilon])(\exists \eta \in[\eta]),\left\{\begin{array}{l}
f^{\varepsilon}(\varepsilon)={ }^{t} Z_{0}+{ }^{t} Z_{\varepsilon} \varepsilon+{ }^{t} Z_{\eta} \eta \tag{1}\\
\frac{\partial f^{\varepsilon}}{\partial \varepsilon_{i}}(\varepsilon)={ }^{t} J_{i, 0}+{ }^{t} J_{i, \varepsilon} \varepsilon+{ }^{t} J_{i, \eta} \eta, \forall i=1, \ldots, n
\end{array}\right.
$$

 the same parametrization in the ε and η noise symbols.

Inductive construction of a sound abstraction: assignment

We now want to inductively build a sound abstraction of any arithmetic expression.
Example: Consider assignments $x_{1}:=[2,3]$ and $x_{2}:=[3,4]$.

- The affine forms outer approximating x_{1} and x_{2} are $\hat{x}_{1}=\frac{5}{2}+\frac{1}{2} \varepsilon_{1}$ and $\hat{x}_{2}=\frac{7}{2}+\frac{1}{2} \varepsilon_{2}$, thus

$$
Z=\left(\begin{array}{cc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2}
\end{array}\right)
$$

- The centers are $c=\left(\begin{array}{cc}\frac{5}{2} & \frac{7}{2}\end{array}\right)$.
- The Jacobian over-approximation is $J=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$

Assignment $f_{p+1}^{\prime}:=[a, b]$ with $a<b$ and corresponding new noise symbol ε_{i} If (Z, c, J) abstracts $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, an abstraction of $f^{\prime}=\left(f, f_{p+1}^{\prime}:=[a, b]\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p+1}$ is

$$
\left\{\begin{aligned}
Z^{\prime} & =\left(\begin{array}{ll}
Z & \left.\frac{a+b}{2}+\frac{b-a}{2} \varepsilon_{i}\right) \\
c^{\prime} & =\left(\begin{array}{cc}
c & \frac{a+b}{2}
\end{array}\right) \\
J^{\prime} & =\left(\begin{array}{cc}
0 \\
J & \frac{b-a}{2} \\
& 0
\end{array}\right) \leftarrow i \text {-th line }
\end{array}\right.
\end{aligned}\right.
$$

Inductive construction of a sound abstraction: affine operations

Example (Consider now $x_{3}:=3 x_{1}-x_{2}$)

- The outer approx. of quantities x_{i} are $Z=\left(\begin{array}{ccc}\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}\end{array}\right)$
- The centers are $c=\left(\begin{array}{lll}\frac{5}{2} & \frac{7}{2} & 4\end{array}\right)$.
- The Jacobian is $J=\left(\begin{array}{ccc}\frac{1}{2} & 0 & \frac{3}{2} \\ 0 & \frac{1}{2} & \frac{-1}{2}\end{array}\right)$

Affine operations $f^{\prime}=\left(f, f_{p+1}^{\prime}:=\lambda_{1} f_{i}+\lambda_{2} f_{j}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p+1}$, where $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$

$$
\left\{\begin{aligned}
Z^{\prime} & =\left(\begin{array}{ll}
Z & \lambda_{1} \hat{z}_{i}+\lambda_{2} \hat{z}_{j} \\
c^{\prime} & =\left(\begin{array}{ll}
c & \lambda_{1} c_{i}+\lambda_{2} c_{j}
\end{array}\right) \\
J^{\prime} & =\left(\begin{array}{cc}
\lambda_{1} \hat{j}_{1, i}+\lambda_{2} \hat{j}_{1, j} \\
J & \vdots \\
& \lambda_{1} \hat{j}_{n, i}+\lambda_{2} \hat{j}_{n, j}
\end{array}\right)
\end{array}\right.
\end{aligned}\right.
$$

Affine operations are exact.

