Guaranteed Path Planning Using Interval Analysis

Benoit DESROCHERS

ENSTA Bretagne DGA Techniques Navales (Brest)

November 25, 2015

Outlines

- 2 Tools and Concepts
- 3 Path Planning Algorithms

Problem Statement

Tools and Concepts Path Planning Algorithms Conclusion Definitions 2D version of the Wire Loop Game Modeling

Outlines

- Definitions
- 2D version of the Wire Loop Game
- Modeling
- 2 Tools and Concepts
- 3 Path Planning Algorithms

Problem Statement

Tools and Concepts Path Planning Algorithms Conclusion Definitions 2D version of the Wire Loop Game Modeling

Definitions

Path Planning

Find a sequence of states in order to move a system from an initial state to a final state while avoiding collision.

$\mathbb{C}_{\mathsf{space}}$

Space of all feasible states for our system.

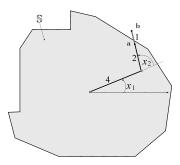
$\mathbb{C}_{\mathsf{free}}$

Subset of $\mathbb{C}_{\text{space}}$ that avoids collision with obstacles

Definitions 2D version of the Wire Loop Game Modeling

2D version of the Wire Loop Game

Find a feasible path such as arms could make a full rotation without touching the loop to the wire.

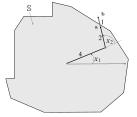


Definitions 2D version of the Wire Loop Game Modeling

2D version of the Wire Loop Game

Here we have :

$$\mathbb{C}_{\mathsf{space}} = \{ (x_1, x_2), \ x_1 \in [0, 2\pi] \text{ and } x_2 \in [0, 2\pi] \}$$
$$\mathbb{C}_{\mathsf{free}} = \{ \mathbf{x} \in [0, 2\pi]^2, \ \mathbf{a} \in \mathbb{S} \text{ and } \mathbf{b} \notin \mathbb{S} \}$$



Definitions 2D version of the Wire Loop Game Modeling

Set Inversion Problem

The problem is summarized with the following set inversion:

$$\mathbb{C}_{\mathsf{free}} = f_{\mathbf{a}}^{-1}\left(\mathbb{S}\right) \cap f_{\mathbf{b}}^{-1}\left(\overline{\mathbb{S}}\right)$$

where $f_{\mathbf{a}}$ (resp. $f_{\mathbf{b}}$) is a non linear function which transforms the point $\mathcal{O}(0,0)^T$ into the **a** (resp. **b**). In our case f_i is :

$$f_{\mathbf{i}}(\mathbf{x}) = 4 \begin{pmatrix} \cos(x_1) \\ \sin(x_1) \end{pmatrix} + l_i \begin{pmatrix} \cos(x_1 + x_2) \\ \sin(x_1 + x_2) \end{pmatrix}$$

with $l_{a} = 2$ and $l_{b} = 3$ and $\mathbf{x} = (x_{1}, x_{2})^{T}$.

Contractor / Separator Geometrical Constraints

Outlines

Tools and Concepts
 Contractor / Separator
 Geometrical Constraints

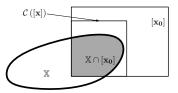
Contractor / Separator Geometrical Constraints

Contractor Definition

Definition

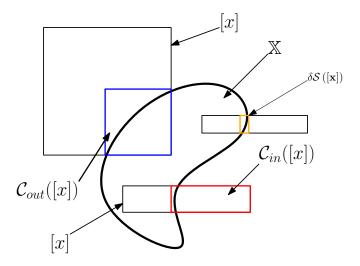
A contractor is an operator from $\mathbb{IR}^n \longrightarrow \mathbb{IR}^m$ associated to a set \mathbb{X} such as:

$$\begin{array}{l} \forall [\mathbf{x}] \in \mathbb{I}\mathbb{R}^n &, \ \mathcal{C}\left([\mathbf{x}]\right) \subset [\mathbf{x}] & (\textit{contractance}) \\ \forall [\mathbf{x}] \in \mathbb{I}\mathbb{R}^n &, \ \mathcal{C}\left([\mathbf{x}]\right) \cap \mathbb{X} = [\mathbf{x}] \cap \mathbb{X} & (\textit{completeness}) \end{array}$$



