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Main goal

Formal verification of safety properties of hybrid systems described
by hybrid automata.

G1.2(x) > 0/x := Ry 2(x)

G21(x) > 0/x :=Ra1(x)

Barrier certificate has been considered to achieve this goal and a 2 step
process has been considered:

1. for continuous-time dynamical systems

2. then for hybrid automata
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Safety of continuous dynamical systems

Consider a non-linear dynamical system S

x(t) = f(x(t),d)

with d € D a constant and bounded disturbance

S is safe iff all trajectories starting from the initial region do not reach
the unsafe region.
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Barrier certificates

Main idea of [Prajna&Jadbabaie HSCCO04]

A barrier is a function separating
> the unsafe region A,

» all trajectories starting form the initial region Ap.

2

0.5

does not require computation of reachable set.
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Conditions on Barrier Function

To be a valid barrier functions, [Prajna & Jadbabaie, HSCCO04] shows that
B(x) has to satisfy

B(X) <0 Vx € Xy
B(x) >0 Vx € A,
B(x) = 0= (28(x),f(x,d)) <0 VxeX

Finding a barrier function is difficult in general
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Parametric Barrier Function
In [Prajna & Jadbabaie HSCCO04], parametric barrier functions B(x, p)
are considered. They have to satisfy

JpeP:
B(x,p) <0 Vx € Xp
B(x,p) >0 Vx € &,
B(x,p) = 0= (%E(x,p),f(x,d)) <0 VxeX
Example

> Bi(x,p) = poxo + p1x1 + p2
> Bx(x,p) = poIn(x0) + p1x1 + p2
In [Prajna & Jadbabaie HSCCO04] only polynomial dynamical systems and

polynomial barrier functions are considered,
with the 3rd constraint relaxed into

(<6af(x, p), f(x,d))> < 0) Vx e X
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Designing barriers via interval analysis

We assume that the sets Xy and X, are defined by

XOZ{X€X|g0(X)<O
Xy={xeX|gux) <0

with go : X = R and g, : & — R two known functions
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Quantified Constraint Satisfaction Problem approach

Theorem
If 3p € P such thatVx € X, Vd € D

§(X7p7d) = (go(x) >0V B(X, P) < 0)
A (gu(x) > 0V B(x,p) > 0)

B
r (Bcm) £ 0w { o txp).ixd) ) <o)
then the dynamical system is safe

Note: this offers a convenient way to treat each constraint of the
conjunction in the same way.
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Starting point

Consider some function g : R” x R” — R¥ and some box [z] € TR
CSC-FPS [Jaulin & Walter 1996] is designed to determine whether

dpelp], Vxe[x], g(x,p) € [7]
We consider this approach here.

CSC-FPS consists of:

» FPS (Feasible Point Searcher): explores parameter space P = [p] to
find some satisfying p.

» CSC (Computable Sufficient Condition): checks whether p satisfies
the constraint for all x € X = [x]

9/28



Additional contributions

» Adaptation: Extending to handle conjunction of constraints, all are
of the form

7(x,p,d) = (u(x,p) € A) V (v(x,p,d) € B).

» Improvements: Enhance the algorithm by adding contractors
operators

10/28



Algorithm: FPS

Input [p] a box of parameter, f and a parametric function B

Split [p]

lPush [p]
Queue of True False
boxes Q False
Pop [p] False
tract
@—
Unknown

Push [p](1), [p](2)
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Algorithm: CSClInit case

Input [p] a box of parameter and [xo]

lPush [xo]

Stack of

boxes S
Pop [x]
? N
Re{;]te O
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Verification of a constraint — validation
For a given p, validation of
Ipelp],vxe[x],vd e [d], (u(x,p)e€ A)V(v(x,p,d)eB).
One can outer-approximate for a given p € [p]

u(lx], p) = {u(x,p) [ x € [x]}
v([x],[d],p) = {v(x,d,p) | x € [x] ,d € [d]}

using inclusion functions [v]([x],p) and [v]([x], [d], p)

Consequence

If [u]([x],p) C A or [v]([x],[d],p) C B then
; u([x],p) € Aor v([x],[d],p) C B
Vx € [x],Vvd € [d] u(x,p) € AV u(x,d,p) € B

is satisfied.
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Verification of a constraint — refutation

» either using Inclusion functions, on the negation of the constraint

vpelpl,Ixe[x],3d e [d], u(x,p) C AN v(x,p,d)C B,

for a given x and a given d (Note: we can try several random values)

> either using Contractors
A contractor C, |5 associated to {x € [x] : g(x) € [z]} is s.t.
> Reduction:
Co.ta (X]) € [X]
> Soundness:
[e] (1)) N [2] = [g] (Ce.a (1)) N [2]
They can be composed, with ¢; : {x € [x] : gi(x) € [z];}

Ceune([x]) = Cer ([x]) N Coy ([x])
CC1/\Cz ([X]) = CCz (CC1 ([X]))
Cerves([X]) = O{Ce, ([x]) U Cc, ([x])}

Note: several contractor algorithms exist, e.g., HC4Revise, 3BCID, etc.
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Using contractors — 1

Proposition

Consider a box [x], the constraint ¢ : {x € [x] : g(x) € [z]}, and the
contracted box C. ([x]) C [x]. Then,

Vx € [X]\Cc ([x]), one has g(x) ¢ [2], (1)

where [x] \C ([x]) denotes the box [x] deprived from C. ([x]), which is not
necessarily a box.
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Using contractors — 2

Consider the constraint
7 ¢ (u(x,p) € A) V (v(x, p.d) € B)
and a contractor C, for this constraint.

