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Aim of the talk

Can we implement some functions on some distributed architecture,

even if there are some crashes?

Example: consensus on an asynchronous system

NO: FLP’85!

• There is a nice “geometrization” of the problem

• We will solve easy problems to make you understand

• But it has also solved some new problems!

• ... and this is an active research area!
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Decision tasks

Can we implement a function...given an “architecture” (faults?

shared memory / message passing, synchronous /

semi-synchronous / asynchronous etc.)?

Each problem is given by:

• For each processor P0, . . . , Pn−1 a set of possible initial values (in

a domain K = IN or R etc.), i.e. a subset I of Kn: “input”

• Similarly, we are given a set of possible final values J in Kn:

“output”

• Finally, we are given a map, the “decision map” δ : I → ℘(J )

associating to each possible initial value, the set of authorized

output values
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Example: consensus

5 7

7 7 7

11

blah blah blah...

Before

After
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Even if...

5 7

7 7

11

blah blah blah...

Before

After

arghhh...
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Example

• K = IN, I = INn,

• J = {(n, n, . . . , n) | n ∈ IN},

• δ(x0, x1, . . . , xn−1) =



























{(x0, x0, . . . , x0),

(x1, x1, . . . , x1),

. . . ,

(xn−1, xn−1, . . . , xn−1)}
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Main idea

• The input set and output sets have a geometrical structure

(simplicial set)

• According to the architecture type, not all decision maps can be

programmed

• There are geometrical constraints on the decision maps

• Very much like mainstream results in geometry, such as

Brouwer’s fixed point theorem...
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Road map

• Input and output sets as simplicial sets (examples)

• Some basic algebraic topology

• The dynamics as sets of simplicial sets (protocol simplicial set, or

complex)

• Some results and references
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Simplicial model of states

Proc 1, value 7

(local state)
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Simplicial model of states

Proc 1, value 7

Proc 2, value 11

(compound state)

- 10 -

Initial states for (binary) consensus

Here, 2 processors, i.e. dimension 2:

Proc 1, value 0 Proc 0, value 1

Proc 1, value 1Proc 0, value 0
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Final states for consensus

Proc 1, value 0 Proc 0, value 1

Proc 1, value 1Proc 0, value 0
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Final states for pseudo-consensus

Proc 1, value 0 Proc 0, value 1

Proc 1, value 1Proc 0, value 0
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Example: Consensus specification

δ

δ

δ

δ

(P1,0)(P0,0)

(P1,1) (P1,1)

(P0,0) (P1,0)

(P0,1) (P0,1)
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More generally: Simplicial model of states

Proc 2, value 11Proc 1, value 7

Proc 0, value 5

(More generally [than a graph]: global state)
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Example

Simplicial set=set of global states (with some common local states)

Proc 2, value 11Proc 1, value 7

Proc 0, value 5 Proc 1, value 11
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Back to protocols

• Finite program

• Starts with input values

• Fixed number of rounds

• Halts with decision value

The full-information protocol is the one where the local value is the

full history of communications
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Generic protocol

s = empty;

for (i=0; i<r; i++) {

broadcast messages;

s = s + messages received;

}

return delta(s);
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Example

Synchronous message passing; notion of round:

• at each round, every processor broadcasts its own value to the

others

• in any order

• then every processor receives the broadcasted values and

computes a new local value
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Failure models

• crash (fail-stop),

• byzantine etc.

In what follows: crash failures only; can happen at any point of the

broadcast, which can be done in any random order.
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Protocol complex

Each protocol on some architecture defines:

• a simplicial set (for all rounds r):

– vertices: sequence of messages received at a given round r

– simplices: compound states at round r

• This is an operator on an input simplex

• A choice of model of computation entails some geometrical

properties of the protocol complex
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Synchronous protocol complex
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Explanation

In the synchronous model, at round 1:

• no process has failed, hence everybody has received the message

of the others (hence the central segment as global state)

• one process has failed, hence two points as possible states
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Synchronous protocol complex
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(wait-free - if up to 1 failure, forget the isolated points!)
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Synchronous protocol complex - round 2

1,110110

0,110110

1,110010

0,111111

0,100100

2,0010011,010010

0,110100
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Synchronous protocol complex
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Decision map

The delta in the generic protocol is, mathematically speaking:

• is δ : P → O (protocol to output complex)

• is a simplicial map (basically a function on vertices, extended on

convex hulls)

• respects specification relation ∆, i.e. for all x ∈ I , for all y ∈ P (I),

x∆(δ(y))

Proof strategy for impossibility/complexity results: find

“topological obstruction” to the δ simplicial map (from protocol

complex of any round/round up to k)
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Main property
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Easy application: consensus again...

