
S05: High Performance Computing with CUDA

Optimizing CUDAOptimizing CUDA
Mark Harris

NVIDIA Developer Technology

2S05: High Performance Computing with CUDA

CUDA is fast and efficientCUDA is fast and efficient

CUDA enables efficient use of the massive
parallelism of NVIDIA GPUs

Direct execution of data-parallel programs
Without the overhead of a graphics API

Using CUDA on Tesla GPUs can provide large
speedups on data-parallel computations straight
out of the box!

Even higher speedups are achievable by
understanding and tuning for GPU architecture

This presentation covers general performance, common
pitfalls, and useful strategies

3S05: High Performance Computing with CUDA

OutlineOutline

General optimization guidance
Coalescing memory operations
Occupancy and latency hiding
Using shared memory

Example 1: transpose
Coalescing and bank conflict avoidance

Example 2: efficient parallel reductions
Using peak performance metrics to guide optimization
Avoiding SIMD divergence & bank conflicts
Loop unrolling
Using template parameters to write general-yet-optimized
code
Algorithmic strategy: Cost efficiency

4S05: High Performance Computing with CUDA

Quick terminology reviewQuick terminology review
Thread: concurrent code and associated state executed on the
CUDA device (in parallel with other threads)

The unit of parallelism in CUDA
Note difference from CPU threads: creation cost, resource
usage, and switching cost of GPU threads is much smaller

Warp: a group of threads executed physically in parallel
(SIMD)

Thread Block: a group of threads that are executed together
and can share memory on a single multiprocessor

Grid: a group of thread blocks that execute a single CUDA
program logically in parallel

Device: GPU Host: CPU
SM: Multiprocessor

5S05: High Performance Computing with CUDA

CUDA Optimization StrategiesCUDA Optimization Strategies

Optimize Algorithms for the GPU

Optimize Memory Access Coherence

Take Advantage of On-Chip Shared Memory

Use Parallelism Efficiently

6S05: High Performance Computing with CUDA

Optimize Algorithms for the GPUOptimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly
data transfers

Even low parallelism computations can sometimes be
faster than transferring back and forth to host

7S05: High Performance Computing with CUDA

Optimize Memory CoherenceOptimize Memory Coherence

Coalesced vs. Non-coalesced = order of magnitude
Global/Local device memory

Optimize for spatial locality in cached texture
memory

In shared memory, avoid high-degree bank conflicts

8S05: High Performance Computing with CUDA

Take Advantage of Shared MemoryTake Advantage of Shared Memory

Hundreds of times faster than global memory
Threads can cooperate via shared memory

Use one / a few threads to load / compute data
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing
Matrix transpose example later

9S05: High Performance Computing with CUDA

Use Parallelism EfficientlyUse Parallelism Efficiently

Partition your computation to keep the GPU
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support
multiple active thread blocks per multiprocessor

Registers, shared memory

10S05: High Performance Computing with CUDA

Global Memory Reads/WritesGlobal Memory Reads/Writes

Highest latency instructions: 400-600 clock cycles
Likely to be performance bottleneck
Optimizations can greatly increase performance

Coalescing: up to 10x speedup

11S05: High Performance Computing with CUDA

CoalescingCoalescing

A coordinated read by a warp
A contiguous region of global memory:

128 bytes - each thread reads a word: int, float, …
256 bytes - each thread reads a double-word: int2, float2, …
512 bytes – each thread reads a quad-word: int4, float4, …

Additional restrictions:
Starting address for a region must be a multiple of region
size
The kth thread in a warp must access the kth element in a
block being read

Exception: not all threads must be participating
Predicated access, divergence within a warp