For the boxes [x], [p], and [d], one gets
(X", . W)=¢C (xl, [p], [d])
We have different cases to consider in function of the values of the

contracted boxes [x]’, [p]’, and [d]’.

Note: we can do the same with 7
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Using contractors — 3

3 cases are considered:
L If [p] \ [p]' # 0, then Vp € [p] \[p]', Vx € [x], Vd € [d],

u(x,p) ¢ AN v(x,p,d) ¢ B,

= the search space is reduced to [p]’,
2. 1f [x]\ [x]" # 0 then, one has Vp €[p], ¥x €[x] \[x]', Vd €[d],

u(x,p) ¢ AAv(x,p,d) ¢ B

and there is no p € [p] such that 7 holds true for all x € [x],
3. 1f [d] \ [d]' # O, then Vp € [p], Vx € [x], Vd € [d] \ [d]',

u(x,p) ¢ AAv(x,p,d) ¢ B

and there is no p € [p] such that 7 holds true for all d € [d],
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Using contractors — 3

ft (a) A

W A
A (b) A
[p] 1
T @ whar
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Example: rational barrier function

Example

x1\ X1 + X2
).(2 o X1 X2 — 05X22

Ty
2
B(x,p)=0
gu(x)<0 5
9,(x)<0 )
x(tvxo) 0.5
1 05 0] T

Parametric barrier function: B(x,p) = % +x1 + pg
2
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Example: system with limit cycle

Example

x2 4+ (1 —x2 — x3)x1 + In(xZ + 1)

(2) - (—xl (1= 52— x2)x + In(x2 + 1))

2 2
Parametric barrier function: B(x,p) = (Xl;;p‘) + (XzJ“—p’> -1
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Results

Without contr. | With contr.
Example | n | m | time | bisect. | time | bisect.
1 2| 4 36s 4520 16s 4553
2 23| T.0 / Is | 159
3 2| 6 | 1133s | 20388 | 1s 6
4 2| 6 | 253s | 14733 Ts 435
5 214 ] T.O. / 98s | 4072
6 3|4 167s 1753 21s 47
7 6| 7 | 697s | 67600 | 1s 261

» n the dimension of the dynamical system

» m the number of parameters of the template



Extension to hybrid automata

» Location
» Flow

» Invariant

M21(x) > 0/x := p2.1(x)

» Transtion with Guard and Reset j
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Extension to Hybrid Automata

To be a valid barrier functions, [Prajna & Jadbabaie, HSCCO04] shows
that for an Hybrid Automaton H = (X, L, Xo,Z,f,T, p)

Theorem
Assume that there exist a family of differentiable functions 5,(x), ¢ € L
such that, for all pairs (£,¢') € L? with £ # (', one has

Be(x) <0 Vx € Xo(¢)
Be(x) >0 Vx e X,(¢)

By(x) =0 = %}E")fg(x,d)m vx € Z(0),vd € Dy

Be(x) 0 = Bu(pre(x)) <0 Vxel(41)

then the system H is safe.

Challenge: increasing number of constraints associated to the number of
transitions

23/28



Interval analysis approach

Assume that there exists for each location £ € £ some functions
> g LxX =R,
> g LXxX =R,
> gri LXLx X =R
> gr: LxX =R

such that
> Xo(0) = {x € X|go(¢,x) <0},
> X, (0) = {x € X gu(l,x) < 0},
> I(0,0)={xe X|gr(¥, x)<0}
> 7(¢) = {x € X | gr(¢,x) < 0}.
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Quanfitied Constraint Satisfaction Problem

Proposition

Consider a hybrid system described by H = (X, L, Xy, Z,f,T, p). Assume
there exists a differentiable function 54(x, p) which satisfies

Ve e L, Ip; € [ple,Vx € [x],Vd € [d],

go(ﬁ, X) >0V ﬂf(xa pl) < Ov (2)
gu(f,x) >0V Be(x,pe) >0, (3)
g0 > 0V Bulx.p) 20 PP gy <o

and V' € L, with 0! # ¢,
gr(ga gl) X) > 0V B@(X, pé) > 0V Bé’(pl,f’(x)a p[’) < Oa (5)

then the system H. is safe.

Contribution generalization of the formalism used for continuous-time
dynamical systems.
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Incremental solution of QCSP

Many ways to solve this QCSP

Our approach, incremental algorithm. Main ideas:
» We add an order on the location value ranging from 1 to |L]
» We associate a parametric barrier function to each location

» We consider all the location from 1 to |£]

» For location £ = 1 we try to find p such that we have a barrier
function

> For location £ > 1, we try to find p taking into account all the
constraints associated to the transition involving ¢

> In case we cannot find p we go back to location £ — 1 and retry
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Results

Example | Dimension | #tlocations | computation time | #bisections

2-TANKS 2 2 1.7s 9488
ECO 2 2 0.082s 499
prajna 3 2 0.2s 111
CAR 6 3 0.021s 3

Collision 3 6 0.334s 1574




Conclusion and Future Work
Conclusion

» A new method to compute barrier certificate based on interval
analysis.

» Can handle non-linear dynamic and non-linear barrier functions.

» Extension of the state-of-the art which is limited to:
» polynomial dynamic and polynomial barrier function
Future work
» Automatically find template, see paper Goubault et al. ACC'14
» Adapt other work of Prajna et al. on reachability
Publications/Submissions

> a paper accepted at CDC'14
> a paper under review in Automatica (round 2)

> a paper in prepration
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