
INF 560
Calcul Parallèle et Distribué

Cours 9

Eric Goubault

CEA, LIST & Ecole Polytechnique

17 mars 2014

E. Goubault

Aim of the talk

Can we implement some functions on some distributed
architecture, even if there are some crashes?

Example: consensus on an asynchronous system

NO: FLP’85!

There is a nice “geometrization” of the problem

We will solve easy problems to make you understand

But it has also solved some new problems!

... and this is an active research area!

E. Goubault

Decision tasks

Can we implement a function...given an “architecture” (faults?
shared memory / message passing, synchronous /
semi-synchronous / asynchronous etc.)?
Each problem is given by:

For each processor P0, . . . ,Pn−1 a set of possible initial values
(in a domain K = N or R etc.), i.e. a subset I of Kn: “input”

Similarly, we are given a set of possible final values J in Kn:
“output”

Finally, we are given a map, the “decision map”δ : I → ℘(J)
associating to each possible initial value, the set of authorized
output values

E. Goubault

Example: consensus

E. Goubault

Even if...

5 7

7 7

11

blah blah blah...

Before

After

arghhh...

E. Goubault

Example

K = N, I = Nn,

J = {(n, n, . . . , n) | n ∈ N},

δ(x0, x1, . . . , xn−1) =

{(x0, x0, . . . , x0),
(x1, x1, . . . , x1),

. . . ,
(xn−1, xn−1, . . . , xn−1)}

E. Goubault

Main idea

The input set and output sets have a geometrical structure
(simplicial set)

According to the architecture type, not all decision maps can
be programmed

There are geometrical constraints on the decision maps

Very much like mainstream results in geometry, such as
Brouwer’s fixed point theorem...

E. Goubault

Road map

Input and output sets as simplicial sets (examples)

Some basic algebraic topology

The dynamics as sets of simplicial sets (protocol simplicial set,
or complex)

Some results and references

E. Goubault

Simplicial model of states

(local state)

E. Goubault

Simplicial model of states

(compound state)

E. Goubault

Initial states for (binary) consensus

Here, 2 processors, i.e. dimension 2:

E. Goubault

Final states for consensus

E. Goubault

Final states for pseudo-consensus

E. Goubault

Example: Consensus specification

E. Goubault

More generally: Simplicial model of states

(More generally [than a graph]: global state)

E. Goubault

Example

Simplicial set=set of global states (with some common local states)

E. Goubault

Back to protocols

Finite program

Starts with input values

Fixed number of rounds

Halts with decision value

The full-information protocol is the one where the local value is the
full history of communications

E. Goubault

Generic protocol

s = empty ;
f o r (i =0; i<r ; i++) {

b roadca s t messages ;
s = s + messages r e c e i v e d ;

}
r e t u r n d e l t a (s) ;

E. Goubault

Example

Synchronous message passing; notion of round:

at each round, every processor broadcasts its own value to the
others

in any order

then every processor receives the broadcasted values and
computes a new local value

E. Goubault

Failure models

crash (fail-stop),

byzantine etc.

In what follows: crash failures only; can happen at any point of the
broadcast, which can be done in any random order.

E. Goubault

Protocol complex

Each protocol on some architecture defines:

a simplicial set (for all rounds r):

vertices: sequence of messages received at a given round r
simplices: compound states at round r

This is an operator on an input simplex

A choice of model of computation entails some geometrical
properties of the protocol complex

E. Goubault

Synchronous protocol complex

E. Goubault

Explanation

In the synchronous model, at round 1:

no process has failed, hence everybody has received the
message of the others (hence the central segment as global
state)

one process has failed, hence two points as possible states

E. Goubault

Synchronous protocol complex

(wait-free - if up to 1 failure, forget the isolated points!)

E. Goubault

Synchronous protocol complex - round 2

E. Goubault

Synchronous protocol complex

E. Goubault

Decision map

The delta in the generic protocol is, mathematically speaking:

is δ : P → O (protocol to output complex)

is a simplicial map (basically a function on vertices, extended
on convex hulls)

respects specification relation ∆, i.e. for all x ∈ I , for all
y ∈ P(I), x∆(δ(y))

Proof strategy for impossibility/complexity results: find
“topological obstruction” to the δ simplicial map (from protocol
complex of any round/round up to k)

E. Goubault

Main property

E. Goubault

Easy application: consensus again...