12S05: High Performance Computing with CUDA

Coalesced Access: Coalesced Access:
Reading floatsReading floats

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All threads participate

13S05: High Performance Computing with CUDA

UncoalescedUncoalesced Access: Access:
Reading floatsReading floats

t0 t1 t2 t14 t15t3

132 136128 140 144

Permuted Access by Threads

184 192188

Misaligned Starting Address (not a multiple of 64)

t0 t1 t2 t13 t15t3

132 136 184 192128 140 144 188

t14

14S05: High Performance Computing with CUDA 14

Coalescing: Coalescing:
Timing ResultsTiming Results

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access

15S05: High Performance Computing with CUDA

UncoalescedUncoalesced float3 Codefloat3 Code

__global__ void accessFloat3(float3 *d_in, float3 d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
float3 a = d_in[index];

a.x += 2;
a.y += 2;
a.z += 2;

d_out[index] = a;
}

16S05: High Performance Computing with CUDA

UncoalescedUncoalesced Access: Access:
float3 Casefloat3 Case

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 12
Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3

17S05: High Performance Computing with CUDA

Coalescing float3 AccessCoalescing float3 Access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …St
ep

 2
St

ep
 1

…

…

…

Similarly, Step3 starting at offset 512

18S05: High Performance Computing with CUDA

Coalesced Access:Coalesced Access:
float3 Casefloat3 Case

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)
These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)
Use thread ID as index

Rest of the compute code does not change!

19

Coalesced float3 CodeCoalesced float3 Code
__global__ void accessInt3Shared(float *g_in, float *g_out)
{

int index = 3 * blockIdx.x * blockDim.x + threadIdx.x;
__shared__ float s_data[256*3];
s_data[threadIdx.x] = g_in[index];
s_data[threadIdx.x+256] = g_in[index+256];
s_data[threadIdx.x+512] = g_in[index+512];
__syncthreads();
float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;
a.y += 2;
a.z += 2;

((float3*)s_data)[threadIdx.x] = a;
__syncthreads();
g_out[index] = s_data[threadIdx.x];
g_out[index+256] = s_data[threadIdx.x+256];
g_out[index+512] = s_data[threadIdx.x+512];

}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM

20S05: High Performance Computing with CUDA

Coalescing:Coalescing:
Structures of Size Structures of Size ≠≠ 4, 8, or 16 Bytes4, 8, or 16 Bytes

Use a structure of arrays instead of AoS
If SoA is not viable:

Force structure alignment: __align(X), where X = 4, 8, or 16
Use SMEM to achieve coalescing

21S05: High Performance Computing with CUDA

Coalescing: Coalescing:
Timing ResultsTiming Results

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
356µs – coalesced
357µs – coalesced, some threads don’t participate

3,494µs – permuted/misaligned thread access
4K blocks x 256 threads:

3,302µs – float3 uncoalesced
359µs – float3 coalesced through shared memory

22S05: High Performance Computing with CUDA

Coalescing: Coalescing:
SummarySummary

Coalescing greatly improves throughput
Critical to small or memory-bound kernels
Reading structures of size other than 4, 8, or 16
bytes will break coalescing:

Prefer Structures of Arrays over AoS
If SoA is not viable, read/write through SMEM

Futureproof code: coalesce over whole warps
Additional resources:

Aligned Types CUDA SDK Sample

23S05: High Performance Computing with CUDA

Data TransfersData Transfers

Device memory to host memory bandwidth much
lower than device memory to device bandwidth

4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

Minimize transfers
Intermediate data structures can be allocated, operated
on, and deallocated without ever copying them to host
memory

Group transfers
One large transfer much better than many small ones

24S05: High Performance Computing with CUDA

PagePage--Locked Memory TransfersLocked Memory Transfers

cudaMallocHost() allows allocation of page-locked
host memory
Enables highest cudaMemcpy performance

3.2 GB/s+ common on PCI-express x16
~4 GB/s measured on nForce 680i motherboards
(overclocked PCI-e)

See the “bandwidthTest” CUDA SDK sample

Use with caution
Allocating too much page-locked memory can reduce
overall system performance
Test your systems and apps to learn their limits

