
Barrier certificate with Interval Analysis
A review of Adel’s PhD thesis

A. Chapoutot

ENSTA ParisTech, U2IS
joint work with

O. Bouissou, A. Djaballah, and M. Kieffer

November 25, 2015

1 / 28

Main goal

Formal verification of safety properties of hybrid systems described
by hybrid automata.

ẋ = f1(x)
I1(x) ≥ 0

ẋ = f2(x)
I2(x) ≥ 0

x := x0

G1,2(x) ≥ 0/x := R1,2(x)

G2,1(x) ≥ 0/x := R2,1(x)

Barrier certificate has been considered to achieve this goal and a 2 step
process has been considered:
1. for continuous-time dynamical systems
2. then for hybrid automata

2 / 28

Safety of continuous dynamical systems

Consider a non-linear dynamical system S

ẋ(t) = f (x(t),d)

with d ∈ D a constant and bounded disturbance

S is safe iff all trajectories starting from the initial region do not reach
the unsafe region.

-3,2 -2,8 -2,4 -2 -1,6 -1,2 -0,8 -0,4 0 0,4 0,8 1,2 1,6

-2

-1,5

-1

-0,5

0,5

3 / 28

Barrier certificates

Main idea of [Prajna&Jadbabaie HSCC04]
A barrier is a function separating

I the unsafe region Xu
I all trajectories starting form the initial region X0.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

B(x) = 0

f(x)
∂B
∂x

(x)

[x0]

[xu]

does not require computation of reachable set.
4 / 28

Conditions on Barrier Function

To be a valid barrier functions, [Prajna & Jadbabaie, HSCC04] shows that

B(x) has to satisfy
B(x) ≤ 0 ∀x ∈ X0
B(x) > 0 ∀x ∈ Xu

B(x) = 0⇒
〈
∂B
∂x (x), f (x,d)

〉
< 0 ∀x ∈ X

Finding a barrier function is difficult in general

5 / 28

Parametric Barrier Function
In [Prajna & Jadbabaie HSCC04], parametric barrier functions B(x,p)
are considered. They have to satisfy

∃p ∈ P : 
B(x,p) ≤ 0 ∀x ∈ X0
B(x,p) > 0 ∀x ∈ Xu

B(x,p) = 0⇒
〈
∂B
∂x (x,p), f (x,d)

〉
< 0 ∀x ∈ X

Example
I B1(x,p) = p0x0 + p1x1 + p2
I B2(x,p) = p0 ln(x0) + p1x1 + p2

In [Prajna & Jadbabaie HSCC04] only polynomial dynamical systems and
polynomial barrier functions are considered,
with the 3rd constraint relaxed into(〈

∂B

∂x
(x,p), f (x,d))

〉
< 0
)

∀x ∈ X

6 / 28

Designing barriers via interval analysis

We assume that the sets X0 and Xu are defined by

X0 = {x ∈ X | g0(x) 6 0}
Xu = {x ∈ X | gu(x) 6 0}.

with g0 : X → R and gu : X → R two known functions

7 / 28

Quantified Constraint Satisfaction Problem approach

Theorem
If ∃p ∈ P such that ∀x ∈ X , ∀d ∈ D

ξ (x,p,d) = (g0(x) > 0 ∨ B(x,p) 6 0)

∧ (gu(x) > 0 ∨ B(x,p) > 0)

∧
(
B(x,p) 6= 0 ∨

〈
∂B

∂x
(x,p), f (x,d)

〉
< 0
)

then the dynamical system is safe

Note: this offers a convenient way to treat each constraint of the
conjunction in the same way.

8 / 28

Starting point

Consider some function g : Rn × Rm → Rk and some box [z] ∈ IRk .

CSC-FPS [Jaulin & Walter 1996] is designed to determine whether

∃p ∈ [p] , ∀x ∈ [x] , g (x,p) ∈ [z]

We consider this approach here.

CSC-FPS consists of:
I FPS (Feasible Point Searcher): explores parameter space P = [p] to

find some satisfying p.
I CSC (Computable Sufficient Condition): checks whether p satisfies

the constraint for all x ∈ X = [x]

9 / 28

Additional contributions

I Adaptation: Extending to handle conjunction of constraints, all are
of the form

τ (x,p,d) = (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) .

I Improvements: Enhance the algorithm by adding contractors
operators

10 / 28

Algorithm: FPS
Input [p] a box of parameter, f and a parametric function B

Queue of
boxes Q

Contract
[p]

CSC’s p̂

Empty? Q

True

False

Tiny? [p]Split [p] Unknown

Push [p]

Pop [p]

True

False

Unknown

NoPush [p](1), [p](2)

False
True

Empty? Q

11 / 28

Algorithm: CSCInit case
Input [p] a box of parameter and [x0]

Stack of
boxes S

Refute?
[p]

Valid? p̂ Empty? S

Tiny? [x]Split [x] Unknown

False True

Push [x0]

Pop [x]

Yes
No

No

YesYes

Push [x](1), [x](2) No
Yes

No

12 / 28

Verification of a constraint – validation

For a given p, validation of

∃p ∈ [p] ,∀x ∈ [x] ,∀d ∈ [d] , (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) .

