Parallélisme

Cours 7 - Algorithmique sur anneau de processeurs

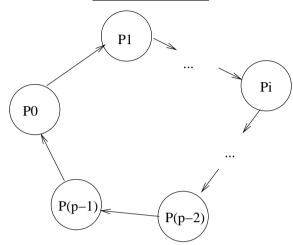
ERIC GOUBAULT
COMMISSARIAT À L'ENERGIE ATOMIQUE & CHAIRE ECOLE
POLYTECHNIQUE/THALÈS
SACLAY

Le 2 mars 2011

Algorithmique sur anneau de processeurs

- Macro-communications sur un anneau
- Produit matrice-vecteur
- Factorisation LU

ARCHITECTURE



Architecture

- $\bullet \ p$ processeurs en anneau
- chacun a accès à:
 - son numéro d'ordre (entre 0 et p-1), par $my_num()$
 - nombre total de processeur: $\mathtt{tot_proc_num}~(=p)$

Eric Goubault 2 mars 2011

FONCTIONNEMENT

Mode SPMD:

- tous les processeurs exécutent le même code,
- ils calculent tous dans leur mémoire locale,
- ils peuvent envoyer un message au processeur de numéro my_num()+1[p] par send(adr,L) avec,
 - adr, adresse de la première valeur dans la mémoire locale de l'expéditeur
 - L la longueur du message
- ils peuvent recevoir un message de my_num()-1[p] par receive(adr,L)

On doit s'arranger pour qu'à tout send corresponde un receive.

SÉMANTIQUE

Plusieurs hypothèses possibles:

- send et receive bloquants (OCCAM etc.)
- plus classiquement send non bloquant mais receive bloquant (mode par défaut en PVM, MPI)
- plus moderne: aucun bloquant (trois threads en fait: 1 pour calcul, 1 pour send, 1 pour receive)

Modélisation du coût d'une communication

Difficile en général: ici envoyer/recevoir un message de longueur L (au voisin immédiat) coûtera:

$$\beta + L\tau$$

où:

- β est le coût d'initialisation (latence)
- τ (débit) mesure la vitesse de transmission en régime permanent D'où envoyer/recevoir un message de longueur L de my_num()+/-q coûte $q(\beta + L\tau)$.

Problème élémentaire: la diffusion

- \bullet C'est l'envoi par un P_k d'un message de longueur L (stocké à l'adresse adr) à tous les autres processeurs:
- Implémenté de façon efficace dans la plupart des librairies de communications (PVM, MPI etc.).

Eric Goubault

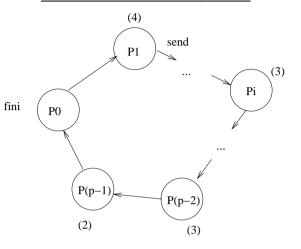
6

3

IMPLÉMENTATION (RECEIVE bloquant)

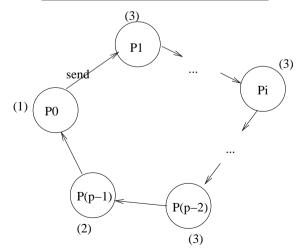
```
broadcast(k,adr,L) { // emetteur initial=k
    q = my_num();
    p = tot_proc_num();
    if (q == k)
        (1) send(adr,L);
    else
        if (q == k-1 mod p)
            (2) receive(adr,L);
        else {
            (3) receive(adr,L);
            (4) send(adr,L);
        }
}
```

Exécution - Temps $\beta + L \tau$

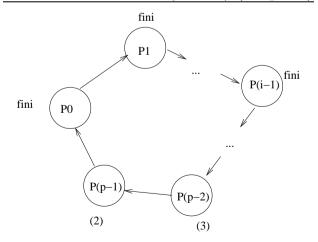


11

EXÉCUTION - TEMPS 0 ET K=0

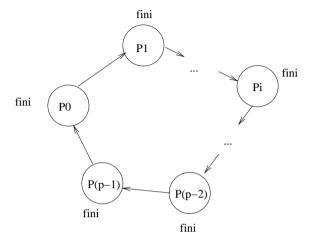


Exécution - Temps $i(\beta + L\tau)$ (i < p-1)



