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Motivations

Reachability of dynamical systems - central to program analysis, control theory

Outer approximation: safety proof (but “false alarms” ?)

Inner approximation: property falsification

Combined inner and outer approximations: indication of the precision of estimates

In this talk

Inner approximation of f : Rn → Rp using:
modal intervals and Kaucher arithmetic (f : Rn → R)
generalized mean value theorem
zonotopes for Jacobian outer approximation (f : Rn → Rp)

Applications to numerical schemes and dynamical systems analysis

This can also be applied to outer-approximation (although we have already the “usual”
zonotopic approximation, that we recap a bit ; and to invariant calculations.
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Related work

Outer approximation has become classical

Intervals, zonotopes, support functions, ellipsoids etc.

Inner approximation is much more difficult

Linear case [Kurzhanski-Varaiya HSCC 2000, Althoff et al. CDC 2007, Kanade et al.
CAV 2009]

Simulation-based local inner approximations [Nghiem et al. HSCC 2010]

Box bisections [Goldsztejn-Jaulin Reliable Computing 2010,
Mullier-Goubault-Kieffer-Putot RC 2013]

Parallelepipeds [Goldsztejn-Hayes SCAN 2006]

Order 0 generalized affine forms [Goubault-Putot SAS 2007]
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Intervals, outer and inner approximations

Intervals: closed connected subsets of R, noted [x ] ∈ I

We would like to compute range(f , [x ]) = {f (x), x ∈ [x ]}.

Outer (or over) approximation

An outer approximating extension of f : Rn → R over intervals is [f ] : In → I such
that

∀[x ] ∈ In, range(f , [x ]) ⊆ [z] = [f ]([x ])

Natural interval extension: replacing real by interval operations in function f .

Example: the extension of f (x) = x2 − x on [2, 3] is [f ]([2, 3]) = [2, 3]2 − [2, 3] = [1, 7],
and can be interpreted as

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f (x) = z).

Inner (or under) approximation

An interval inner approximation [z] ∈ I satisfies [z] ⊆ range(f , [x ]) of the range of f over
[x ], can be interpreted as

(∀z ∈ [z]) (∃x ∈ [x ]) (f (x) = z).
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Generalized intervals for outer and inner approximations

Generalized intervals

Intervals whose bounds are not ordered K = {[a, b], a ∈ R, b ∈ R}
Called proper if a ≤ b, else improper

Definition (Following Goldsztejn et al. 2005)

Let f : Rn → R be a continuous function and [x ] ∈ Kn, decomposed in [x ]A ∈ Ip and
[x ]E ∈ (dual I)q with p + q = n. A generalized interval [z] ∈ K is (f , [x ])-interpretable if

(∀xA ∈ [x ]A) (Qzz ∈ pro [z]) (∃xE ∈ pro [x ]E), (f (x) = z)

where Qz = ∃ if [z] is proper, and Qz = ∀ if [z] is improper.

When all intervals are proper, we get classical interval computation and an outer
approximation of range(f , x)

(∀x ∈ [x ]) (∃z ∈ [z]) (f (x) = z).

When all intervals are improper, we get an inner approximation of range(f , [x ])

(∀z ∈ pro [z]) (∃x ∈ pro [x ]) (f (x) = z).
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Kaucher arithmetic [Kaucher 1980] on generalized intervals

Kaucher addition extends addition on classical intervals:
[x ] + [y ] = [x + y , x + y ] and [x ]− [y ] = [x − y , x − y ].

Kaucher multiplication

Let P = {[x ] = [x , x ], x > 0 ∧ x > 0}, −P = {[x ] = [x , x ], x 6 0 ∧ x 6 0},
Z = {[x ] = [x , x ], x 6 0 6 x}, and dual Z = {[x ] = [x , x ], x > 0 > x}.