Binary consensus between 3 processes (synchronous
message-passing model),

Input complex is composed of 8 triangles: (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1),

Input complex is homeomorphic to a sphere (one connected
component); the first four determine a“north”hemisphere, the
last four create a “south” hemisphere

Output complex is composed of 2 triangles: (0, 0, 0) and
(1, 1, 1) (hence two connected components),

Here: just one round.

E. Goubault

Easy application

E. Goubault

Easy application

E. Goubault

Easy application - for at most n − 2 failures
only!

E. Goubault

More generally

In any such (n − 2)-round protocol complex, the all-zero
subcomplex and the all-one subcomplex are connected

Corollary: no (n − 2)-round consensus protocol

Easy and not new... but gives the idea...

E. Goubault

Even more generally...

Synchronous message-passing model with r rounds, and at
most k failures

P(Sn−1) is (n − rk − 2)-connected: implies (n − 1)-round
consensus bound (for k = 1).

E. Goubault

Shared-memory model

E. Goubault

Asynchronous wait-free protocols

n processes share memory (unbounded size), partitioned: one
private chunk for each process

Each process can:

atomically write to its location (update)
atomically scan (read) all of the memory into its local memory

Equivalent to the usual read/write models

We want wait-free protocols, i.e. robust to up to n − 1 crash
failures

E. Goubault

One-round protocol simplicial set (2D)

E. Goubault

Semantics

Dynamics (and its cut up to time r=protocol complex):

E. Goubault

One-round protocol simplicial set (3D)

E. Goubault

Theorem

Wait-free read/write protocol complexes are:

(n − 1)-connected (no holes in any dimension)
no matter how long the protocol runs

Application: k-set agreement

E. Goubault

k-set agreement task

Generalization of consensus; processes must end up with at most k
different values (taken from the initial values):

E. Goubault

Output simplicial set (n = 3, k = 2)

3 spheres glued together minus the simplex formed of all 3 values:
not 1-connected

E. Goubault

Sketch of a proof

A tool from algebraic topology (Sperner’s lemma):

Subdivide a simplex

Give each “corner” a distinct “color”

Give each vertex a corner color

Giver interior vertices any corner color

E. Goubault

Sperner’s lemma

⇒ At least one simplex has all colors

E. Goubault

Input and protocol simplicial set

Each process colored with distinct input

Each vertex colored with decision

E. Goubault

Protocol complex

For a one-process execution: same vertex and same color
(cannot decide anything else)

For a two-process execution:

the protocol complex is connected
all vertices are of one of the two colors

E. Goubault

Protocol complex - for all 2 process
executions

E. Goubault

Full protocol complex

Because complex is simply-connected

We can “fill-in” edge-paths

Vertices colored with input colors

E. Goubault

End of proof

Apply Sperner’s Lemma:

Some simplex has all three colors

That simplex is a protocol execution that decides three values!

E. Goubault

Converse

In fact, even more:

A task has a wait-free read/write protocol if and only if there
exists a simplicial map µ:

from subdivided input complex
to output complex
that respects ∆

E. Goubault

Principle of the proof

⇒

Protocol complex is (n − 1)-connected (using Mayer-Vietoris)

Exploit connectivity to

embed subdivided input complex into protocol complex
map protocol complex to output complex
just like k-set agreement proof

E. Goubault

Principle of the proof

⇐

We can reduce any task to “simplex agreement” [using the
participating set algorithm of Borowsky and Gafni 1993]

Start out at corners of subdivided simplex

Must rendez-vous on vertices of single simplex in subdivision

E. Goubault

Example

Subdivision of a segment into three segments

E. Goubault

Protocol

P = update; P ′ = update;
scan; scan;
case (u, v) of case (u, v) of
(x , y ′) : u = x ′; update; [] (x , y ′) : v = y ; update; []
default : update default : update

E. Goubault

Proof

Using the semantics, we have the following three possible
1-schedules (up to homotopy), since the only possible interactions
are between the scan and update statements,

(i) Suppose the scan operation of P is completed before the
update operation of P ′ is started: P does not know y so it
chooses to write x . Prog ends up with ((P, x), (P ′, y)).