Eric Goubault 12 2 mars 2011

Exécution - Temps $(p-1)(\beta+L\tau)$



13

Diffusion personnalisée

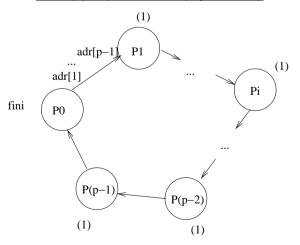
- send non-bloquant, receive bloquant
- ullet envoi par P_k d'un message différent à tous les processeurs (en adr[q] dans P_k pour P_q)
- à la fin chaque processeur a son message à la location adr
- opère en pipeline: recouvrement entre les différentes communications!

PROGRAMME

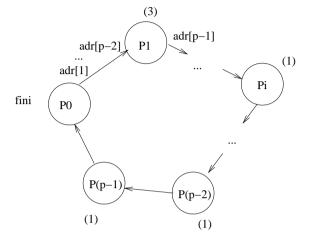
```
scatter(k,adr,L) {
    q = my_num();
    p = tot_proc_num();
    if (q == k) {
        adr = adr[k];
        for (i=1;i<p;i=i+1)
            send(adr[k-i mod p],L); }
    else
        (1) receive(adr,L);
    for (i=1;i<k-q mod p;i = i+1) {
        (2) send(adr,L);
        (3) receive(temp,L);
        adr = temp; } }</pre>
```

15

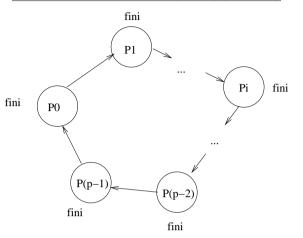
EXÉCUTION - TEMPS 0 ET K=0



Exécution - temps $\beta + L\tau$

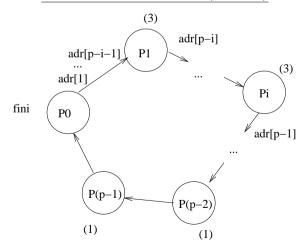


EXÉCUTION - TEMPS $(p-1)(\beta+L\tau)$



1

EXÉCUTION - TEMPS $i(\beta + L\tau)$



ECHANGE TOTAL

- ullet Chaque processeur k veut envoyer un message à tous les autres
- Au départ chaque processeur dispose de son message à envoyer à tous les autres à la location my_adr
- A la fin, tous ont un tableau (le même) adr[] tel que adr[q] contient le message envoyé par le processeur q

Peut se faire aussi en $(p-1)(\beta+L\tau).$ De même pour l'échange total personnalisé

Eric Goubault 18

Programme

```
all-to-all(my_adr,adr,L) {
   q = my_num();
   p = tot_proc_num();
   adr[q] == my_adr;
   for (i=1;i<p;i++) {
      send(adr[q-i+1 mod p],L);
      receive(adr[q-i mod p],L);
   }
}</pre>
```

Diffusion pipelinée

Les temps d'une diffusion simple et d'une diffusion personnalisée sont les mêmes; peut-on améliorer le temps de la diffusion simple en utilisant les idées de la diffusion personnalisée?

- ullet tronçonner le message à envoyer en r morceaux (r divise L)
- ullet l'émetteur envoie successivement les r morceaux, avec recouvrement partiel des communications
- au début ces morceaux de messages sont dans adr[1],...,adr[r] du processeur k

22

PROGRAMME

```
broadcast(k,adr,L) {
    q = my_num();
    p = tot_proc_num();
    if (q == k)
        for (i=1;i<=r;i++) send(adr[i],L/r);
    else
        if (q == k-1 mod p)
            for (i=1;i<=r;i++) receive(adr[i],L/r);
        else {
            receive(adr[1],L/r);
            for (i=1;i<r;i++) {
                 send(adr[i],L/r);
                 receive(adr[i+1],L/r); } }</pre>
```

Temps d'exécution

- le premier morceau de longueur L/r du message sera arrivé au dernier processeur k-1 mod p en temps $(p-1)(\beta+\frac{L}{r}\tau)$ (diffusion simple)
- les r-1 autres morceaux arrivent les uns derrière les autres, d'où un temps supplémentaire de $(r-1)(\beta + \frac{L}{r}\tau)$