[x ]× [y ] [y ] ∈ P Z −P dualZ
[x ] ∈ P [xy , xy ] [xy , xy ] [xy , xy ] [xy , xy ]

Z [xy , xy ]
[min(xy , xy),
max(xy , xy)]

[xy , xy ] 0

−P [xy , xy ] [xy , xy ] [xy , xy ] [xy , xy ]

dualZ [xy , xy ] 0 [xy , xy ]
[max(xy , xy),
min(xy , xy)]

Interpretation of Kaucher arithmetic, Goldsztejn et al. 2005

Let f : Rn → R be given by an arithmetic expression with single occurrences of variables.
Then for [x ] ∈ Kn, f ([x ]), computed using Kaucher arithmetic, is (f , [x ])-interpretable.

Example: [z] = [x ]× [y ] = 0 when [x ] ∈ Z and [y ] ∈ dual Z
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Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case Z × dual Z)

[z] = [x ]× [y ] = 0 when [x ] ∈ Z = {[x ], x 6 0 6 x} (e.g. [-5,4]) and
[y ] ∈ dual Z = {[x ], x > 0 > x} (e.g. [1,-1]).

Definition (reminder)

Let f : Rn → R and [x ] ∈ Kn, which we can decompose in [x ]A ∈ Ip and [x ]E ∈ (dual I)q

with p + q = n. A generalized interval [z] ∈ K is (f , [x ])-interpretable if

(∀xA ∈ [x ]A) (Qzz ∈ pro [z]) (∃xE ∈ pro [x ]E), (f (x) = z)

where Qz = ∃ if [z] is proper, and Qz = ∀ otherwise.

Let us suppose [z] improper:

computing [z] = [x ]× [y ] consists in finding [z] such that ∀x ∈ [x ], ∀z ∈ pro [z],
∃y ∈ pro [y ], z = x × y ;

instanciating the property for 0 ∈ [x ], we get ∀z ∈ pro [z], (∃y ∈ pro [y ]) z = 0.
Thus [z] is necessarily 0.
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E. Goubault, M. Kieffer, O. Mullier and S. Putot (LIX & L2S - CNRS - Supélec - Univ Paris-Sud)Inner approximated reachability analysis November 24th, 2015 7 / 24



Example: Kaucher multiplication

Example (Interpretation of the Kaucher multiplication in the case Z × dual Z)

[z] = [x ]× [y ] = 0 when [x ] ∈ Z = {[x ], x 6 0 6 x} (e.g. [-5,4]) and
[y ] ∈ dual Z = {[x ], x > 0 > x} (e.g. [1,-1]).

Definition (reminder)

Let f : R2 → R and [x ] ∈ I and [y ] ∈ (dual I). A generalized interval [z] ∈ K is
(f , [x ]× [y ])-interpretable if

(∀x ∈ [x ]) (∀z ∈ pro [z]) (∃y ∈ [y ]), (f (x , y) = x × y = z)

where Qz = ∃ if [z] is proper, and Qz = ∀ otherwise.

Let us suppose [z] improper:

computing [z] = [x ]× [y ] consists in finding [z] such that ∀x ∈ [x ], ∀z ∈ pro [z],
∃y ∈ pro [y ], z = x × y ;

instanciating the property for 0 ∈ [x ], we get ∀z ∈ pro [z], (∃y ∈ pro [y ]) z = 0.
Thus [z] is necessarily 0.
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Limitations of Kaucher and interval arithmetic

Kaucher arithmetic defines a generalized interval natural extension :

Interpretable as outer approximation when all intervals are proper (interval
arithmetic), but may be insufficiently accurate because of dependency problem

Interpretable as inner approximation when all intervals are proper and f is given by
an arithmetic expression with single occurences of variables

Example (dependency problem in outer approximation)

Let f (x) = x − x , then [f ]([−1, 1]) = [−1, 1]− [−1, 1] = [−2, 2]

Example (single-occurence limitation in inner approximation)

Let f (x) = x2 − x , we want an inner approximation of range(f , [2, 3]). But due to the
two occurrences of x , f ([3, 2]) with Kaucher arithmetic is not (f , [x ])-interpretable.

