Decision tasks

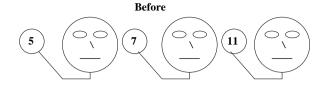
Can we implement a function...given an "architecture" (faults? shared memory / message passing, synchronous / semi-synchronous / asynchronous etc.)?

Each problem is given by:

- For each processor P_0, \dots, P_{n-1} a set of possible initial values (in a domain $K = \mathbb{N}$ or \mathbb{R} etc.), i.e. a subset \mathcal{I} of K^n : "input"
- Similarly, we are given a set of possible final values $\mathcal J$ in $\mathcal K^n$: "output"
- Finally, we are given a map, the "decision map" $\delta: \mathcal{I} \to \wp(\mathcal{J})$ associating to each possible initial value, the set of authorized output values

- 3 -

Example: consensus



blah blah blah...

After

- 4 -

Geometry and Distributed Systems

Eric Goubault

CEA/Saclay & Chaire Ecole Polytechnique-Thalès

Eric.Goubault@cea.fr

http://www.di.ens.fr/~goubault

18th of March 2009

Based on work by M. Herlihy, S. Rajsbaum, N. Shavit...

Aim of the talk

Can we implement some functions on some distributed architecture, even if there are some crashes?

Example: consensus on an asynchronous system NO: FLP'85!

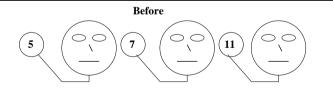
- There is a nice "geometrization" of the problem
- We will solve easy problems to make you understand
- But it has also solved some new problems!
- ... and this is an active research area!

Main idea

- The *input* set and output sets have a geometrical structure (simplicial set)
- According to the architecture type, not all decision maps can be programmed
- There are geometrical constraints on the decision maps
- Very much like mainstream results in geometry, such as Brouwer's fixed point theorem...

-7-

Even if...



blah blah blah...

arghhh...

After

Road map

- Input and output sets as simplicial sets (examples)
- Some basic algebraic topology
- The dynamics as sets of simplicial sets (protocol simplicial set, or complex)
- Some results and references

- 8 -

Example

• $\mathcal{K} = \mathbb{N}, \mathcal{I} = \mathbb{N}^n$,

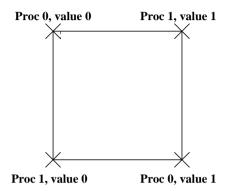
• $\mathcal{J} = \{(n, n, \dots, n) \mid n \in \mathbb{N}\},\$

•
$$\delta(x_0, x_1, \dots, x_{n-1}) = \begin{cases} \{(x_0, x_0, \dots, x_0), \\ (x_1, x_1, \dots, x_1), \\ \dots, \\ (x_{n-1}, x_{n-1}, \dots, x_{n-1})\} \end{cases}$$

- 5 -

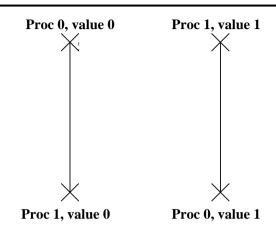
Initial states for (binary) consensus

Here, 2 processors, i.e. dimension 2:



- 11 -

Final states for consensus



- 12 -

Simplicial model of states

Proc 1, value 7

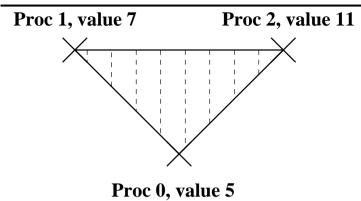
(local state)

Simplicial model of states

Proc 2, value 11
Proc 1, value 7

(compound state)

More generally: Simplicial model of states

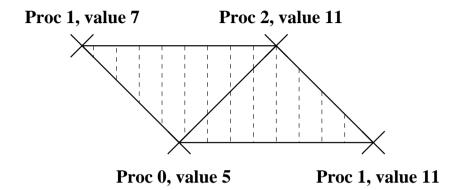


(More generally [than a graph]: global state)

- 15 -

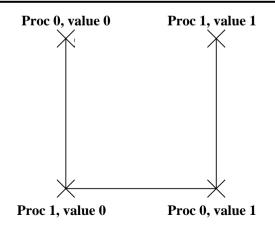
Example

Simplicial set=set of global states (with some common local states)

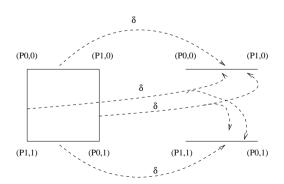


- 16 -

Final states for pseudo-consensus



Example: Consensus specification



Example

Synchronous message passing; notion of round:

- at each round, every processor broadcasts its own value to the others
- in any order
- then every processor receives the broadcasted values and computes a new local value

Failure models

- crash (fail-stop),
- byzantine etc.

