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Introduction

Interval analysis

Interval analysis represents an e�cient approach for reliable computation.

Manipulated elements are boxes.

Safe bounds are computed.

With e�cient libraries to manipulate non-linear expressions.
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Introduction

Abstract interpretation

Abstract interpretation is a formal framework (initially) designed for static
program analysis.

Manipulated elements are in (any) abstract domains.

Main goal is the safe approximations of �xpoints.

E�cient libraries on numerical abstract domains, mainly for linear
expressions.
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Introduction

Relationships

Boxes are a well-known numerical abstract domain (Cousot & Cousot,
1976), but is considered to be too imprecise.

More precision → use more precise domains.

Poor handling of non-linear expressions: not the main issue.

Existing work to replace intervals by octagons on constraint programming
[Pelleau, Truchet, Miné]:

relies either on interval libraries (IBEX) with �rotated� constraints (→
lost of precision);

or on abstract interpretation-based libraries (Apron) (→ problem in
handling non-linear expressions).
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Abstract interpretation Closure operators and Moore families

Closure operators

In interval analyses, sets of Rn are approximated by their interval hulls.
The approximation operation is therefore the interval hull operator �,
which is a closure operator:

De�nition

A closure operator ρ : ℘ (Rn)→ ℘ (Rn) is:

1 monotonic (if X ⊆ Y , then ρ(X ) ⊆ ρ(Y ))

2 extensive (ρ(X ) ⊇ X )

3 and idempotent (ρ(ρ(X )) = ρ(X ))

Extensivity ensures overapproximation. Monotonicity and idempotence
guarantees some kind of optimality.
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Abstract interpretation Closure operators and Moore families

Moore families

The image of a closure operator is closed by (in�nite) intersection: it is a
Moore family. Conversely, any Moore family induces a closure operator.

Theorem

Let An a Moore family. The operator ρ de�ned as:

ρ(X ) = ∩{S ∈ An | S ⊇ X}

is a closure operator, whose image is An.

Closure operators/Moore families represent
classical abstractions:

each �concrete� subset S has a best
abstraction;

each abstract element ρ(X ) has a direct
concrete value.
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Abstract interpretation Examples

Generic example: linear constraints

On Rn, linear constraints
∑

i aixi ≤ c represents (closed) half-spaces.
Convex polyhedra are �nite intersection of closed half-space.

5x1 + 2x2 ≤ 10

−x1 + 2x2 ≤ 10

−x1 − 4x2 ≤ −2

A polyhedron can be represented in
matrix form, e.g.: 5 2
−1 2
−1 −4

( x1
x2

)
≤

 10
10
−2


Domain closed by �nite intersection, but not a Moore family. Hence no
closure operator, no best abstraction.
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Abstract interpretation Examples

Moore closure

Adding in�nite intersection gives the set of closed convex sets.

ρ

Closure operator: closed convex hull.

Not usable in practice: no memory representation, no manipulation.

Hence we consider subsets of polyhedra which could be Moore families.
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Abstract interpretation Examples

Boxes

The set of boxes is a Moore family, where the constraints are restricted to
Cartesian products of intervals.

ρ


1 0
−1 0
0 1
0 −1

( x1
x2

)
≤


max x1
−min x1
max x2
−min x2



Boxes are non-relational: rela-
tionships between variables are for-
gotten.
Advantages: operations (intersec-
tion, convex union, ...) are fast
(mostly linear).
Drawback: non-relational opera-
tions are imprecise.
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Abstract interpretation Examples

Octagons[Mine, 2001]
Octagons is the most well-known example of (weakly) relational domain,
with relations of the form: ±xi ± xj ≤ c .

ρ



1 0
−1 0
0 1
0 −1
1 1
−1 −1
−1 1
1 −1


(

x1
x2

)
≤



c1
c−1
c2
c−2
c1,2

c−1,−2
c−1,2
c1,−2



Number of constraints for dim.
n: 2n2.
Advantages: more precise than
boxes.
Drawbacks: maybe too many
constraints. Slower than boxes.
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Abstract interpretation Examples

Template polyhedral domain[Sankaranarayanan et al.,2005]

Domains with �xed constraint matrix are called template polyhedral

domains.
Example with:

T =


−1 0
−1 3
4 3
1 −4
−2 −3


ρ

Advantages: possible to customize the template.
Drawbacks: in general, linear programming must be used to compute
convex union, intersection.
Boxes and octagons are, of course, particular cases.
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Abstract interpretation Examples

Elements of polyhedral domains

In general, an abstract element has two canonical (constraint-based)
representations:

1 A minimal representation where only useful constraints are kept.

2 A closed representation where all constraints are associated to their
minimum (needed for emptiness checking, ∪).

−x1 ≤ 1
−x2 ≤ 2

x1 −x2 ≤ 3
x1 +x2 ≤ 3
x1 ≤ 3

−x1 −x2 ≤ 3
x2 ≤ 3

x1 −x2 ≤ 3
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Abstract interpretation Examples

Representation and operations

Operation Requires closed form Result in closed form

Emptiness test yes
Inclusion partial
Union yes yes
Intersection no no

Other operations often sometimes
Computing the closure of an abstract element may be costly (cubic
algorithms for octagons, using LP in general). Thus it must be computed
only when needed.
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Contractors De�nition
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Contractors De�nition

Contractors

A contractor[Chabert & Jaulin] C on An is:

monotonic

and reductive.

To link contractors with set membership:

1 When An contains all the singletons:

set(C) = {a ∈ Σ | C ({a}) = {a}}

2 In the general case, set consistency S ∼ C is:

S ∼ C ⇐⇒ ∀X ∈ An, S ∩ X = S ∩ C(X )

Obviously, if set(C) is de�ned:

S ∼ C ⇐⇒ S ⊆ set(C)
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Contractors Optimal contractor

Optimal contractors

Let's pose IS : X 7→ S ∩ X .

Theorem

Let ρ a closure operator, An its image, and C a contractor on An. then

S ∼ C ⇐⇒ ∀X ∈ An, C(X ) ⊇ ρ(S ∩ X )

Furthermore, on An

ρ ◦ IS = ρ ◦ IS ◦ ρ

is a contractor, the minimal contractor consistent with S .
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Contractors Optimal contractor

Best abstract transformer

De�nition

Let ρ a closure operator on ℘ (Rn), and φ a monotonic operator on ℘ (Rn).
Then φ? = ρ ◦ φ ◦ ρ is the best abstraction of φ by ρ.

From now, we note, for all S ⊆ Rn:

C?S = ρ ◦ IS ◦ ρ

In abstract interpretation-based static analysis, this operation is used for
tests.
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Constructing optimal contractors Algebra of contractors
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Constructing optimal contractors Algebra of contractors

Algebra of contractors

Operations on contractors:

1 Union: (C1 ∪ C2)(x) = ρ(C1(ρ(x)) ∪ C2(ρ(x))).

2 Intersection: (C1 ∩ C2)(ρ(x)) = C1(ρ(x)) ∩ C2(ρ(x))

3 Composition: (C1 ◦ C2)(ρ(x)) = C1(C2(ρ(x)))

If S1 ∼ CS1 and S2 ∼ CS2 :

S1 ∪ S2 ∼ CS1 ∪ CS2
S1 ∩ S2 ∼ CS1 ∩ CS2
S1 ∩ S2 ∼ CS1 ◦ CS2

However, these operations may not be optimal...
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Constructing optimal contractors Algebra of contractors

Optimal abstraction

Let φ1 and φ2 two functions on ℘ (Rn):

φ?1 ◦ φ
?
2 = ρ ◦ φ1 ◦ ρ ◦ ρ ◦ φ2 ◦ ρ

= ρ ◦ φ1 ◦ ρ ◦ φ2 ◦ ρ

⊇ ρ ◦ φ1 ◦ φ2 ◦ ρ

= (φ1 ◦ φ2)?

How to ensure φ?1 ◦ φ
?
2 = (φ1 ◦ φ2)??
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Constructing optimal contractors Completeness

Completeness

De�nition

1 φ is backward-complete w.r.t. ρ if:

ρ ◦ φ ◦ ρ = ρ ◦ φ

2 φ is forward-complete w.r.t. ρ if:

ρ ◦ φ ◦ ρ = φ ◦ ρ

The property φ?1 ◦ φ
?
2 = (φ1 ◦ φ2)? holds if:

1 φ1 is forward-complete w.r.t. ρ;

2 or φ2 is backward-complete w.r.t. ρ.
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Constructing optimal contractors Completeness

Completeness of union
Good example of backward-complete operator:

ρ(A ∪ B) = ρ(ρ(A) ∪ ρ(B))

A

B

A

B

=

ρ(A ∪ B)

ρ

ρ(A)

ρ(B)

ρ(A)

ρ(B)

As a result:
φ?S1∪S2 = ρ(φ?S1 ∪ φ

?
S2

) = φ?S1 ∪
? φ?S2
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Constructing optimal contractors Completeness

Forward completeness

A function φ is forward-complete w.r.t. ρ i� for all A ∈ An, φ(A) ∈ An. If
φ = IS , since Rn ∈ An:

S ∩ Rn = S ∈ An

Theorem

The function IS : x 7→ x ∩ S is forward-complete w.r.t. ρ i� S ∈ An.