• Binary consensus between 3 processes (synchronous

message-passing model),

• Input complex is composed of 8 triangles: (0, 0, 0), (0, 0, 1),

(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1),

• Input complex is homeomorphic to a sphere (one connected

component); the first four determine a “north” hemisphere, the

last four create a “south” hemisphere

• Output complex is composed of 2 triangles: (0, 0, 0) and (1, 1, 1)

(hence two connected components),

• Here: just one round.

- 29 -

Easy application
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Easy application
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Easy application - for at most n − 2 failures only!
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topological obstruction!
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More generally

• In any such (n − 2)-round protocol complex, the all-zero

subcomplex and the all-one subcomplex are connected

• Corollary: no (n − 2)-round consensus protocol

Easy and not new... but gives the idea...
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Even more generally...

• Synchronous message-passing model with r rounds, and at most

k failures

• P (Sn−1) is (n − rk − 2)-connected: implies (n − 1)-round

consensus bound (for k = 1).
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Shared-memory model

yxz

Q1 Q2 Q3 Q4 Q5

locations

demande d’écriture

processus

mémoire partagée

Px
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Asynchronous wait-free protocols

• n processes share memory (unbounded size), partitioned: one

private chunk for each process

• Each process can:

– atomically write to its location (update)

– atomically scan (read) all of the memory into its local memory

• Equivalent to the usual read/write models

• We want wait-free protocols, i.e. robust to up to n − 1 crash

failures
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One-round protocol simplicial set (2D)

1.11 0.11 1.010.10

P0 solo P0,P1 P1 solo

- 37 -

Semantics

Dynamics (and its cut up to time r=protocol complex):

(scan,update)

(P,u)

(Q,v)(P,u’)

(Q,v’)
(P,u’’)

(Q,v’’)

1

2

3

P

P’
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One-round protocol simplicial set (3D)
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P0 and P1 run solo

P2 runs solo
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Theorem

• Wait-free read/write protocol complexes are:

– (n − 1)-connected (no holes in any dimension)

– no matter how long the protocol runs

• Application: k-set agreement
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k-set agreement task

Generalization of consensus; processes must end up with at most k

different values (taken from the initial values):

5 7

7 7 7

11

blah blah blah...

Before

After
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Output simplicial set (n = 3, k = 2)

0 and 1 1 and 2 2 and 3

3 spheres glued together minus the simplex formed of all 3 values:

not 1-connected
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Sketch of a proof

A tool from algebraic topology (Sperner’s lemma):

• Subdivide a simplex

• Give each “corner” a distinct “color”

• Give each vertex a corner color

• Giver interior vertices any corner color
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Sperner’s lemma
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⇒ At least one simplex has all colors
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Input and protocol simplicial set

• Each process colored with distinct input

• Each vertex colored with decision
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Protocol complex

• For a one-process execution: same vertex and same color (cannot

decide anything else)

• For a two-process execution:

– the protocol complex is connected

– all vertices are of one of the two colors
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Protocol complex - for all 2 process executions
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Full protocol complex

• Because complex is simply-connected

• We can “fill-in” edge-paths

• Vertices colored with input colors
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End of proof

Apply Sperner’s Lemma:

• Some simplex has all three colors

• That simplex is a protocol execution that decides three values!
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Converse

• In fact, even more:

• A task has a wait-free read/write protocol if and only if there

exists a simplicial map µ:

– from subdivided input complex

– to output complex

– that respects ∆
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Principle of the proof

⇒

• Protocol complex is (n − 1)-connected (using Mayer-Vietoris)

• Exploit connectivity to

– embed subdivided input complex into protocol complex

– map protocol complex to output complex

– just like k-set agreement proof
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Principle of the proof

⇐

• We can reduce any task to “simplex agreement” [using the

participating set algorithm of Borowsky and Gafni 1993]

• Start out at corners of subdivided simplex

• Must rendez-vous on vertices of single simplex in subdivision
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Example
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Subdivision of a segment into three segments
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Protocol

P = update; P ′ = update;

scan; scan;

case (u, v) of case (u, v) of

(x, y′) : u = x′; update; [] (x, y′) : v = y; update; []

default : update default : update
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Proof

Using the semantics, we have the following three possible

1-schedules (up to homotopy), since the only possible interactions

are between the scan and update statements,

(i) Suppose the scan operation of P is completed before the update

operation of P ′ is started: P does not know y so it chooses to

write x. Prog ends up with ((P, x), (P ′, y)).