25S05: High Performance Computing with CUDA

OccupancyOccupancy

Thread instructions executed sequentially,
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

Minimize occupancy requirements by minimizing
latency
Maximize occupancy by optimizing threads per
multiprocessor

26S05: High Performance Computing with CUDA

Occupancy != PerformanceOccupancy != Performance

Increasing occupancy does not necessarily
increase performance

BUT…

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available
parallelism)

27S05: High Performance Computing with CUDA

Grid/Block Size HeuristicsGrid/Block Size Heuristics

of blocks / # of multiprocessors > 1
So all multiprocessors have at least one block to execute

Per-block resources at most half of total available
Shared memory and registers
Multiple blocks can run concurrently in a multiprocessor
If multiple blocks coexist that aren’t all waiting at a
__syncthreads(), machine can stay busy

of blocks / # of multiprocessors > 2
So multiple blocks run concurrently in a multiprocessor

of blocks > 100 to scale to future devices
Blocks stream through machine in pipeline fashion
1000 blocks per grid will scale across multiple generations

28S05: High Performance Computing with CUDA

Parameterize Your ApplicationParameterize Your Application

Parameterization helps adaptation to different GPUs
GPUs vary in many ways

of multiprocessors
Memory bandwidth
Shared memory size
Register file size
Threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal
configuration

S05: High Performance Computing with CUDA

Optimization Example 1: Optimization Example 1:
Matrix TransposeMatrix Transpose

30S05: High Performance Computing with CUDA

Matrix TransposeMatrix Transpose

SDK Sample (“transpose”)
Illustrates coalescing using shared memory

Speedups for even small matrices

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

31S05: High Performance Computing with CUDA

UncoalescedUncoalesced TransposeTranspose

__global__ void transpose_naive(float *odata, float *idata, int width, int height)
{

unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

if (xIndex < width && yIndex < height)
{

unsigned int index_in = xIndex + width * yIndex;
unsigned int index_out = yIndex + height * xIndex;
odata[index_out] = idata[index_in];

}
}

1.
2.

3.

4.
5.
6.

32S05: High Performance Computing with CUDA

UncoalescedUncoalesced TransposeTranspose

Reads input from GMEM

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

Write output to GMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

Stride = 16, uncoalesced

GMEMGMEM

Stride = 1, coalesced

33S05: High Performance Computing with CUDA

Coalesced TransposeCoalesced Transpose

Assumption: matrix is partitioned into square tiles
Threadblock (bx, by):

Read the (bx,by) input tile, store into SMEM
Write the SMEM data to (by,bx) output tile

Transpose the indexing into SMEM

Thread (tx,ty):
Reads element (tx,ty) from input tile
Writes element (tx,ty) into output tile

Coalescing is achieved if:
Block/tile dimensions are multiples of 16

34

Coalesced TransposeCoalesced Transpose

Writes to GMEMReads from SMEM

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

Writes to SMEMReads from GMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

1,151,21,11,0

0,150,20,10,0

15,1515,215,115,0

35

Coalesced TransposeCoalesced Transpose
__global__ void transpose(float *odata, float *idata, int width, int height)
{

__shared__ float block[BLOCK_DIM*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;
unsigned int yBlock = blockDim.y * blockIdx.y;
unsigned int xIndex = xBlock + threadIdx.x;
unsigned int yIndex = yBlock + threadIdx.y;
unsigned int index_out, index_transpose;

if (xIndex < width && yIndex < height)
{

unsigned int index_in = width * yIndex + xIndex;
unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;
block[index_block] = idata[index_in];
index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;
index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}
__syncthreads();

if (xIndex < width && yIndex < height)
odata[index_out] = block[index_transpose];

}

1.

2.
3.
4.
5.
6.

7.

8.
9.

10.
11.
12.

13.

14.
15.