As a result, all intersections with an element of An can be applied once at
the beginning of the computation:

S2 ∈ An =⇒ φ?S1∩S2 = φ?S1 ◦ φ
?
S2
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Constructing optimal contractors Completeness

Application: covering the set
Assuming the construction of minimal contractors is easier for small sets:

1 We decompose the set S into a covering set of sets (Si ) where each
Si = S ∩ Xi with Xi ∈ An.

2 Each computation of C ?Si
(X ) starts by an intersection with Xi .

3 The union of the result is optimal.

(a) (c)(b)

A

B
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Constructing optimal contractors Set transformation

Set transformation

Let f : Rn → Rn.
We de�ne:

f ? = ρ ◦ f ◦ ρ

and
(f −1)? = ρ ◦ f −1 ◦ ρ

Then if S ∼ CS :
f (S) ∼ f ? ◦ CS ◦ (f −1)? ∩ρ

Note that f ? ◦ CS ◦ (f −1)? may not be a contractor (not reductive on An).
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Constructing optimal contractors Set transformation

Set transformation (2)

When is f ? ◦ CS ◦ (f −1)? a contractor?
Su�cient condition: when f ? ◦ (f −1)? = ρ ◦ f ◦ ρ ◦ f −1 ◦ ρ is a contractor.
Since f ◦ f −1 is reductive:

1 when f is backward-complete;

2 or when f −1 is forward-complete.

Theorem

Both conditions are equivalent to

f −1(X ) ∈ An for all X ∈ An.

And in this case, the transformation is optimal:

C?f (S) = f ? ◦ C?S ◦ (f −1)?
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Constructing optimal contractors Set transformation

Set transformation (3)

Furthermore, if f is bijective and f (X ) ∈ An for all X :

C?f (S) = f ◦ C?S ◦ f −1

Applications:

1 for all template polyhedral domains, translations and positive
homotheties;

2 for octagons, any permutation and �negations� of dimensions;

3 for boxes, directional scalings.
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Constructing optimal contractors Set transformation

Application: optimal contractor for a disc

We can construct the optimal contractor for a disc from the contractor for
1/8th of the disc.
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Constructing optimal contractors Intersections

Intersections

Intersection of contractors is known to be non-optimal. Composition is
better but still not optimal. Repeated composition (local iterations) may
be better but (still) not optimal.

A

B

ρ(B)

ρ(A) ∩ ρ(B)

ρ(A ∩ B)

ρ(A)

Heuristics: push intersections at the lowest level and the union at the
higher lever (use De Morgan's laws).
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Constructing optimal contractors Intersections

Intersections: speci�c result
For octagons (or other linear-based convex domains):

Theorem

If two sets S1 and S2 are such that for all x ∈ S1 and y ∈ S2,

[x , y ] ∩ (S1 ∩ S2) 6= ∅, then

C ?S1 ∩ C ?S2 = C ?S1∩S2

z

S2

x

y

S1 ∩ S2

S1

for all V , we cannot have

Vx > Vz and Vy > Vz

Application: S = f −1([a, b]), f is con-
tinuous, and S1 = f −1(] − ∞, b]),
S2 = f −1([a,+∞]).
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Paver Bisection and size

Bisection and size

To implement paving algorithm, we need a splitting (bisection) and a size
operator:

1 The bisection operator bisect : An → An × An must satisfy:

∀x ∈ An, (x1, x2) = bisect(x)→ x1 ∪ x2 = x

2 The size operator size : An → R+ ∪ {−∞,+∞} must satisfy:
I size(x) ≤ 0 i� x is empty of a singleton
I size is monotonic.
I if X is bounded, then size(X ) is �nite.

Furthermore, the termination of the algorithm can be ensured by the
existence of ε ∈ [0, 1[ such that:

(x1, x2) = bisect(x) ⇒ size(xi ) < ε.size(x)
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Paver Bisection and size

Bisection operation

We consider a template polyhedral domain with �interval� templates
(constraints of the form mj ≤ Aj .x ≤ Mj).
Empirically[Pelleau, Truchet], an e�cient operator (at least for octagons)
�cuts� the element along the maximum dimension of the �smallest� (w.r.t.
max dimension) enclosing (rotated) box.
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Paver Bisection and size

Size of abstract elements
The maximum dimension of the smallest enclosing box is a good candidate,
but it may not satisfy the simple termination condition (e.g. with a square).
Other choice: sum of all dimensions of all enclosing boxes. Very coarse
bound (dimension n):

size(Xi ) ≤
1

2
√
2n2

size(X )

X1

X2

size(X1) ' 0.75size(X )

size(X2) ' 0.81size(X )
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Paver Implementation

Implementation of octagons

Implementation of octagons:

Closure not optimised, but (assumed to be) correct.