24

• En tout $(p-2+r)(\beta + \frac{L}{r}\tau)$

Eric Goubault

Optimisation du paramètre r

- $r_{opt} = \sqrt{\frac{L(p-2)\tau}{\beta}}$
- le temps optimal d'exécution est donc de

$$\left(\sqrt{(p-2)\beta} + \sqrt{L\tau}\right)^2$$

• quand L tend vers l'infini, ceci est asymptotiquement équivalent à $L\tau$, le facteur p devient négligeable!

25

PRODUIT MATRICE-VECTEUR

Problème: calculer y = Ax avec,

- A matrice de dimension $n \times n$
- x vecteur à n composantes (de 0 à n-1)
- \bullet sur un anneau de p processeurs, avec r = n/p entier

Programme séquentiel

le calcul produit matrice-vecteur revient au calcul de n produits scalaires:

```
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
y[i] = y[i]+a[i,j]*x[j];</pre>
```

27

PRINCIPE DE LA DISTRIBUTION

Distribuer le calcul des produits scalaires aux processeurs:

- ullet chaque processeur a en mémoire r lignes de la matrice ${\tt A}$ rangées dans une matrice ${\tt a}$ de dimension $r \times n$
- P_q contient les lignes qr à (q+1)r-1 de la matrice **A** et les composantes de même rang des vecteurs **x** et**y**:

```
float a[r][n];
float x[r],y[r];
```

Eric Goubault

26

8

Principe du Calcul -distribution initiale des données

$$P_0 \begin{pmatrix} A_{00} & A_{01} & A_{02} & A_{03} & A_{04} & A_{05} & A_{06} & A_{07} \\ A_{10} & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

$$P_{1} \begin{pmatrix} A_{20} & A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} & A_{27} \\ A_{30} & A_{31} & A_{32} & A_{33} & A_{34} & A_{35} & A_{36} & A_{37} \end{pmatrix} \begin{pmatrix} x_{2} \\ x_{3} \end{pmatrix}$$

$$P_2 \begin{pmatrix} A_{40} & A_{41} & A_{42} & A_{43} & A_{44} & A_{45} & A_{46} & A_{47} \\ A_{50} & A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & A_{56} & A_{57} \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$

$$P_{3} \begin{pmatrix} A_{60} & A_{61} & A_{62} & A_{63} & A_{64} & A_{65} & A_{66} & A_{67} \\ A_{70} & A_{71} & A_{72} & A_{73} & A_{74} & A_{75} & A_{76} & A_{77} \end{pmatrix} \begin{pmatrix} x_{6} \\ x_{7} \end{pmatrix}$$

DEUXIÈME ÉTAPE

$$P_0 \begin{pmatrix} \bullet & \bullet & \bullet & \bullet & \bullet & A_{06} & A_{07} \\ \bullet & \bullet & \bullet & \bullet & \bullet & A_{16} & A_{17} \end{pmatrix} \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$

$$P_1 \begin{pmatrix} A_{20} & A_{21} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ A_{30} & A_{31} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_6 \\ x_7 \end{pmatrix}$$

$$P_2 \begin{pmatrix} \bullet & \bullet & A_{42} & A_{43} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{52} & A_{53} & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

$$P_3 \begin{pmatrix} \bullet & \bullet & \bullet & A_{64} & A_{65} & \bullet & \bullet \\ \bullet & \bullet & \bullet & A_{74} & A_{75} & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

Première étape

$$P_0 \begin{pmatrix} A_{00} & A_{01} & \bullet & \bullet & \bullet & \bullet \\ A_{10} & A_{11} & \bullet & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_6 \\ x_7 \end{pmatrix}$$

$$P_1 \begin{pmatrix} \bullet & \bullet & A_{22} & A_{23} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{32} & A_{33} & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

$$P_2 \begin{pmatrix} \bullet & \bullet & \bullet & A_{44} & A_{45} & \bullet \\ \bullet & \bullet & \bullet & A_{54} & A_{55} & \bullet \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

$$P_3 \begin{pmatrix} \bullet \bullet \bullet \bullet \bullet \bullet \bullet A_{66} & A_{67} \\ \bullet \bullet \bullet \bullet \bullet \bullet A_{76} & A_{77} \end{pmatrix} \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$