In what follows: crash failures only; can happen at any point of the broadcast, which can be done in any random order.

- 19 -

- 20 -

Back to protocols

- Finite program
- Starts with input values
- Fixed number of rounds
- Halts with decision value

The full-information protocol is the one where the local value is the full history of communications

Generic protocol

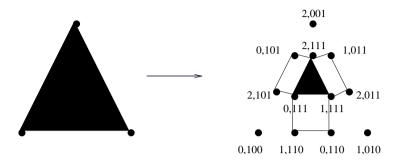
```
s = empty;
for (i=0; i<r; i++) {
  broadcast messages;
  s = s + messages received;
}
return delta(s);</pre>
```

Explanation

In the synchronous model, at round 1:

- no process has failed, hence everybody has received the message of the others (hence the central segment as global state)
- one process has failed, hence two points as possible states

Synchronous protocol complex



(wait-free - if up to 1 failure, forget the isolated points!)

- 23 -

- 24 -

Protocol complex

Each protocol on some architecture defines:

- a simplicial set (for all rounds r):
 - vertices: sequence of messages received at a given round \boldsymbol{r}
 - simplices: compound states at round \boldsymbol{r}
- This is an operator on an input simplex
- A choice of model of computation entails some geometrical properties of the protocol complex

Synchronous protocol complex



- 21 -

Decision map

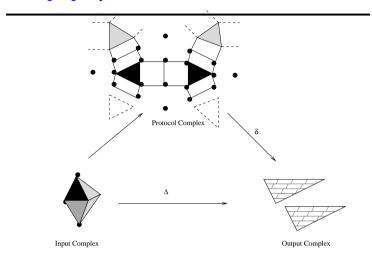
The delta in the generic protocol is, mathematically speaking:

- is $\delta : P \to O$ (protocol to output complex)
- is a simplicial map (basically a function on vertices, extended on convex hulls)
- respects specification relation Δ , i.e. for all $x \in I$, for all $y \in P(I)$, $x\Delta(\delta(y))$

Proof strategy for impossibility/complexity results: find "topological obstruction" to the δ simplicial map (from protocol complex of any round/round up to k)

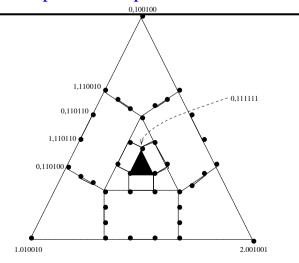
- 27 -

Main property

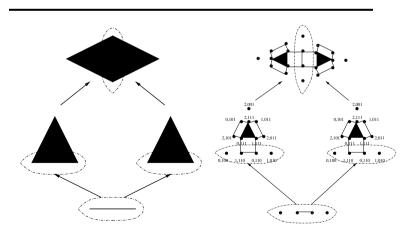


- 28 -

Synchronous protocol complex - round 2

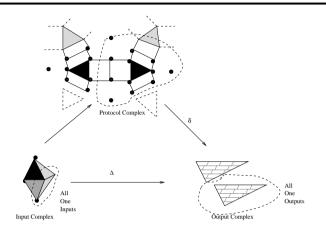


Synchronous protocol complex



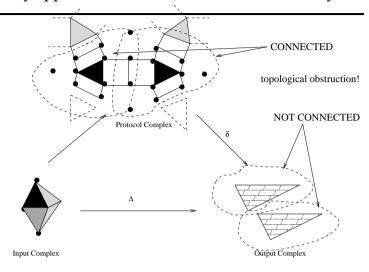
- 25 -

Easy application



- 31 -

Easy application - for at most n-2 failures only!

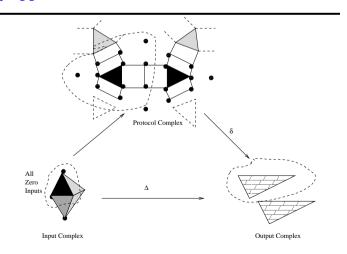


- 32 -

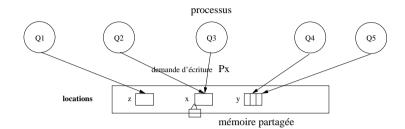
Easy application: consensus again...

- Binary consensus between 3 processes (synchronous message-passing model),
- Input complex is composed of 8 triangles: (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and (1,1,1),
- Input complex is homeomorphic to a sphere (one connected component); the first four determine a "north" hemisphere, the last four create a "south" hemisphere
- Output complex is composed of 2 triangles: (0,0,0) and (1,1,1) (hence two connected components),
- Here: just one round.

Easy application



Shared-memory model



- 35 -

More generally

- In any such (n-2)-round protocol complex, the all-zero subcomplex and the all-one subcomplex are connected
- Corollary: no (n-2)-round consensus protocol

Easy and not new... but gives the idea...