36S05: High Performance Computing with CUDA

Transpose TimingsTranspose Timings

Speedups with coalescing
128x128: 0.011ms vs. 0.022ms (2.0X speedup)
512x512: 0.07ms vs. 0.33ms (4.5X speedup)

1024x1024: 0.30ms vs. 1.92ms (6.4X speedup)
1024x2048: 0.79ms vs. 6.6ms (8.4X speedup)

(Note: above times also include optimization for shared
memory bank conflicts. Only accounts for ~10% of
speedup – see transpose SDK example.)

S05: High Performance Computing with CUDA

Optimization Example 2:Optimization Example 2:
Parallel ReductionParallel Reduction

38S05: High Performance Computing with CUDA

Parallel ReductionParallel Reduction

Common and important data parallel primitive

Easy to implement in CUDA
Harder to get it right

Serves as a great optimization example
We’ll walk step by step through 7 different versions
Demonstrates several important optimization strategies

39S05: High Performance Computing with CUDA

Parallel ReductionParallel Reduction

Tree-based approach used within each thread block

Need to be able to use multiple thread blocks
To process very large arrays
To keep all multiprocessors on the GPU busy
Each thread block reduces a portion of the array

But how do we communicate partial results between
thread blocks?

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

40S05: High Performance Computing with CUDA

Problem: Global SynchronizationProblem: Global Synchronization

If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?

Global sync after each block produces its result
Once all blocks reach sync, continue recursively

But CUDA has no global synchronization. Why?
Expensive to build in hardware for GPUs with high processor
count
Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

Solution: decompose into multiple kernels
Kernel launch serves as a global synchronization point
Kernel launch has negligible HW overhead, low SW overhead

41S05: High Performance Computing with CUDA

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:
8 blocks

Level 1:
1 block

42S05: High Performance Computing with CUDA

What is Our Optimization Goal?What is Our Optimization Goal?

We should strive to reach GPU peak performance
Choose the right metric:

GFLOP/s: for compute-bound kernels
Bandwidth: for memory-bound kernels

Reductions have very low arithmetic intensity
1 flop per element loaded (bandwidth-optimal)

Therefore we should strive for peak bandwidth

Will use G80 GPU for this example
384-bit memory interface, 900 MHz DDR
384 * 1800 / 8 = 86.4 GB/s

43S05: High Performance Computing with CUDA

Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing
__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

44S05: High Performance Computing with CUDA

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

22111179-3-558-2-2-17111Values

0 1 2 3

22111379-3458-26-17118Values

0 1

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Thread
IDs

Thread
IDs

45S05: High Performance Computing with CUDA

Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing
__global__ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Problem: highly divergent
branching results in very poor

performance!

46S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

2.083 GB/s8.054 msKernel 1:
interleaved addressing
with divergent branching

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)

47

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

Reduction #2: Interleaved AddressingReduction #2: Interleaved Addressing
Just replace divergent branch in inner loop:

With strided index and non-divergent branch:

New Problem:
Shared Memory
Bank Conflicts

48S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

2.33x4.854 GB/s

2.083 GB/s

2.33x3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

49

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict free

50

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

Reduction #3: Sequential AddressingReduction #3: Sequential Addressing
Just replace strided indexing in inner loop:

With reversed loop and threadID-based indexing:

51S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

2.01x

2.33x

9.741 GB/s

4.854 GB/s

2.083 GB/s

4.68x

2.33x

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

52S05: High Performance Computing with CUDA

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

Idle ThreadsIdle Threads
Problem:

Half of the threads are idle on first loop iteration!