Inductive construction of a sound abstraction: multiplication
Example (Consider now $x_{4}:=x_{1} x_{3}$)

- Values $\hat{x}_{4}=10+\frac{23}{4} \varepsilon_{1}-\frac{5}{2} \varepsilon_{2}+\left[-\frac{1}{4}, 1\right]=\frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}$

$$
Z=\left(\begin{array}{ccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}
\end{array} \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}\right)
$$

- Center $c=\left(\begin{array}{llll}\frac{5}{2} & \frac{7}{2} & 4 & 10\end{array}\right)$.
- Jacobian $\hat{j}_{i 4}=\hat{x}_{1} \hat{j}_{i 3}+\hat{x}_{3} \hat{j}_{i 1}, i=1, \ldots, 2$ $\hat{j}_{14}=\left(\frac{5}{2}+\frac{1}{2} \varepsilon_{1}\right) \frac{3}{2}+\left(4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}\right) \frac{1}{2}=\frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2}$

$$
J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
$$

Multiplication $f^{\prime}=\left(f, f_{p+1}^{\prime}:=f_{i} f_{j}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p+1}$

$$
\left\{\begin{aligned}
z^{\prime} & =\left(\begin{array}{ll}
z & \hat{z}_{i} \hat{z}_{j} \\
c^{\prime} & =\left(\begin{array}{ll}
c & c_{i} c_{j}
\end{array}\right) \\
J^{\prime} & =\left(\begin{array}{cc}
& \hat{z}_{j} \hat{j}_{1, i}+\hat{z}_{i} \hat{j}_{1, j} \\
J & \vdots \\
& \hat{z}_{j} \hat{j}_{n, i}+\hat{z}_{i j} \hat{j}_{n, j}
\end{array}\right)
\end{array} .=\begin{array}{ll}
\end{array}\right)
\end{aligned}\right.
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{cccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{cccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{2}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$
$\forall k=1 \ldots 4$, pro $\left(c_{k}+\left[\hat{j}_{k} k[1,-1]+\left[\hat{j}_{k} k\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{k}\right][-1,1]+\left[\hat{j}_{k}\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in \operatorname{dual} \mathcal{Z}$
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
\operatorname{pro}\left(4+\frac{3}{2}[1,-1]-\frac{1}{2}[1,-1]\right) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq 4+\frac{3}{2}[1,-1]-\frac{1}{2}[1,-1]
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{cccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{ccccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$
$\left.\forall k=1 \ldots 4, \operatorname{pro}\left(c_{k}+\left[\hat{j}_{1 k}\right][1,-1]+\left[\hat{j}_{2 k}\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{1 k}\right][-1,1]+\left[\hat{j}_{2 k}\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in \operatorname{dual} \mathcal{Z}$
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
\operatorname{pro}\left(4+\left[\frac{3}{2},-\frac{3}{2}\right]+\left[\frac{1}{2},-\frac{1}{2}\right]\right) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq 4+\left[-\frac{3}{2}, \frac{3}{2}\right]+\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{cccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{cccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) \quad J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$
$\left.\forall k=1 \ldots 4, \operatorname{pro}\left(c_{k}+\left[\hat{j}_{1 k}\right][1,-1]+\left[\hat{j}_{2 k}\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{1 k}\right][-1,1]+\left[\hat{j}_{2 k}\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in \operatorname{dual} \mathcal{Z}$
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
[2,6]=\operatorname{pro}([6,2]) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq[2,6]
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{ccccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{ccccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$
$\left.\forall k=1 \ldots 4, \operatorname{pro}\left(c_{k}+\left[\hat{j}_{1 k}\right][1,-1]+\left[\hat{j}_{2 k}\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{1 k}\right][-1,1]+\left[\hat{j}_{2 k}\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in \operatorname{dual} \mathcal{Z}$
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
[2,6]=\operatorname{pro}([6,2]) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq[2,6]
$$

- for $x_{4}:\left[\hat{j}_{14}=\frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}\right] \in\left[4, \frac{15}{2}\right]$ and $\left[\hat{j}_{24}=-\frac{5}{4}-\frac{1}{4} \varepsilon_{1}\right] \in\left[-\frac{3}{2},-1\right]$:

$$
\operatorname{pro}\left(10+\left[4, \frac{15}{2}\right][1,-1]+\left[-\frac{3}{2},-1\right][1,-1]\right) \subseteq\left[x_{4}\right] \subseteq 10+\left[4, \frac{15}{2}\right][-1,1]+\left[-\frac{3}{2},-1\right][-1,1]
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{ccccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{ccccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{2}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$ $\left.\forall k=1 \ldots 4, \operatorname{pro}\left(c_{k}+\left[\hat{j}_{1 k}\right][1,-1]+\left[\hat{j}_{2 k}\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{1 k}\right][-1,1]+\left[\hat{j}_{2 k}\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in$ dual \mathcal{Z}
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
[2,6]=\operatorname{pro}([6,2]) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq[2,6]
$$