A solution: mean-value theorem & affine arithmetic
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Affine arithmetic (outer-approximation by zonotopes)

Affine form

For a quantity x :

x̂ = x0 +
n∑

i=1

xiεi , where ∀i , xi ∈ R and εi ∈ [−1, 1].

x̂ takes its value in
[
x0 −

∑n
i=1 |xi |, x0 +

∑n
i=1 |xi |

]
.

Zonotopes (joint range of affine forms)

Several forms for quantities xi , sharing common noise symbols εj :

x̂ i = x i
0 + x i

1ε1 + . . .+ x i
nεn,

x̂ = 20 −4ε1 +2ε3 +3ε4

ŷ = 10 −2ε1 +ε2 −ε4

x

y

10 15 20 25 30
5

10

15
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Affine arithmetic (outer-approximation by zonotopes)

Assignment x := [a, b]

Centered form using a fresh noise symbol εn+1 ∈ [−1, 1],

x̂ =
(a + b)

2
+

(b − a)

2
εn+1.

Affine operations (interpreted exactly; no new noise symbol)

For λ ∈ R, we have

λx̂ + ŷ = (λx0 + y0) +
n∑

i=1

(λxi + yi )εi .

Multiplication

Possible (simple) version of the multiplication (note the η1 noise symbol):

x̂ ŷ = x0y0 +
n∑

i=1

(xiy0 + yix0) εi +
1

2

∑
16i,j6n

| xiyj + xjyi | η1.

(and similar “linearizations” of non-linear operations)
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Generalized mean-value theorem

To each component [x ]i , i = 1, . . . , n of the input box [x ] ∈ Kn, associate εi , by

x̂i (εi ) =
x i + x i

2
+

x i − x i

2
εi , where [x ]i = [x i , x i ]

Derive f ε of the vector ε = (ε1, . . . , εn) from f : Rn → R, for some input [x ] ∈ Kn.

Generalized mean-value theorem

Let f : Rn → R be differentiable, [x ] ∈ Kn. Suppose
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v [∆i ].

Then, ∀(t1, . . . , tn) ∈ pro ε = [−1, 1]n,

f̃ ε([ε1], . . . , [εn]) = f ε(t1, . . . , tn) +
n∑

i=1

[∆i ]([εi ]− ti ),

is (f , [x ])-interpretable. In particular,

if f̃ ε([1,−1]n), computed with Kaucher arithmetic, is improper, then
pro f̃ ε([1,−1]n) is an inner approximation of {f ε(ε), ε ∈ [−1, 1]n} = range(f , [x ]).

if f̃ ε([−1, 1]n) is proper, then it is an outer approximation of range(f , [x ]).
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Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

[∆i ]([εi ]− ti ),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v [∆i ].

We want an inductive computation of these forms on arithmetic expressions
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}
v [∆i ].

We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

The partial derivatives [∆i ] are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro(3.75 + [1.5, 2.5][1,−1]) ⊆ f ([−1, 1]) ⊆ 3.75 + [1.5, 2.5][−1, 1]
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Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

[∆i ]([εi ]− ti ),

where
{
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∂εi
(ε), ε ∈ [−1, 1]n

}
v [∆i ].
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Order 0 forms (SAS 2007)

The partial derivatives [∆i ] are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro(3.75 + [1.5,−1.5]) ⊆ f ([−1, 1]) ⊆ 3.75 + [−2.5, 2.5]
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Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
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i=1
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Order 0 forms (SAS 2007)

The partial derivatives [∆i ] are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

pro([5.25, 4.25]) ⊆ f ([−1, 1]) ⊆ [1.25, 6.25]
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Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

[∆i ]([εi ]− ti ),

where
{
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(ε), ε ∈ [−1, 1]n

}
v [∆i ].