Troisième étape

$$P_0 \begin{pmatrix} \bullet & \bullet & \bullet & A_{04} & A_{05} & \bullet \\ \bullet & \bullet & \bullet & A_{14} & A_{15} & \bullet \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

$$P_1 \begin{pmatrix} \bullet \bullet \bullet \bullet \bullet \bullet \bullet A_{26} & A_{27} \\ \bullet \bullet \bullet \bullet \bullet \bullet A_{36} & A_{37} \end{pmatrix} \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$

$$P_2 \begin{pmatrix} A_{40} & A_{41} & \bullet & \bullet & \bullet & \bullet \\ A_{50} & A_{51} & \bullet & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_6 \\ x_7 \end{pmatrix}$$

$$P_3 \begin{pmatrix} \bullet & \bullet & A_{62} & A_{63} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{72} & A_{73} & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

Quatrième étape

$$P_0 \begin{pmatrix} \bullet & \bullet & A_{02} & A_{03} & \bullet & \bullet & \bullet \\ \bullet & \bullet & A_{12} & A_{13} & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

$$P_1 \begin{pmatrix} \bullet \bullet \bullet \bullet & A_{24} & A_{25} \bullet \bullet \\ \bullet \bullet \bullet & A_{34} & A_{35} \bullet \bullet \end{pmatrix} \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

$$P_2 \begin{pmatrix} \bullet \bullet \bullet \bullet \bullet \bullet & A_{46} & A_{47} \\ \bullet \bullet \bullet \bullet \bullet & A_{56} & A_{57} \end{pmatrix} \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$

$$P_3 \begin{pmatrix} A_{60} & A_{61} & \bullet & \bullet & \bullet & \bullet \\ A_{70} & A_{71} & \bullet & \bullet & \bullet & \bullet \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} temp \leftarrow \begin{pmatrix} x_6 \\ x_7 \end{pmatrix}$$

33

Programme

34

```
matrice-vecteur(A,x,y) {
    q = my_num();
    p = tot_proc_num();
    for (step=0;step<p;step++) {
        send(x,r);
        for (i=0;i<r;i++)
            for (j=0;j<r;j++)
                y[i] = y[i]+a[i,(q-step mod p)r+j]*x[j];
        receive(temp,r);
        x = temp;
    }
}</pre>
```

PERFORMANCES

- en notant τ_a le temps de calcul élémentaire, τ_c le temps de communication élémentaire
- il y a p étapes identiques, chacune de temps égal le plus long entre le calcul local et le temps de communication: $max(r^2\tau_a, \beta + r\tau_c)$
- d'où temps total de $p * max(r^2\tau_a, \beta + r\tau_c)$
- quand n assez grand $r^2\tau_a$ devient prépondérant, d'où asympotiquement un temps de $\frac{n^2}{p}\tau_a$: efficacité 1!

(on aurait aussi pu procéder à un échange total de x au début...)

35

FACTORISATION LU

Problème: résolution d'un système linéaire dense Ax=b par triangulation de Gauss. Version séquentielle:

```
for (k=0;k<n-1;k++) {
  prep(k): for (i=k+1;i<n;i++)
    a[i,k]=a[i,k]/a[k,k];
  for (j=k+1;j<n;j++)
    update(k,j): for (i=k+1;i<n;i++)
    a[i,j]=a[i,j]-a[i,k]*a[k,j];
}</pre>
```

DISTRIBUTION

- distribution des colonnes aux différents processeurs
- on suppose que cette distribution nous est donnée par une fonction alloc telle que alloc(k)=q veut dire que la kième colonne est affectée à la mémoire locale de P_q
- on utilise la fonction **broadcast**, pour faire en sorte qu'à l'étape k, le processeur qui possède la colonne k la diffuse à tous les autres Voir poly pour version la plus générale.