(ii) Symmetric case: Prog ends up with ((P, x′), (P ′, y′)).

(iii) The scan operation of P is after the update of P ′ and the scan of

P ′ is after the update of P . Prog ends up with ((P, x′), (P ′, y)).
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Other communication primitives

Real multiprocessors provide additional atomic synchronization:

• test&set

• fetch&add

• compare&swap

• queues...

Other protocol complexes...other results
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Example: test&set protocol complex

0

1 1

10
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Test&Set

• Wait-free Test&Set protocol complexes

– are all (n − 3)-connected

– more powerful than read/write (2-process consensus)

– but still no 3-process consensus

• Similar results hold for other synchronization operations
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References and main results

• Begins with Fisher-Lynch-Patterson (“FLP”) in 1985: there exists

a simple task that cannot be solved in a (simple)

message-passing system with at most one potential crash

• Created a very active research area, see for instance Nancy

Lynch’s book “Distributed Algorithms” (1996)
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References and main results

• Later developed by Biran-Moran-Zaks in PoDC’88:

characterization of the tasks that can be solved by a (simple)

message-passing system in the presence of one failure

• The argument uses a “similarity chain”, which could be seen as a

1-dimensional version of what we just developed

• Revealed to be difficult to extend to models with more failures
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References and main results

Then, in PoDC’1993, independently,

• Borowsky-Gafni, Saks-Zaharoglou and Herlihy-Shavit derived

lower bounds for the k-set agreement problem of Chaudhuri

(proposed in 1990)

[at least ⌊ f
k
⌋ + 1 steps in synchronous model]

• Saks-Zaharoglou and Herlihy-Shavit exploited topological

properties to derive this lower bound
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References and main results

• Renaming: Attiya-BarNoy-Dolev-Peleg JACM 1990,

• The (n + 1, K)-renaming task starts with n + 1 processes being

given a unique input name in 0, . . . , N and are required to

choose unique output name in 0, . . . , K with n ≤ K < N

(independently of a “process id” - i.e. “anonymous renaming” in

fact).

• Showed that (message-passing model) there is a wait-free

solution for K ≥ 2n + 1, none when K ≤ n + 2

• Using these geometrical techniques: it has been shown that there

is no renaming when K ≤ 2n

• Herlihy and Shavit STOC’93: same result holds for the wait-free

asynchronous model (using homology explicitely).
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References and main results

Later results, on the same line, include:

• Full characterization of wait-free asynchronous tasks with

atomic read/writes on registers, see “The topological structure

of asynchronous computability”, M. Herlihy and N. Shavit, J. of

the ACM, jan. 2000

• Use of algebraic spans in “Algebraic Spans”, M. Herlihy and S.

Rajsbaum as a unified methods for renaming, k-set agreement

problems etc.

• Use of pseudo-spheres...
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• Consensus numbers (see M. Herlihy and then E. Ruppert SIAM

J. Comput. vol 30, No 4, 2000 for instance). Importance based on

the remark (M. Herlihy): an object which solves the consensus

problem for n processes can simulate in a wait-free manner

(together with read/write registers) any object for n or fewer

processes.

• Example: R/W registers have consensus number 1, test&set,

queues, stacks, fetch and add have consensus number 2 etc.

• Example: There is no wait-free (n + 1, 2j)-renaming protocol if

processes share a read/write memory and (n + 1, j)-consensus

objects.
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References and research directions

• Afek et Strup: characterization of the effect of the register size in

the power of synchronization primitives

• Characterization of complexity and not only computability, see

for instance “Towards a Topological Characterization of

Asynchronous Complexity”, G. Hoest and N. Shavit

• Links with (geometric) semantics [potential for more realistic

models of distributed systems?], for instance my paper in

CAAP’97 “Optimal Implementation of Wait-Free Binary

Relations” ?

• Extension of this model for randomized algorithms etc.?
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