We want an inductive computation of these forms on arithmetic expressions

Order 0 forms (SAS 2007)

The partial derivatives [∆i ] are evaluated with intervals

Example: f (x) = x2 − x , x ∈ [2, 3], thus f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).
We get f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1, that can be interpreted as:

[4.25, 5.25] ⊆ f ([−1, 1]) ⊆ [1.25, 6.25]

Solves the single-occurence limitation but not quite the dependency problem
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Generalized affine forms and inner range computation

Generalized affine forms

The generalized mean-value theorem defines generalized affine forms: for
f : Rn → R,

f ε(t1, . . . , tn) +
n∑

i=1

[∆i ]([εi ]− ti ),

where
{
∂f ε

∂εi
(ε), ε ∈ [−1, 1]n

}
v [∆i ].

We want an inductive computation of these forms on arithmetic expressions

Here, order 1 generalized affine forms

Inductive computations with zonotopic outer-approximations of quantities and
partial derivatives ∆i : more precise that order 0

When computing the inner range of a scalar function as above, we use only the
interval range [∆i ]

But in general we have f : Rn → Rp and thus vectors of generalized affine forms

Order 1 forms code some dependency between the components of f or f ε : allows us
to define joint inner range (see end of talk)
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First-order generalized affine vectors

Definition (first-order generalized vector)

A first-order generalized affine vector for x = (x1, . . . , xp) is a triple
(Z , c, J) ∈M(n + m + 1, p)× Rp × (M(n, p))n+m+1:

Column k of Z = t(Z0ZεZη) describes the affine form outer-approximating xk

c is the center

Element ji,k of J = t(J0JεJη) describes the affine form outer-approximating ∂xk

∂εi
(one

of the previous ∆i : column k of J is an affine vector over-approximating ∂x
∂εi

)

Property

With matrix notations, a first-order generalized affine vector
(Z , c, J) ∈M(n + m + 1, p)× Rp × (M(n, p))n+m+1 abstracts f : Rn → Rp, if c = f ε(0)
and

(∀ε ∈ [ε]) (∃η ∈ [η]),

{
f ε(ε) = tZ0 + tZεε+ tZηη
∂f ε

∂εi
(ε) = tJi,0 + tJi,εε+ tJi,ηη,∀i = 1, . . . , n

(1)

(Z , c, J) defines a simultaneous outer approximation of f ε(ε) and ( ∂f
ε

∂εi
)i (ε), relying on

the same parametrization in the ε and η noise symbols.
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Inductive construction of a sound abstraction: assignment

We now want to inductively build a sound abstraction of any arithmetic expression.
Example: Consider assignments x1 := [2, 3] and x2 := [3, 4].

The affine forms outer approximating x1 and x2 are x̂1 = 5
2

+ 1
2
ε1 and x̂2 = 7

2
+ 1

2
ε2,

thus
Z =

(
5
2

+ 1
2
ε1

7
2

+ 1
2
ε2

)
The centers are c =

(
5
2

7
2

)
.

The Jacobian over-approximation is J =

(
1
2

0
0 1

2

)
Assignment f ′p+1 := [a, b] with a < b and corresponding new noise symbol εi

If (Z , c, J) abstracts f : Rn → Rp, an abstraction of f ′ = (f , f ′p+1 := [a, b]) : Rn → Rp+1 is

Z ′ =
(

Z a+b
2

+ b−a
2
εi

)
c ′ =

(
c a+b

2

)
J ′ =

 0

J b−a
2

0

← i-th line
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Inductive construction of a sound abstraction: affine operations

Example (Consider now x3 := 3x1 − x2)

The outer approx. of quantities xi are Z =
(

5
2

+ 1
2
ε1

7
2

+ 1
2
ε2 4 + 3

2
ε1 − 1

2
ε2

)
The centers are c =

(
5
2

7
2

4
)
.