PROGRAMME - ICI ALLOC(K)=K

```
q = my_num();
p = tot_proc_num();
for (k=0;k<n-1;k++) {
   if (k == q) {
      prep(k): for (i=k+1;i<n;i++)
        buffer[i-k-1] = a[i,k]/a[k,k];
      broadcast(k,buffer,n-k);
   }
   else {
      receive(buffer,n-k);
      update(k,q): for (i=k+1;k<n;k++)
        a[i,q] = a[i,q]-buffer[i-k-1]*a[k,q]; }
}</pre>
```

Problème de l'allocation par blocs de colonnes

- le nombre de données varie au cours des étapes (de moins en moins)
- le volume de calcul n'est pas proportionnel au volume des données: quand un processeur a par exemple **r** colonnes consécutives, le dernier processeur a plus de calcul (que de données) par rapport au premier
- il faut donc une allocation qui réussisse à équilibrer le volume des données et du travail!
- équilibrage de charge à chaque étape de l'algorithme, et pas seulement global

39

CAS DE L'ALLOCATION CYCLIQUE PAR COLONNES

$$\begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_0 & P_1 & P_2 & P_3 \\ A_{00} & A_{01} & A_{02} & A_{03} & A_{04} & A_{05} & A_{06} & A_{07} \\ A_{10} & A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} \\ A_{20} & A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} & A_{27} \\ A_{30} & A_{31} & A_{32} & A_{33} & A_{34} & A_{35} & A_{36} & A_{37} \\ A_{40} & A_{41} & A_{42} & A_{43} & A_{44} & A_{45} & A_{46} & A_{47} \\ A_{50} & A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & A_{56} & A_{57} \\ A_{60} & A_{61} & A_{62} & A_{63} & A_{64} & A_{65} & A_{66} & A_{67} \\ A_{70} & A_{71} & A_{72} & A_{73} & A_{74} & A_{75} & A_{76} & A_{77} \end{pmatrix}$$

Eric Goubault

40

Allocation cyclique - k=0

$P_0: p_0; b$							
U_{00}	A_{01}	A_{02}	A_{03}	A_{04}	A_{05}	A_{06}	A_{07}
L_{10}	A_{11}	A_{12}	A_{13}	A_{14}	A_{15}	A_{16}	A_{17}
L_{20}							A_{27}
L_{30}	A_{31}	A_{32}	A_{33}	A_{34}	A_{35}	A_{36}	A_{37}
L_{40}							A_{47}
L_{50}		A_{52}					
L_{60}	A_{61}	A_{62}	A_{63}	A_{64}	A_{65}	A_{66}	A_{67}
L_{70}	A_{71}	A_{72}	A_{73}	A_{74}	A_{75}	A_{76}	A_{77}

Puis...

P_0	P_1	P_2	P_3	P_0	$P_1: r; u_{0,5}$	$P_2: r; u_{0,6}$	$P_3:r;u_{0,7}$
U_{00}	U_{01}	U_{02}	U_{03}	U_{04}	U_{05}	U_{06}	U_{07}
L_{10}	A'_{11}	A'_{12}	A'_{13}	A'_{14}	A'_{15}	A'_{16}	A'_{17}
L_{20}	A'_{21}	A'_{22}	A'_{23}	A'_{24}	A'_{25}	A'_{26}	A_{27}'
L_{30}	A'_{31}	A'_{32}	A'_{33}	A'_{34}	A'_{35}	A'_{36}	A'_{37}
L_{40}	A'_{41}	A'_{42}	A'_{43}	A'_{44}	A'_{45}	A'_{46}	A'_{47}
L_{50}	A'_{51}	A'_{52}	A'_{53}	A'_{54}	A'_{55}	A'_{56}	A_{57}'
L_{60}	A'_{61}	A'_{62}	A'_{63}	A'_{64}	A_{65}^{\prime}	A_{66}^{\prime}	A_{67}^{\prime}
L_{70}	$A_{71}^{'}$	$A_{72}^{\prime -}$	A_{73}^{\prime}	A_{74}'	$A_{75}^{\prime 5}$	$A_{76}^{\prime 3}$	$A_{77}^{\prime\prime}$