- for $x_{4}:\left[\hat{j}_{14}=\frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}\right] \in\left[4, \frac{15}{2}\right]$ and $\left[\hat{j}_{24}=-\frac{5}{4}-\frac{1}{4} \varepsilon_{1}\right] \in\left[-\frac{3}{2},-1\right]$:

$$
\operatorname{pro}(10+[4,-4]+[1,-1]) \subseteq\left[x_{4}\right] \subseteq 10+\left[-\frac{15}{2}, \frac{15}{2}\right]+\left[-\frac{3}{2}, \frac{3}{2}\right]
$$

Interpretation as an inner-approximation

$$
\begin{gathered}
Z=\left(\begin{array}{cccc}
\frac{5}{2}+\frac{1}{2} \varepsilon_{1} & \frac{7}{2}+\frac{1}{2} \varepsilon_{2} & 4+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2} & \frac{83}{8}+\frac{23}{4} \varepsilon_{1}-\frac{5}{4} \varepsilon_{2}+\frac{5}{8} \eta_{1}
\end{array}\right) \\
c=\left(\begin{array}{cccc}
\frac{5}{2} & \frac{7}{2} & 4 & 10
\end{array}\right) J=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{3}{2} & \frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{4} \varepsilon_{2} \\
0 & \frac{1}{2} & \frac{-1}{2} & -\frac{5}{4}-\frac{1}{4} \varepsilon_{1}
\end{array}\right)
\end{gathered}
$$

Inner-approximation of the range of $x_{3}\left(x_{1}, x_{2}\right)$ and $x_{4}\left(x_{1}, x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$
$\forall k=1 \ldots 4$, pro $\left.\left(c_{k}+\left[\hat{j}_{1 k}\right][1,-1]+\left[\hat{j}_{2 k}\right][1,-1]\right) \subseteq\left[x_{k}\right] \subseteq c_{k}+\left[\hat{j}_{k} k\right][-1,1]+\left[\hat{j}_{k} k\right] *[-1,1]\right)$

- Uses Kaucher multiplication rule $[x] \times[y]$ for $[y]=[1,-1] \in$ dual \mathcal{Z}
- Note that if a jacobian coefficient contains zero, the corresponding multiplication is zero (rule $\mathcal{Z} \times$ dual $\mathcal{Z}=0$)
- Exact for x_{3} (affine operations only):

$$
[2,6]=\operatorname{pro}([6,2]) \subseteq \operatorname{range}\left(x_{3},[2,3] \times[3,4]\right) \subseteq[2,6]
$$

- for $x_{4}:\left[\hat{j}_{14}=\frac{23}{4}+\frac{3}{2} \varepsilon_{1}-\frac{1}{2} \varepsilon_{2}\right] \in\left[4, \frac{15}{2}\right]$ and $\left[\hat{j}_{24}=-\frac{5}{4}-\frac{1}{4} \varepsilon_{1}\right] \in\left[-\frac{3}{2},-1\right]$:

$$
[5,15] \subseteq\left[x_{4}\right] \subseteq[1,19]
$$

Joint inner range of a vector function

Algorithm to compute a set of boxes proved to be in the image of f :

- Based on input set bisection + a sufficient condition for a box $\tilde{\mathbf{y}}$ to be in range (f, \mathbf{x}).
- Only needs an outer approximation of the Jacobian of f
- Goldzstejn-Jaulin $2010\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$, MGKP 2013 (extension $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$)

$$
f_{S}(\mathbf{x})=\{f(x): x \in \mathbf{x}\}
$$

$$
\tilde{X}+\Gamma(J, \tilde{\mathbf{x}}-\tilde{X}, \tilde{\mathbf{y}}-f(\tilde{X}))
$$

$$
f_{S}(\tilde{\mathbf{x}})
$$

Characterization of the joint inner range of order 1 affine vectors: example

Example
Let $x=\left(x_{1}, x_{2}\right) \in[2,3] \times[3,4]$ and

$$
f(x)=\binom{x_{1}^{3}-2 x_{1} x_{2}}{x_{2}^{3}-2 x_{1} x_{2}}
$$

Joint inner range of the corresponding order 1 affine vectors (see paper for computation and inner range of components : costly but rarely needed

ECOLE
POLYTE
POLYTECHNIQUE

Implementation and experiments

- Order 0 and order 1 affine vectors implemented as an abstract domain in the Apron library for static analysis (http://apron.cri.ensmp.fr/library)
- calls the Taylor1+ abstract domain [Ghorbal-Goubault-Putot 2009, 2010] for zonotopic over-approximation
- available at http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/hscc14.html
- joint inner approximation as a separate prototype
- Application to the reachability of (discrete) dynamical systems

Example: a Newton algorithm

Consider $x(k+1)=2 x(k)-a x(k)^{2}$, for $a \in[1.95,2$.] and $x(0)=0.6$, iterated until $|x(k+1)-x(k)|<5.10^{-4}$. This iteration should converge to $1 / a$.