The Jacobian is J =

(
1
2

0 3
2

0 1
2

−1
2

)

Affine operations f ′ = (f , f ′p+1 := λ1fi + λ2fj) : Rn → Rp+1, where (λ1, λ2) ∈ R2

Z ′ =
(

Z λ1ẑi + λ2ẑj

)
c ′ =

(
c λ1ci + λ2cj

)
J ′ =


λ1 ĵ1,i + λ2 ĵ1,j

J
...

λ1 ĵn,i + λ2 ĵn,j


Affine operations are exact.
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Inductive construction of a sound abstraction: multiplication

Example (Consider now x4 := x1x3)

Values x̂4 = 10 + 23
4
ε1 − 5

2
ε2 + [− 1

4
, 1] = 83

8
+ 23

4
ε1 − 5

4
ε2 + 5

8
η1

Z =
(

5
2
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Multiplication f ′ = (f , f ′p+1 := fi fj) : Rn → Rp+1

Z ′ =
(

Z ẑi ẑj

)
c ′ =

(
c cicj

)
J ′ =


ẑj ĵ1,i + ẑi ĵ1,j

J
...

ẑj ĵn,i + ẑi ĵn,j
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Interpretation as an inner-approximation
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Inner-approximation of the range of x3(x1, x2) and x4(x1, x2) for (x1, x2) ∈ [2, 3]× [3, 4]

∀k = 1 . . . 4, pro(ck + [̂j1k ][1,−1] + [̂j2k ][1,−1]) ⊆ [xk ] ⊆ ck + [̂j1k ][−1, 1] + [̂j2k ] ∗ [−1, 1])

Uses Kaucher multiplication rule [x ]× [y ] for [y ] = [1,−1] ∈ dual Z
Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z × dual Z = 0)

Exact for x3 (affine operations only):
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Inner-approximation of the range of x3(x1, x2) and x4(x1, x2) for (x1, x2) ∈ [2, 3]× [3, 4]

∀k = 1 . . . 4, pro(ck + [̂j1k ][1,−1] + [̂j2k ][1,−1]) ⊆ [xk ] ⊆ ck + [̂j1k ][−1, 1] + [̂j2k ] ∗ [−1, 1])

Uses Kaucher multiplication rule [x ]× [y ] for [y ] = [1,−1] ∈ dual Z
Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z × dual Z = 0)

Exact for x3 (affine operations only):
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Inner-approximation of the range of x3(x1, x2) and x4(x1, x2) for (x1, x2) ∈ [2, 3]× [3, 4]

∀k = 1 . . . 4, pro(ck + [̂j1k ][1,−1] + [̂j2k ][1,−1]) ⊆ [xk ] ⊆ ck + [̂j1k ][−1, 1] + [̂j2k ] ∗ [−1, 1])

Uses Kaucher multiplication rule [x ]× [y ] for [y ] = [1,−1] ∈ dual Z
Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z × dual Z = 0)

Exact for x3 (affine operations only):

[2, 6] = pro([6, 2]) ⊆ range(x3, [2, 3]× [3, 4]) ⊆ [2, 6]
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Inner-approximation of the range of x3(x1, x2) and x4(x1, x2) for (x1, x2) ∈ [2, 3]× [3, 4]

∀k = 1 . . . 4, pro(ck + [̂j1k ][1,−1] + [̂j2k ][1,−1]) ⊆ [xk ] ⊆ ck + [̂j1k ][−1, 1] + [̂j2k ] ∗ [−1, 1])

Uses Kaucher multiplication rule [x ]× [y ] for [y ] = [1,−1] ∈ dual Z
Note that if a jacobian coefficient contains zero, the corresponding multiplication is
zero (rule Z × dual Z = 0)

Exact for x3 (affine operations only):
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[5, 15] ⊆ [x4] ⊆ [1, 19]
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Joint inner range of a vector function

Algorithm to compute a set of boxes proved to be in the image of f :

Based on input set bisection + a sufficient condition for a box ỹ to be in range(f , x).