43

Allocation cyclique - k=0

$P_0 \ P_1: r; u_{0,1} \ P_2: r; \underline{u_{0,2}} \ P_3: r; u_{0,3} \ P_0: u_{0,4} \ P_1 \ P_2 \ P_3$ $A_{05} A_{06} A_{07}$ $\overline{U_{00}}$ U_{01} U_{02} U_{03} U_{04} A'_{13} A'_{14} A_{15} A_{16} A_{17} L_{10} A'_{21} A'_{31} A'_{41} A'_{24} A_{25} A_{26} A_{27} L_{20} L_{30} A'_{34} A_{35} A_{36} A_{37} L_{40} A'_{44} A_{45} A_{46} A_{47} A_{51}^{71} $A_{54}^{\prime\prime}$ A_{55} A_{56} A_{57} $A_{64}^{\prime\prime}$ A_{65} A_{66} A_{67} L_{50} L_{60} L_{70} $A_{75} A_{76} A_{77}$

ALLOCATION CYCLIQUE - K=1

P_0	$P_1: p_1; b$	P_2	P_3	P_0	P_1	P_2	P_3
U_{00}	U_{01}	U_{02}	U_{03}	U_{04}	U_{05}	U_{06}	U_{07}
L_{10}	U_{11}	A'_{12}	A'_{13}	A'_{14}	A'_{15}	A'_{16}	A'_{17}
L_{20}	L_{21}	A'_{22}	A'_{23}	A'_{24}	A'_{25}	A'_{26}	A'_{27}
L_{30}	L_{31}	A'_{32}	A'_{33}	A'_{34}	A'_{35}	A'_{36}	A'_{37}
L_{40}	L_{41}	A'_{42}	A'_{43}	A'_{44}	A'_{45}	A'_{46}	A'_{47}
L_{50}	L_{51}	A'_{52}	A'_{53}	A'_{54}	A'_{55}	A'_{56}	A'_{57}
L_{60}	L_{61}	A'_{62}	A'_{63}	A'_{64}	A'_{65}	A'_{66}	A'_{67}
L_{70}	L_{71}	A'_{72}	A'_{73}	A'_{74}	A'_{75}	A'_{76}	A'_{77}

ALLOCATION CYCLIQUE - K=1

P_0	P_1	$P_2: r; u_{1,2}$	$P_3: r; u_{1,3}$	$P_0: r; u_{1,4}$	P_1	P_2	P_3
U_{00}	U_{01}	U_{02}	U_{03}	U_{04}	U_{05}	U_{06}	U_{07}
L_{10}	U_{11}	U_{12}	U_{13}	U_{14}	A'_{15}	A'_{16}	A'_{17}
L_{20}	L_{21}	A_{22}''	A_{23}''	A_{24}''	A'_{25}	A'_{26}	A'_{27}
L_{30}	L_{31}	A_{32}''	A_{33}''	A_{34}''	A'_{35}	A'_{36}	A'_{37}
L_{40}	L_{41}	A_{42}''	A_{43}''	A_{44}''	A'_{45}	A'_{46}	A'_{47}
L_{50}	L_{51}	A_{52}''	A_{53}''	A_{54}''	A'_{55}	A'_{56}	A'_{57}
L_{60}	L_{61}	A_{62}''	A_{63}''	A_{64}''	A'_{65}	A'_{66}	A'_{67}
L_{70}	L_{71}	$A_{72}^{\prime\prime\bar{\prime}}$	$A_{73}^{\prime\prime\prime}$	$A_{74}^{'''}$	A_{75}^{\prime}	A_{76}^{\prime}	A_{77}^{\prime}

CAS DE L'ALLOCATION 1 COLONNE 1 PROCESSEUR - P=N

Ici, alloc(k)==k

- Coût de la mise à jour (update) de la colonne j par le processeur j:
 - à toutes les étapes k = 0 à k = n 1
 - un coût de n-k-1 pour l'étape k (éléments en position k+1 à n-1)
 - d'où un coût total de

$$t = \sum_{k=0}^{n-1} (n-k-1)\tau_a = \frac{n(n-1)}{2}\tau_a$$

TEMPS DE CALCUL

- Le chemin critique d'exécution est: $prep_0(0) \to update_1(0,1), prep_1(1) \to update_2(1,2), prep_2(2) \to .$ $(\to = \text{communication vers proc. voisin})$
- Comme si on faisait environ r fois le travail quand allocation cyclique pour $r=\frac{n}{p}$ processeurs
- Remarque: recouvrement des communications, mais pas communication/calcul!