Asynchronous wait-free protocols

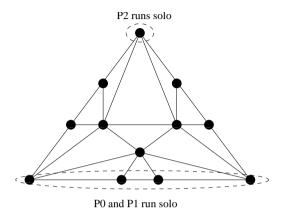
- *n* processes share memory (unbounded size), partitioned: one private chunk for each process
- Each process can:
 - atomically write to its location (update)
 - atomically scan (read) all of the memory into its local memory
- Equivalent to the usual read/write models
- We want *wait-free* protocols, i.e. robust to up to n-1 crash failures

- 36 -

Even more generally...

- ullet Synchronous message-passing model with r rounds, and at most k failures
- $P(S^{n-1})$ is (n rk 2)-connected: implies (n 1)-round consensus bound (for k = 1).

One-round protocol simplicial set (3D)



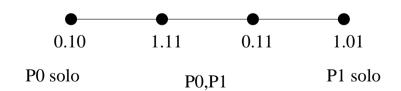
- 39 -

Theorem

- Wait-free read/write protocol complexes are:
 - (n-1)-connected (no holes in any dimension)
 - no matter how long the protocol runs
- Application: *k*-set agreement

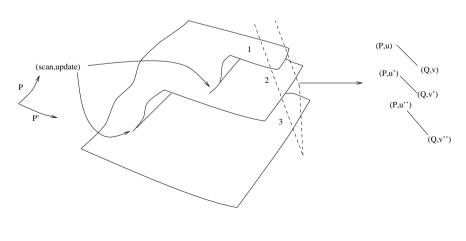
- 40 -

One-round protocol simplicial set (2D)



Semantics

Dynamics (and its cut up to time r=protocol complex):

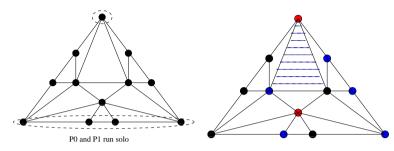


Sketch of a proof

A tool from algebraic topology (Sperner's lemma):

- Subdivide a simplex
- Give each "corner" a distinct "color"
- Give each vertex a corner color
- Giver interior vertices any corner color

Sperner's lemma



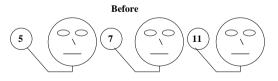
 \Rightarrow At least one simplex has all colors

- 43 -

- 44 -

k-set agreement task

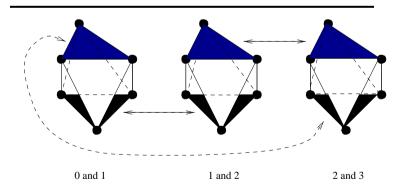
Generalization of consensus; processes must end up with at most k different values (taken from the initial values):



blah blah blah...

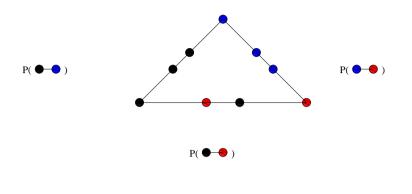
After

Output simplicial set (n = 3, k = 2)



3 spheres glued together minus the simplex formed of all 3 values: not 1-connected

Protocol complex - for all 2 process executions



- 47 -

Full protocol complex

- Because complex is simply-connected
- We can "fill-in" edge-paths
- Vertices colored with input colors

- 48 -

Input and protocol simplicial set

- Each process colored with distinct input
- Each vertex colored with decision

Protocol complex

- For a one-process execution: same vertex and same color (cannot decide anything else)
- For a two-process execution:
 - the protocol complex is connected
 - all vertices are of one of the two colors

Principle of the proof

\Rightarrow

- Protocol complex is (n-1)-connected (using Mayer-Vietoris)
- Exploit connectivity to
 - embed subdivided input complex into protocol complex
 - map protocol complex to output complex
 - just like k-set agreement proof

- 51 -

End of proof

Apply Sperner's Lemma:

- Some simplex has all three colors
- That simplex is a protocol execution that decides three values!

Principle of the proof

 \Leftarrow

- We can reduce any task to "simplex agreement" [using the participating set algorithm of Borowsky and Gafni 1993]
- Start out at corners of subdivided simplex
- Must rendez-vous on vertices of single simplex in subdivision

- 52 -

Converse

- In fact, even more:
- A task has a wait-free read/write protocol if and only if there exists a simplicial map μ:
 - from subdivided input complex
 - to output complex
 - that respects $\boldsymbol{\Delta}$

Proof

Using the semantics, we have the following three possible 1-schedules (up to homotopy), since the only possible interactions are between the scan and update statements,

- (i) Suppose the scan operation of P is completed before the update operation of P' is started: P does not know y so it chooses to write x. Prog ends up with ((P, x), (P', y)).
- (ii) Symmetric case: Prog ends up with ((P, x'), (P', y')).
- (iii) The *scan* operation of P is after the *update* of P' and the *scan* of P' is after the *update* of P. Prog ends up with ((P, x'), (P', y)).