Only needs an outer approximation of the Jacobian of f

Goldzstejn-Jaulin 2010 (f : Rn → Rn), MGKP 2013 (extension f : Rn → Rp)

x

x̃

x̃

fS

(fS)−1

ỹ

x̃ + Γ(J, x̃− x̃ , ỹ − f (x̃))
fS(x̃)

fS(x) = {f (x) : x ∈ x}
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Characterization of the joint inner range of order 1 affine vectors: example

Example

Let x = (x1, x2) ∈ [2, 3]× [3, 4] and

f (x) =

(
x3

1 − 2x1x2

x3
2 − 2x1x2

)
Joint inner range of the corresponding order 1 affine vectors (see paper for computation
and inner range of components : costly but rarely needed
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Implementation and experiments

Order 0 and order 1 affine vectors implemented as an abstract domain in the Apron
library for static analysis (http://apron.cri.ensmp.fr/library)

calls the Taylor1+ abstract domain [Ghorbal-Goubault-Putot 2009, 2010] for zonotopic
over-approximation
available at http://www.lix.polytechnique.fr/Labo/Sylvie.Putot/hscc14.html
joint inner approximation as a separate prototype

Application to the reachability of (discrete) dynamical systems
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Example: a Newton algorithm

Consider x(k + 1) = 2x(k)− ax(k)2, for a ∈ [1.95, 2.] and x(0) = 0.6, iterated until
|x(k + 1)− x(k)| < 5. 10−4. This iteration should converge to 1/a.

Outer approximation: the stopping criterion of the loop is always satisfied after 4
iterations (|x(4)− x(3)| ⊆ [−2.6 10−4, 2.6 10−4]).

Inner approximation: there exist some inputs for which the criterion is not satisfied
for the first 3 iterations (for instance, [−7.7 10−4,−4.1 10−4] ⊆ x(3)− x(2)).

When the criterion is satisfied, [.4999244, .5127338] ⊆ x(4) ⊆ [0.499831, 0.512906].

0 2 4 6 8 10
0.45

0.5

0.55

0.6

−− outer approximation

iteration k

x(
k)
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Example: good behaviour on this highly non linear Householder iteration

x(k + 1) = x(k) + x(k)

(
1

2
h(k) +

3

8
h(k)2

)
with h(k) = 1− ax(k)2 and a ∈ [16, 20], starting from x(0) = [ 1

20
, 1

16
].
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iteration k

x(
k)

Comparable accuracy of inner and outer approximations, and stability along iterations.
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Reachability of discrete dynamical systems: FitzHugh-Nagumo neuron
model (100 iterates of Euler time-discretization scheme){

x1(k + 1) = x1(k) + h
(
x1(k)− x1(k)3

3
− x2(k) + 7

8

)
x2(k + 1) = x2(k) + h (0.08(x1(k) + 0.7− 0.8x2(k)))

where h = 0.2, and (x1(0), x2(0)) = [1, 1.25]× [2.25, 2.5].

0
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1

1.5

2

2.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Inner approximation
Outer approximation

Analysis takes 11 sec, [−.737783, −.716137] ⊆ x1(100) ⊆ [−.857537,−.595651],
[.450016,.506109] ⊆ x2(100) ⊆ [.429873, .542796].
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Conclusion and future work

Inner approximation scheme
order of accuracy of outer approximated zonotopes
cost remains linear with respect to over-approximated zonotopes

Reachability analysis of continuous dynamical systems
in the paper, indirect method by over approximation of the Jacobian by Taylor Models
direct set integration (work in progress)

Reachability analysis of hybrid systems: interpretation of guard conditions (work in
progress)

in the paper (HSCC 2014), first ideas for inner approximation of the range of noise
symbols in order to satisfy the constraints, instead of the [-1,1] ranges

E. Goubault, M. Kieffer, O. Mullier and S. Putot (LIX & L2S - CNRS - Supélec - Univ Paris-Sud)Inner approximated reachability analysis November 24th, 2015 24 / 24