- Outer approximation: the stopping criterion of the loop is always satisfied after 4 iterations $\left(|x(4)-x(3)| \subseteq\left[-2.610^{-4}, 2.610^{-4}\right]\right)$.

Example: a Newton algorithm
Consider $x(k+1)=2 x(k)-a x(k)^{2}$, for $a \in[1.95,2$.] and $x(0)=0.6$, iterated until $|x(k+1)-x(k)|<5.10^{-4}$. This iteration should converge to $1 / a$.

- Outer approximation: the stopping criterion of the loop is always satisfied after 4 iterations $\left(|x(4)-x(3)| \subseteq\left[-2.610^{-4}, 2.610^{-4}\right]\right)$.
- Inner approximation: there exist some inputs for which the criterion is not satisfied for the first 3 iterations (for instance, $\left[-7.710^{-4},-4.110^{-4}\right] \subseteq x(3)-x(2)$).
- When the criterion is satisfied, [.4999244, .5127338] $\subseteq x(4) \subseteq[0.499831,0.512906]$.

Example: a Newton algorithm
Consider $x(k+1)=2 x(k)-a x(k)^{2}$, for $a \in[1.95,2$.] and $x(0)=0.6$, iterated until $|x(k+1)-x(k)|<5.10^{-4}$. This iteration should converge to $1 / a$.

- Outer approximation: the stopping criterion of the loop is always satisfied after 4 iterations $\left(|x(4)-x(3)| \subseteq\left[-2.610^{-4}, 2.610^{-4}\right]\right)$.
- Inner approximation: there exist some inputs for which the criterion is not satisfied for the first 3 iterations (for instance, $\left[-7.710^{-4},-4.110^{-4}\right] \subseteq x(3)-x(2)$).
- When the criterion is satisfied, [.4999244, .5127338] $\subseteq x(4) \subseteq[0.499831,0.512906]$.

Example: good behaviour on this highly non linear Householder iteration

$$
x(k+1)=x(k)+x(k)\left(\frac{1}{2} h(k)+\frac{3}{8} h(k)^{2}\right)
$$

with $h(k)=1-a x(k)^{2}$ and $a \in[16,20]$, starting from $x(0)=\left[\frac{1}{20}, \frac{1}{16}\right]$.

Comparable accuracy of inner and outer approximations, and stability along iterations.

Reachability of discrete dynamical systems: FitzHugh-Nagumo neuron model (100 iterates of Euler time-discretization scheme)

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{1}(k)+h\left(x_{1}(k)-\frac{x_{1}(k)^{3}}{3}-x_{2}(k)+\frac{7}{8}\right) \\
x_{2}(k+1)=x_{2}(k)+h\left(0.08\left(x_{1}(k)+0.7-0.8 x_{2}(k)\right)\right)
\end{array}\right.
$$

where $h=0.2$, and $\left(x_{1}(0), x_{2}(0)\right)=[1,1.25] \times[2.25,2.5]$.

Analysis takes $11 \mathrm{sec},[-.737783,-.716137] \subseteq x_{1}(100) \subseteq[-.857537,-.595651]$. $[.450016,506109] \subseteq x_{2}(100) \subseteq[.429873, .542796]$.

Conclusion and future work

- Inner approximation scheme
- order of accuracy of outer approximated zonotopes
- cost remains linear with respect to over-approximated zonotopes
- Reachability analysis of continuous dynamical systems
- in the paper, indirect method by over approximation of the Jacobian by Taylor Models
- direct set integration (work in progress)
- Reachability analysis of hybrid systems: interpretation of guard conditions (work in progress)
- in the paper (HSCC 2014), first ideas for inner approximation of the range of noise symbols in order to satisfy the constraints, instead of the $[-1,1]$ ranges