(ii) Symmetric case: Prog ends up with ((P, x ′), (P ′, y ′)).

(iii) The scan operation of P is after the update of P ′ and the
scan of P ′ is after the update of P. Prog ends up with
((P, x ′), (P ′, y)).

E. Goubault

Other communication primitives

Real multiprocessors provide additional atomic synchronization:

test&set

fetch&add

compare&swap

queues...

Other protocol complexes...other results

E. Goubault

Example: test&set protocol complex

E. Goubault

Test&Set

Wait-free Test&Set protocol complexes

are all (n − 3)-connected
more powerful than read/write (2-process consensus)
but still no 3-process consensus

Similar results hold for other synchronization operations

E. Goubault

References and main results

Begins with Fisher-Lynch-Patterson (“FLP”) in 1985: there
exists a simple task that cannot be solved in a (simple)
message-passing system with at most one potential crash

Created a very active research area, see for instance Nancy
Lynch’s book “Distributed Algorithms” (1996)

E. Goubault

References and main results

Later developed by Biran-Moran-Zaks in PoDC’88:
characterization of the tasks that can be solved by a (simple)
message-passing system in the presence of one failure

The argument uses a “similarity chain”, which could be seen as
a 1-dimensional version of what we just developed

Revealed to be difficult to extend to models with more failures

E. Goubault

References and main results

Then, in PoDC’1993, independently,

Borowsky-Gafni, Saks-Zaharoglou and Herlihy-Shavit derived
lower bounds for the k-set agreement problem of Chaudhuri
(proposed in 1990)
[at least b fk c+ 1 steps in synchronous model]

Saks-Zaharoglou and Herlihy-Shavit exploited topological
properties to derive this lower bound

E. Goubault

References and main results

Renaming: Attiya-BarNoy-Dolev-Peleg JACM 1990,

The (n + 1,K)-renaming task starts with n + 1 processes
being given a unique input name in 0, . . . ,N and are required
to choose unique output name in 0, . . . ,K with n ≤ K < N
(independently of a “process id” - i.e. “anonymous renaming”
in fact).

Showed that (message-passing model) there is a wait-free
solution for K ≥ 2n + 1, none when K ≤ n + 2

Using these geometrical techniques: it has been shown that
there is no renaming when K ≤ 2n

Herlihy and Shavit STOC’93: same result holds for the
wait-free asynchronous model (using homology explicitely).

E. Goubault

References and main results

Later results, on the same line, include:

Full characterization of wait-free asynchronous tasks with
atomic read/writes on registers, see “The topological structure
of asynchronous computability”, M. Herlihy and N. Shavit, J.
of the ACM, jan. 2000

Use of algebraic spans in “Algebraic Spans”, M. Herlihy and S.
Rajsbaum as a unified methods for renaming, k-set agreement
problems etc.

Use of pseudo-spheres...

E. Goubault

References and research directions

Consensus numbers (see M. Herlihy and then E. Ruppert
SIAM J. Comput. vol 30, No 4, 2000 for instance).
Importance based on the remark (M. Herlihy): an object
which solves the consensus problem for n processes can
simulate in a wait-free manner (together with read/write
registers) any object for n or fewer processes.

Example: R/W registers have consensus number 1, test&set,
queues, stacks, fetch and add have consensus number 2 etc.

Example: There is no wait-free (n + 1, 2j)-renaming protocol
if processes share a read/write memory and
(n + 1, j)-consensus objects.

E. Goubault

References and research directions

Afek et Strup: characterization of the effect of the register
size in the power of synchronization primitives

Characterization of complexity and not only computability, see
for instance “Towards a Topological Characterization of
Asynchronous Complexity”, G. Hoest and N. Shavit

Links with (geometric) semantics [potential for more realistic
models of distributed systems?], for instance my paper in
CAAP’97 “Optimal Implementation of Wait-Free Binary
Relations” ?

Extension of this model for randomized algorithms etc.?

E. Goubault