This is wasteful…

53S05: High Performance Computing with CUDA

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
__syncthreads();

// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

Reduction #4: First Add During LoadReduction #4: First Add During Load
Halve the number of blocks, and replace single load:

With two loads and first add of the reduction:

54S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

1.78x

2.01x

2.33x

17.377 GB/s

9.741 GB/s

4.854 GB/s

2.083 GB/s

8.34x

4.68x

2.33x

0.965 msKernel 4:
first add during global load

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

55S05: High Performance Computing with CUDA

Instruction BottleneckInstruction Bottleneck

At 17 GB/s, we’re far from bandwidth bound
And we know reduction has low arithmetic intensity

Therefore a likely bottleneck is instruction overhead
Ancillary instructions that are not loads, stores, or
arithmetic for the core computation
In other words: address arithmetic and loop overhead

Strategy: unroll loops

56S05: High Performance Computing with CUDA

Unrolling the Last WarpUnrolling the Last Warp

As reduction proceeds, # “active” threads decreases
When s <= 32, we have only one warp left

Instructions are SIMD synchronous within a warp
That means when s <= 32:

We don’t need to __syncthreads()
We don’t need “if (tid < s)” because it doesn’t save any
work

Let’s unroll the last 6 iterations of the inner loop

57

for (unsigned int s=blockDim.x/2; s>32; s>>=1)
{

if (tid < s)
sdata[tid] += sdata[tid + s];

__syncthreads();
}

if (tid < 32)
{

sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];

}

Reduction #5: Unroll the Last WarpReduction #5: Unroll the Last Warp

Note: This saves useless work in all warps, not just the last one!
Without unrolling, all warps execute every iteration of the for loop and if statement

58S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

1.8x

1.78x

2.01x

2.33x

31.289 GB/s

17.377 GB/s

9.741 GB/s

4.854 GB/s

2.083 GB/s

15.01x

8.34x

4.68x

2.33x

0.536 msKernel 5:
unroll last warp

0.965 msKernel 4:
first add during global load

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

59

Complete UnrollingComplete Unrolling

If we knew the number of iterations at compile time,
we could completely unroll the reduction

Luckily, the block size is limited by the GPU to 512 threads
Also, we are sticking to power-of-2 block sizes

So we can easily unroll for a fixed block size
But we need to be generic – how can we unroll for block
sizes that we don’t know at compile time?

Templates to the rescue!
CUDA supports C++ template parameters on device and
host functions

60S05: High Performance Computing with CUDA

Unrolling with TemplatesUnrolling with Templates

Specify block size as a function template parameter:

template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)

61

Reduction #6: Completely UnrolledReduction #6: Completely Unrolled
if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads();
}
if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads();
}
if (blockSize >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads();
}

if (tid < 32) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

Note: all code in RED will be evaluated at compile time.
Results in a very efficient inner loop!

62

Invoking Template KernelsInvoking Template Kernels
Don’t we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:
switch (threads)

{
case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 256:

reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 128:

reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 64:

reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 32:

reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 16:

reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 8:

reduce5< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 4:

reduce5< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 2:

reduce5< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 1:

reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}

63S05: High Performance Computing with CUDA

Performance for 4M element reductionPerformance for 4M element reduction

1.41x

1.8x

1.78x

2.01x

2.33x

43.996 GB/s

31.289 GB/s

17.377 GB/s

9.741 GB/s

4.854 GB/s

2.083 GB/s

21.16x

15.01x

8.34x

4.68x

2.33x

0.381 msKernel 6:
completely unrolled

0.536 msKernel 5:
unroll last warp

0.965 msKernel 4:
first add during global load

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

64S05: High Performance Computing with CUDA

Parallel Reduction ComplexityParallel Reduction Complexity

Log(N) parallel steps, each step S does N/2S

independent ops
Step Complexity is O(log N)

For N=2D, performs ∑S∈[1..D]2D-S = N-1 operations
Work Complexity is O(N) – It is work-efficient
i.e. does not perform more operations than a sequential
algorithm

With P threads physically in parallel (P processors),
time complexity is O(N/P + log N)

Compare to O(N) for sequential reduction
In a thread block, N=P, so O(log N)

65S05: High Performance Computing with CUDA

What About What About Cost?Cost?