Contractor / Separator Geometrical Constraints

Inner / Outer Contractor



Contractor / Separator Geometrical Constraints

Seperators

A separator ${\mathcal S}$ associated with the set ${\mathbb X}$ is an application such as:

$$\begin{array}{rccc} \mathcal{S}: & \mathbb{I}\mathbb{R}^n & \longrightarrow & \mathbb{I}\mathbb{R}^m \times \mathbb{I}\mathbb{R}^m \\ & [\mathtt{x}] & \longmapsto & ([\mathtt{x}_{\mathsf{in}}], [\mathtt{x}_{\mathsf{out}}]) \end{array}$$

with following properties:

Contractor / Separator Geometrical Constraints

Operations with separators

The Separator algebra is a direct extension of contractor algebra. With $S_i = \{S_i^{in}, S_i^{out}\}$ we define :

$$\begin{array}{lll} \mathcal{S}_{1} \cap \mathcal{S}_{2} &=& \left\{\mathcal{S}_{1}^{\mathsf{in}} \cup \mathcal{S}_{2}^{\mathsf{o}}, \mathcal{S}_{1}^{\mathsf{out}} \cap \mathcal{S}_{2}^{\mathsf{out}}\right\} & (\mathsf{intersection}) \\ \mathcal{S}_{1} \cup \mathcal{S}_{2} &=& \left\{\mathcal{S}_{1}^{\mathsf{in}} \cap \mathcal{S}_{2}^{\mathsf{in}}, \mathcal{S}_{1}^{\mathsf{out}} \cup \mathcal{S}_{2}^{\mathsf{out}}\right\} & (\mathsf{union}) \\ \mathcal{S}_{1} \backslash \mathcal{S}_{2} &=& \mathcal{S}_{1} \cap \overline{\mathcal{S}_{2}}. & (\mathsf{difference}) \end{array}$$

With $\mathbf{f}: \mathbb{IR}^n \longrightarrow \mathbb{IR}^m$ the transformation of a separator is:

$$\mathbf{f}\left(\mathcal{S}_{1}\right) \;\; \stackrel{\mathsf{def}}{=} \;\; \left\{\mathbf{f}\circ\mathcal{S}_{1}^{\mathsf{in}}\circ\mathbf{f}^{-1}, \mathbf{f}\circ\mathcal{S}_{1}^{\mathsf{out}}\circ\mathbf{f}^{-1}\right\}$$

Contractor / Separator Geometrical Constraints

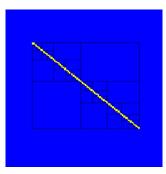
Pylbex Example

Contractor / Separator Geometrical Constraints

Point inside Segment

A polygon P is an union of segments Point on segment verifies:

$$\left\{ \begin{array}{l} \det \left(\mathbf{b} - \mathbf{a}, \mathbf{a} - \mathbf{m} \right) = \mathbf{0} \\ \min \left(\mathbf{a}, \mathbf{b} \right) \leq \mathbf{m} \leq \max \left(\mathbf{a}, \mathbf{b} \right). \end{array} \right.$$