- 55 -

Other communication primitives

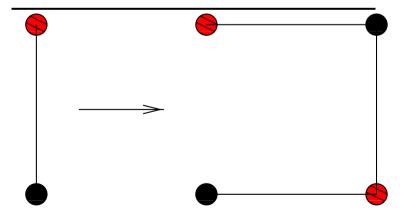
Real multiprocessors provide additional atomic synchronization:

- test&set
- fetch&add
- compare&swap
- queues...

Other protocol complexes...other results

- 56 -

Example



Subdivision of a segment into three segments

Protocol

$$P = update;$$
 $P' = update;$ $scan;$ $scan;$ $case(u, v) of$ $case(u, v) of$ $(x, y') : u = x'; update; []$ $(x, y') : v = y; update; []$ $default : update$ $default : update$

References and main results

- Begins with Fisher-Lynch-Patterson ("FLP") in 1985: there exists a simple task that cannot be solved in a (simple) message-passing system with at most one potential crash
- Created a very active research area, see for instance Nancy Lynch's book "Distributed Algorithms" (1996)

• Revealed to be difficult to extend to models with more failures

• Later developed by Biran-Moran-Zaks in PoDC'88:

1-dimensional version of what we just developed

characterization of the tasks that can be solved by a (simple)

• The argument uses a "similarity chain", which could be seen as a

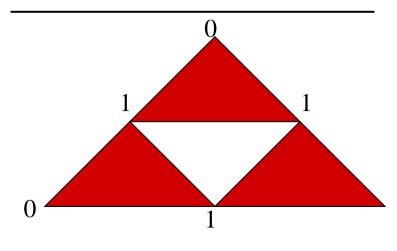
message-passing system in the presence of one failure

References and main results

- 59 -

- 60 -

Example: test&set protocol complex



Test&Set

- Wait-free Test&Set protocol complexes
 - are all (n-3)-connected
 - more powerful than read/write (2-process consensus)
 - but still no 3-process consensus
- Similar results hold for other synchronization operations

- 57 -

References and main results

Later results, on the same line, include:

- Full characterization of wait-free asynchronous tasks with atomic read/writes on registers, see "The topological structure of asynchronous computability", M. Herlihy and N. Shavit, J. of the ACM, jan. 2000
- Use of algebraic spans in "Algebraic Spans", M. Herlihy and S. Rajsbaum as a unified methods for renaming, *k*-set agreement problems etc.
- Use of pseudo-spheres...

- 63 -

References and main results

Then, in PoDC'1993, independently,

- Borowsky-Gafni, Saks-Zaharoglou and Herlihy-Shavit derived lower bounds for the *k*-set agreement problem of Chaudhuri (proposed in 1990)
 - [at least $\lfloor \frac{f}{k} \rfloor + 1$ steps in synchronous model]
- Saks-Zaharoglou and Herlihy-Shavit exploited topological properties to derive this lower bound

References and research directions

- Consensus numbers (see M. Herlihy and then E. Ruppert SIAM J. Comput. vol 30, No 4, 2000 for instance). Importance based on the remark (M. Herlihy): an object which solves the consensus problem for *n* processes can simulate in a wait-free manner (together with read/write registers) any object for *n* or fewer processes.
- Example: R/W registers have consensus number 1, test&set, queues, stacks, fetch and add have consensus number 2 etc.
- Example: There is no wait-free (n+1,2j)-renaming protocol if processes share a read/write memory and (n+1,j)-consensus objects.

- 64 -

References and main results

- Renaming: Attiya-BarNoy-Dolev-Peleg JACM 1990,
- The (n+1,K)-renaming task starts with n+1 processes being given a unique input name in $0,\ldots,N$ and are required to choose unique output name in $0,\ldots,K$ with $n\leq K< N$ (independently of a "process id" i.e. "anonymous renaming" in fact).
- Showed that (message-passing model) there is a wait-free solution for $K \ge 2n+1$, none when $K \le n+2$
- \bullet Using these geometrical techniques: it has been shown that there is no renaming when $K \leq 2n$
- Herlihy and Shavit STOC'93: same result holds for the wait-free asynchronous model (using homology explicitely).

References and research directions • Afek et Strup: characterization of the effect of the register size in the power of synchronization primitives • Characterization of complexity and not only computability, see for instance "Towards a Topological Characterization of Asynchronous Complexity", G. Hoest and N. Shavit • Links with (geometric) semantics [potential for more realistic models of distributed systems?], for instance my paper in CAAP'97 "Optimal Implementation of Wait-Free Binary Relations"? • Extension of this model for randomized algorithms etc.? - 65 -