Cost of a parallel algorithm is processors × time
complexity

Allocate threads instead of processors: O(N) threads
Within a block, time complexity is O(log N), so cost is
O(N log N) : not cost efficient!

Brent’s theorem suggests O(N/log N) threads
Each thread does O(log N) sequential work
Then all O(N/log N) threads cooperate for O(log N) steps
Cost = O((N/log N) * log N) = O(N)

Sometimes called algorithm cascading
Can lead to significant speedups in practice

66

Algorithm CascadingAlgorithm Cascading

Combine sequential and parallel reduction
Each thread loads and sums multiple elements into
shared memory
Tree-based reduction in shared memory

Brent’s theorem says each thread should sum
O(log n) elements

i.e. 1024 or 2048 elements per block vs. 256
In my experience, beneficial to push it even further

Possibly better latency hiding with more work per thread
More threads per block reduces levels in tree of recursive
kernel invocations
High kernel launch overhead in last levels with few blocks

On G80, best perf with 64-256 blocks of 128 threads
1024-4096 elements per thread

67

unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

Reduction #7: Multiple Adds / ThreadReduction #7: Multiple Adds / Thread

Replace load and add of two elements:

With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;

}
__syncthreads();

68

unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

Reduction #7: Multiple Adds / ThreadReduction #7: Multiple Adds / Thread

Replace load and add of two elements:

With a while loop to add as many as necessary:
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;

}
__syncthreads();

Note: gridSize loop stride
to maintain coalescing!

69

Performance for 4M element reductionPerformance for 4M element reduction

1.42x

1.41x

1.8x

1.78x

2.01x

2.33x

62.671 GB/s

43.996 GB/s

31.289 GB/s

17.377 GB/s

9.741 GB/s

4.854 GB/s

2.083 GB/s

30.04x

21.16x

15.01x

8.34x

4.68x

2.33x

0.268 msKernel 7:
multiple elements per thread

0.381 msKernel 6:
completely unrolled

0.536 msKernel 5:
unroll last warp

0.965 msKernel 4:
first add during global load

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1:
interleaved addressing
with divergent branching

Kernel 7 on 16M elements: 72 GB/s!

Step
SpeedupBandwidthTime (222 ints)

Cumulative
Speedup

70

template <unsigned int blockSize>
__global__ void reduce6(int *g_idata, int *g_odata, unsigned int n)
{

extern __shared__ int sdata[];

unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

do { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; } while (i < n);
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }

if (tid < 32) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Final Optimized Kernel

71

Performance ComparisonPerformance Comparison

0.01

0.1

1

10

131072
262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

Elements

Ti
m

e
(m

s)

1: Interleaved Addressing:
Divergent Branches

2: Interleaved Addressing:
Bank Conflicts

3: Sequential Addressing

4: First add during global
load

5: Unroll last warp

6: Completely unroll

7: Multiple elements per
thread (max 64 blocks)

72

Types of optimizationTypes of optimization

Interesting observation:

Algorithmic optimizations
Changes to addressing, algorithm cascading
11.84x speedup, combined!

Code optimizations
Loop unrolling
2.54x speedup, combined

73

ConclusionConclusion
Understand CUDA performance characteristics

Memory coalescing
Divergent branching
Bank conflicts
Latency hiding

Use peak performance metrics to guide optimization
Understand parallel algorithm complexity theory
Know how to identify type of bottleneck

e.g. memory, core computation, or instruction overhead
Optimize your algorithm, then unroll loops
Use template parameters to generate optimal code

Questions: mharris@nvidia.com

S05: High Performance Computing with CUDA

Extra SlidesExtra Slides

75

Parallel Memory ArchitectureParallel Memory Architecture

In a parallel machine, many threads access memory
Therefore, memory is divided into banks
Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