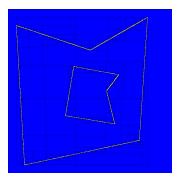


Contractor / Separator Geometrical Constraints

Point on the border of a Polygon

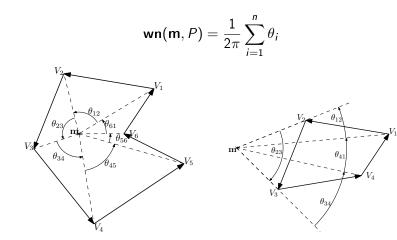
 C_{a_i,b_i} as a contractor for the segment $[a_i,b_i]$, the contractor for $\Delta \mathcal{P}$ is:

$$\mathcal{C}_{\Delta \mathcal{P}} = \bigcup_{i=1}^{N} \mathcal{C}_{a_i,b_i}$$



Contractor / Separator Geometrical Constraints

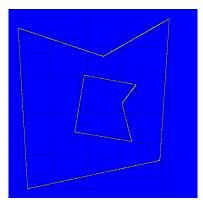
Winding Number

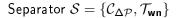


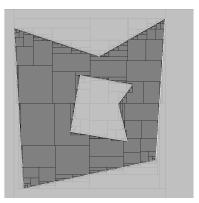
Contractor / Separator Geometrical Constraints

Point Inside a Polygone

We define the separator for the border of P as follows:

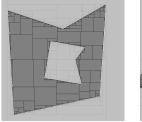




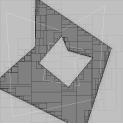


Contractor / Separator Geometrical Constraints

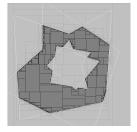
Separator Transformation



S



$$\mathbb{S}_{\mathsf{R}}=\mathsf{Rot}_{rac{\pi}{2}}(\mathbb{S})$$



 $\mathbb{S}_R \cap \mathbb{S}$

©_{free} Space as a Graph Simple Example Cameleon's Algorithm Performances

Outlines

🕕 Problem Statement

2 Tools and Concepts

- 3 Path Planning Algorithms
 - $\bullet \ \mathbb{C}_{\mathsf{free}}$ Space as a Graph
 - Simple Example
 - Cameleon's Algorithm
 - Performances

C_{free} Space as a Graph Simple Example Cameleon's Algorithm Performances

$\mathbb{C}_{\mathsf{free}}$ Space as a Graph

Using a paver the $\mathbb{C}_{\mathsf{free}}$ space :

$$\mathbb{C}_{\mathsf{free}} = \mathit{f}_{\mathsf{a}}^{-1}\left(\mathbb{S}
ight) \cap \mathit{f}_{\mathsf{b}}^{-1}\left(\overline{\mathbb{S}}
ight)$$

can be enclose between two sets :

$$\mathbb{C}^- \subset \mathbb{C}_{\mathsf{free}} \subset \mathbb{C}^+$$

A graph is build while bisecting and contracting boxes:

- node represents box
- when boxes have over-lapping face, an edge joints vertices.

C_{free} Space as a Graph Simple Example Cameleon's Algorithm Performances

Cameleon's algorithm (L. Jaulin 2001)

If the goal is to find a solution, the cameleon's algorithm can be used to speed up the computation.

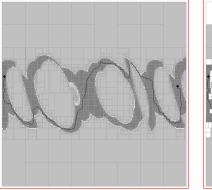
Cameleon's Algorithm

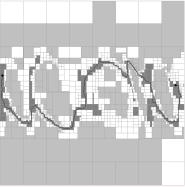
- Find a path through \mathbb{C}^+ from x_0 to x_{goal}
- \bullet Bisect and separate all boxes which belong to $\Delta \mathbb{C}_{\mathsf{free}}$
- ullet Repeat until the path is completely included in \mathbb{C}^-

The cost of a bisection is huge compare to Shortest Path Algorithm. Very efficient when no solution exist.

C_{free} Space as a Graph Simple Example Cameleon's Algorithm Performances

Results





C_{free} Space as a Graph Simple Example Cameleon's Algorithm Performances

Performances

Algorithm	time (ms)	number of bisection	graph's size	epsilon
SIVIA	15490	33703	29304	0.01
SIVIA	6183	7169	6137	0.05
Cameleon	1151	1266	1438	0.01

Conclusion

The wire loop game example:

- illustrates the possibility of doing path planning with intervals
- demonstrates how simple it could be using pylbex/Python.

However it needs to be compared with existing methods on higher dimensional space.

Questions ?