One can outer-approximate for a given p ∈ [p]

u([x] ,p) = {u(x,p) | x ∈ [x]}
v([x] , [d] ,p) = {v(x,d,p) | x ∈ [x] ,d ∈ [d]}

using inclusion functions [u]([x] ,p) and [v]([x] , [d] ,p)

Consequence
If [u]([x] ,p) ⊆ A or [v]([x] , [d] ,p) ⊆ B then

u([x] ,p) ⊆ A or v([x] , [d] ,p) ⊆ B
and

∀x ∈ [x] ,∀d ∈ [d] u(x,p) ∈ A ∨ u(x,d,p) ∈ B

is satisfied.

13 / 28

Verification of a constraint – refutation
I either using Inclusion functions, on the negation of the constraint

∀p ∈ [p],∃x ∈ [x] ,∃d ∈ [d] , u(x,p) ⊆ A ∧ v(x,p,d) ⊆ B,

for a given x and a given d (Note: we can try several random values)
I either using Contractors

A contractor Cg ,[z] associated to {x ∈ [x] : g(x) ∈ [z]} is s.t.
I Reduction:

Cg,[z] ([x]) ⊆ [x]
I Soundness:

[g] ([x]) ∩ [z] = [g]
(
Cg,[z] ([x])

)
∩ [z]

They can be composed, with ci : {x ∈ [x] : gi (x) ∈ [z]i}

Cc1∧c2([x]) = Cc1([x]) ∩ Cc2([x])

Cc1∧c2([x]) = Cc2(Cc1([x]))

Cc1∨c2([x]) = �{Cc1([x]) ∪ Cc2([x])}

Note: several contractor algorithms exist, e.g., HC4Revise, 3BCID, etc.
14 / 28

Using contractors – 1

Proposition
Consider a box [x], the constraint c : {x ∈ [x] : g(x) ∈ [z]}, and the
contracted box Cc ([x]) ⊆ [x]. Then,

∀x ∈ [x] \Cc ([x]) , one has g(x) /∈ [z] , (1)

where [x] \Cc ([x]) denotes the box [x] deprived from Cc ([x]), which is not
necessarily a box.

15 / 28

Using contractors – 2

Consider the constraint

τ : (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B)

and a contractor Cτ for this constraint.

For the boxes [x], [p], and [d], one gets(
[x]′ , [p]′ , [d]′

)
= Cτ

(
[x] , [p] , [d]

)
We have different cases to consider in function of the values of the
contracted boxes [x]′, [p]′, and [d]′.

Note: we can do the same with τ

16 / 28

Using contractors – 3

3 cases are considered:
1. If [p] \ [p]′ 6= ∅, then ∀p ∈ [p] \[p]′, ∀x ∈ [x], ∀d ∈ [d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B,

⇒ the search space is reduced to [p]′,
2. If [x] \ [x]′ 6= ∅ then, one has ∀p ∈[p], ∀x ∈[x] \[x]′, ∀d ∈[d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B

and there is no p ∈ [p] such that τ holds true for all x ∈ [x],
3. If [d] \ [d]′ 6= ∅, then ∀p ∈ [p], ∀x ∈ [x], ∀d ∈ [d] \ [d]′,

u(x,p) /∈ A ∧ v(x,p,d) /∈ B

and there is no p ∈ [p] such that τ holds true for all d ∈ [d],

17 / 28

Using contractors – 3

[p]

[x] d], [

[p]’

[x] d], [’ ’

[p]

[x] d], [

[p]’

[x] d], [’ ’

()a

()b

p p

18 / 28

Example: rational barrier function

Example (
ẋ1
ẋ2

)
=

(
x1 + x2

x1x2 − 0.5x22

)

x1

x2

gu() 06x

g0() 06x

x x0(,)t

B(,)=0x p

-2.5 -2 -1.5 -1 -0.5 0

0.5

1

-3-3.5

1.5

2

Parametric barrier function: B(x,p) = p1p2(x0+p3)
(x0+p3)2+p2

2
+ x1 + p4

19 / 28

Example: system with limit cycle

Example (
ẋ1
ẋ2

)
=

(
x2 + (1− x21 − x22)x1 + ln(x21 + 1)
−x1 + (1− x21 − x22)x2 + ln(x22 + 1)

)

x1

gu() 06x

g0() 06x

x x0(,)t

B(,)=0x p

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.5

0.5

1

1.5

2

x2

Parametric barrier function: B(x,p) =
(

x1+p1
p2

)2
+
(

x2+p3
p4

)2
− 1

20 / 28

Results

Without contr. With contr.
Example n m time bisect. time bisect.