76

Bank Addressing ExamplesBank Addressing Examples

No Bank Conflicts
Linear addressing
stride == 1

No Bank Conflicts
Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

77

Bank Addressing ExamplesBank Addressing Examples

2-way Bank Conflicts
Linear addressing
stride == 2

8-way Bank Conflicts
Linear addressing
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

78

How addresses map to banks on G80How addresses map to banks on G80

Bandwidth of each bank is 32 bits per 2 clock cycles
Successive 32-bit words are assigned to successive
banks
G80 has 16 banks

So bank = address % 16
Same as the size of a half-warp

No bank conflicts possible between threads in first and
second half of a warp

Shared memory is as fast as registers if there are no
bank conflicts

79

Shared memory bank conflictsShared memory bank conflicts

No conflicts:
If all threads of a half-warp access different banks, there is
no bank conflict
If all threads of a half-warp read the identical address,
there is no bank conflict (broadcast)

Conflicts:
Bank Conflict: multiple threads in the same half-warp
access the same bank
Must serialize the accesses
Cost = max # of simultaneous accesses to a single bank

80

Optimizing threads per blockOptimizing threads per block
Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps
More threads per block == better memory latency
hiding
But, more threads per block == fewer registers per
thread

Kernel invocations can fail if too many registers are used
Heuristics

Minimum: 64 threads per block
Only if multiple concurrent blocks

128 to 256 threads a better choice
Usually still enough regs to compile and invoke successfully

This all depends on your computation!
Experiment!

81

Latency Hiding: Latency Hiding:
Global MemoryGlobal Memory

Global memory access: 400-600 cycle latency
Blocks dependent instructions in the same thread

Remedy:
More threads!
Instructions in other threads are not blocked
Maximize occupancy

Same idea as pipelining:
4 sequential reads take at least 4*400 = 1,600 cycles

4 threads, one read each, take: 400+1+1+1 = 403 cycles

82

Latency Hiding: Latency Hiding:
Global MemoryGlobal Memory

Multiprocessor can run up to 768 threads
Max threadblock size is 512 threads

Configurations with 100% occupancy:
2 blocks x 384 threads
3 blocks x 256 threads
4 blocks x 192 threads
6 blocks x 128 threads
8 blocks x 96 threads

Minimal latency:
50% or higher occupancy AND
128 or more threads/block

83

Latency Hiding: Latency Hiding:
Register DependencyRegister Dependency

Read-after-write register dependency
Instruction’s result can be read 11 cycles later
Scenarios: CUDA: PTX:

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy
Threads do not have to belong to the same thread block

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

84

Latency Hiding: Latency Hiding:
SynchronizationSynchronization

Thread synchronization (__syncthreads)
More threads per block = higher latency

Waiting on threads in other warps to reach the sync point
Smaller thread blocks will reduce latency
BUT: usually not really a problem

85

Register PressureRegister Pressure

Solution to latency issues = more threads per SM
Limiting Factors:

Number of registers per kernel
8192 per SM, partitioned among concurrent threads

Amount of shared memory
16KB per SM, partitioned among concurrent threadblocks

Check .cubin file for # registers / kernel
Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel
At some point “spilling” into LMEM may occur

Reduces performance – LMEM is slow
Check .cubin file for LMEM usage

86

Determining resource usageDetermining resource usage
Compile the kernel code with the -cubin flag to
determine register usage.
Open the .cubin file with a text editor and look for
the “code” section.

architecture {sm_10}
abiversion {0}
modname {cubin}
code {

name = BlackScholesGPU
lmem = 0
smem = 68
reg = 20
bar = 0
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780
…

per thread local memory

per thread block shared memory

per thread registers

87

CUDA Occupancy CalculatorCUDA Occupancy Calculator

88

SMEM OptimizationSMEM Optimization

Threads read SMEM with stride = 16
Bank conflicts

Reads from SMEM

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

Solution
Allocate an “extra” column
Read stride = 17
Threads read from consecutive banks

15,12,11,10,1

15,02,01,00,0

15,152,151,150,15