41

TEMPS DE CALCUL

- $n\beta + \frac{n^2}{2}\tau_c + O(1)$ pour les n-1 communications (transportant de l'ordre de n^2 données)
- $\frac{n^2}{2}\tau_a + O(1)$ pour les prep
- Pour l'update des r colonnes sur le processeur $j \mod p$, en parallèle sur tous les processeurs, environ $r\frac{n(n-1)}{2}$
- D'où un coût de l'ordre de $\frac{n^3}{2p}$ pour les **update** des p processeurs: terme dominant si p << n et efficacité excellente asymptotiquement (pour n grand)

SUR ANNEAU: RECOUVREMENT COMMUNICATION/CALCUL

```
q = my_num();
p = tot_proc_num();
l = 0;
for (k=0;k<n-1;k++) {
   if (k == q mod p) {
      prep(k): for (i=k+1;i<n;i++)
        buffer[i-k-1] = a[i,1]/a[k,1];
      l++; send(buffer,n-k);
      if (q != k-1 mod p) send(buffer,n-k);
      if (q != k-1 mod p) send(buffer,n-k);
      for (j=1;j<r;j++)
        update(k,j): for (i=k+1;k<n;k++)
        a[i,j] = a[i,j]-buffer[i-k-1]*a[k,j]; }</pre>
```

DÉFAUT...

Sur P_1 :

- Etape k = 0: P_1 reçoit la colonne pivot 0 de P_0
- P_1 l'envoit à P_2
- Fait update(0,j) pour toutes les colonnes j qui lui appartiennent, c.-a-d. $j = 1 \mod p$
- Etape k = 1: fait prep(1)
- Envoie la colonne pivot 1 à P_2
- Fait update(1,j) pour toutes les colonnes j qui lui appartiennent, c.-a-d. $j = 1 \mod p$
- etc.

P_0	P_1	P_2	P_3
prep(0)			
send(0)	receive(0)		
update(0,4)	send(0)	receive(0)	
update(0,8)	update(0,1)	send(0)	receive(0)
update(0, 12)	update(0,5)	update(0,2)	update(0,3)
	update(0,9)	update(0,6)	update(0,7)
	update(0, 13)	update(0, 10)	update(0,11)
	prep(1)	update(0, 14)	update(0,15)
	send(1)	receive(1)	
	update(1,5)	send(1)	receive(1)
receive(1)	update(1,9)	update(1,2)	send(1)
update(1,4)	update(1, 13)	update(1,6)	update(1,3)
update(1,8)		update(1,10)	update(1,7)
update(1,12)		update(1, 14)	update(1,11)

DÉFAUT...

P_1 aurait pu faire:

- update(0,1)
- prep(1)
- Envoi vers P_2
- update(0,j) pour $j = 1 \mod p$ et j > 1
- etc.

Eric Goubault 52 2 mars 2011

P_0	P_1	P_2	P_3
prep(0)			
send(0) up(0,4)	receive(0)		
up(0,8)	send(0) up(0,1)	receive(0)	
up(0, 12)	prep(1)	send(0) up(0,2)	receive(0)
	send(1) up(0,5)	receive(1) up(0,6)	up(0,3)
	up(0,9)	send(1) up(0,10)	receive(1) up(0,7)
receive(1)	up(0, 13)	up(0, 14)	send(1) up(0,11)
up(1,4)	up(1,5)	up(1,2)	up(0, 15)
up(1,8)	up(1,9)	prep(2)	up(1, 3)
up(1, 12)	up(1, 13)	send(2) up(1,6)	receive(2) up(1,7)
receive(2)		up(1, 10)	send(2) up(1,11)
send(2) up(2,4)	receive(2)	up(1, 14)	up(1, 15)
		• • •	

Eric Goubault 53 2 mars 2011