1 2 4 36s 4520 16s 4553
2 2 3 T.O. / 1s 159
3 2 6 1133s 20388 1s 6
4 2 6 253s 14733 7s 435
5 2 4 T.O. / 98s 4072
6 3 4 167s 1753 21s 47
7 6 7 697s 67600 1s 261

I n the dimension of the dynamical system
I m the number of parameters of the template

21 / 28

Extension to hybrid automata

I Location
I Flow
I Invariant

ẋ = f1(x)
I1(x) ≥ 0

ẋ = f2(x)
I2(x) ≥ 0

x := x0

Γ1,2(x) ≥ 0/x := ρ1,2(x)

Γ2,1(x) ≥ 0/x := ρ2,1(x)

I Transtion with Guard and Reset

22 / 28

Extension to Hybrid Automata

To be a valid barrier functions, [Prajna & Jadbabaie, HSCC04] shows
that for an Hybrid Automaton H = (X ,L,X0, I, f , Γ, ρ)

Theorem
Assume that there exist a family of differentiable functions β`(x), ` ∈ L
such that, for all pairs (`, `′) ∈ L2 with ` 6= `′, one has

β`(x) 6 0 ∀x ∈ X0(`)

β`(x) > 0 ∀x ∈ Xu (`)

β`(x) = 0 =⇒ ∂β`(x)

∂x
f`(x,d) < 0 ∀x ∈ I(`) ,∀d ∈ D`

β`(x) 6 0 =⇒ β`′(ρ`,`′(x)) 6 0 ∀x ∈ Γ(`, `′)

then the system H is safe.

Challenge: increasing number of constraints associated to the number of
transitions

23 / 28

Interval analysis approach

Assume that there exists for each location ` ∈ L some functions
I g0 : L × X → R,
I gu : L × X → R,
I gΓ : L × L× X → R
I gI : L × X → R

such that
I X0(`) = {x ∈ X | g0(`, x) 6 0},
I Xu (`) = {x ∈ X | gu(`, x) 6 0},
I Γ(`, `′) = {x ∈ X | gΓ(`, `′, x) 6 0}
I I(`) = {x ∈ X | gI(`, x) 6 0}.

24 / 28

Quanfitied Constraint Satisfaction Problem

Proposition
Consider a hybrid system described by H = (X ,L,X0, I, f , Γ, ρ). Assume
there exists a differentiable function β`(x,p) which satisfies
∀` ∈ L, ∃p` ∈ [p]`,∀x ∈ [x],∀d ∈ [d]`

g0(`, x) > 0 ∨ β`(x,p`) 6 0, (2)

gu(`, x) > 0 ∨ β`(x,p`) > 0, (3)

gI(`, x) > 0 ∨ β`(x,p`) 6= 0 ∨ ∂β`(x,p`)
∂x

f`(x,d) < 0, (4)

and ∀`′ ∈ L, with `′ 6= `,

gΓ(`, `′, x) > 0 ∨ β`(x,p`) > 0 ∨ β`′(ρ`,`′(x),p`′) 6 0, (5)

then the system H is safe.

Contribution generalization of the formalism used for continuous-time
dynamical systems.

25 / 28

Incremental solution of QCSP

Many ways to solve this QCSP

Our approach, incremental algorithm. Main ideas:
I We add an order on the location value ranging from 1 to |L|
I We associate a parametric barrier function to each location
I We consider all the location from 1 to |L|

I For location ` = 1 we try to find p such that we have a barrier
function

I For location ` > 1, we try to find p taking into account all the
constraints associated to the transition involving `

I In case we cannot find p we go back to location `− 1 and retry

26 / 28

Results

Example Dimension #locations computation time #bisections
2-TANKS 2 2 1.7s 9488

ECO 2 2 0.082s 499
prajna 3 2 0.2s 111
CAR 6 3 0.021s 3

Collision 3 6 0.334s 1574

27 / 28

Conclusion and Future Work
Conclusion

I A new method to compute barrier certificate based on interval
analysis.

I Can handle non-linear dynamic and non-linear barrier functions.
I Extension of the state-of-the art which is limited to:

I polynomial dynamic and polynomial barrier function

Future work
I Automatically find template, see paper Goubault et al. ACC’14
I Adapt other work of Prajna et al. on reachability

Publications/Submissions

I a paper accepted at CDC’14
I a paper under review in Automatica (round 2)
I a paper in prepration

28 / 28

	Context
	Approach
	Examples
	Extension to Hybrid Automata
	Conclusion and Future Work