Only continuous variables.

Possibility of adding variables or removing variables (projection
operators).

Indi�erent use of xi and −xi (for contractors operators)
Optimal contractors for:

I sum: xi + xj + xk ≤ 0
I directional scaling: axi + xj ≤ 0
I square operator: xi ≤ kx2j (of ≥)
I bounded distance:

√
x2i + x2j ≤ k (or ≥)

I sinus operator: sin(xi ) ≤ xj (or ≥)
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Paver Implementation

Paver

We use separators[Jaulin & Desrochers] for our algorithm: given a set S ,
our separator S combines a contractor for S and a contractor for S .
Algorithm:

1 contract with respect to S , then to S ;

2 stop if abstract element is too small;

3 otherwise, bisect the abstract element and recursively execute the
algorithm on the resulting elements.
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Results Interest of optimal contractor

First example: ring
Initial box: [−1.5, 1.5]× [−1.5, 1.5]. Representation of
0.5 ≤

√
x2 + y2 ≤ 1. Stop when size < 0.03.

Optimal contractor Using 1
4
≤ x2 + y2 ≤ 1

2073 octagons 2109 octagons
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Results Interest of optimal contractor

Why 1
4
≤ x2 + y 2 ≤ 1 not optimal

Let's consider x ∈ [0.6, 0.8], y ∈ [0.6, 0.8] and x2 + y2 ≤ 1.

Optimal result: no change except x + y ≤
√
2 .

With expression computation:
1 Consider x2 = x2. Result: x2 ∈ [0.36, 0.64] and x − x2 ∈ [0.16, 0.24]

(optimal contraction). Same result with y2 = y2.
2 Closure with x2 + y2 ≤ 1:

F ⇒ x + y2 ≤ 1.24
F ⇒ x + y ≤ 1.48

Successive iterations do not change the result.

Not optimal and slower, but at least there is something, but...
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Results Interest of optimal contractor

Just an homothety

Let's consider x ∈ [6, 8], y ∈ [6, 8] and x2 + y2 ≤ 100.

Optimal result: x + y ≤ 10
√
2 ok

With expression computation:
1 Consider x2 = x2. Result: x2 ∈ [36, 64] but x − x2 ∈ [−56,−30]

(optimal contraction). Same result with y2 = y2.
2 Closure with x2 + y2 ≤ 100:

F ⇒ x + y2 ≤ 70 redundant!

F ⇒ x + y ≤ 40 redundant!

No improvement → no successive iterations.

Octagons with intermediate (�polynomial�) variables very sensible to
scaling.
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Results Interest of optimal contractor

And so...

Optimal contractor Using 25 ≤ x2 + y2 ≤ 100
no change 2457 octagons (+350)

Boxes are predominant in the second case: the bene�t of octagons is lost.
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Results Intersection

Intersection of parabols
This example illustrates, with the intersection of parabols,
the non-completeness of intersection (and how local iterations can reduce it).

Without local iterations With local iterations
However, the number of octagons is the same for both representations.
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Results Intersection

Relaxed intersection
Is S1, . . . , Sn are subsets of S , the k-relaxed intersection of (Si ) is the set
of points in (at least) n − k sets Si .
Optimal contractor hard to compute, but using projection enables to
compute a fast and sound approximation.

S1

S2

S3

Si ∩ Sj

S1 ∩ S2 ∩ S3

(optimal)

(approximated)

relaxed intersection

Iterating the algorithm gives better results.
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Results Intersection

Relaxed intersection: example

c1 = [1, 3], r1 = [1, 2]
c2 = [3, 1], r2 = [2, 3]
c3 = [−1,−1], r2 = [3, 4]
Optimal for k = 2.
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Conclusion

Discussion and conclusion

Interest to adapt the domain to the (local) form of the set.

1 Octagons more �exible than boxes.

2 But useful only if the contractors are precise enough.

3 Two many available linear forms?

4 Using specialised linear templates? How? At which cost?

5 Non-linear templates? Which one? Which operations?

Extend to higher dimensions?

1 More costly.

2 Splitting less usable.

3 Optimal contractors hard to design (e.g. x .y = z or x2 + y2 = z2).
Still need to work on arithmetic expressions.
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Conclusion

Thank you
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