
▌ 1

TUTORIAL ON THE UML

François Terrier

CEA Saclay Nano-INNOV - Institut CARNOT CEA LIST, DILS/LISE
Point Courrier n° 174 - 91 191 Gif sur Yvette CEDEX

francois.terrier@cea.fr
www.omg.org

www.eclipse.org/papyrus

▌ 2

• Language = syntax + semantics
• Syntax = rules by which language elements (e.g., words)

are assembled into expressions (e.g., phrases, clauses)
• Semantics = rules by which syntactic expressions are

assigned meanings

 Générique et Expressif

Syntaxe et sémantique
 Notion de syntaxe abstraite :

on dissocie les concepts des choix de représentation
(apparence du langage)

UNIFIED MODELING LANGUAGE

▌ 3

ABSTRACT SYNTAX DEFINITION

Rules for naming, scoping, visibility, integrity
+ execution (limited)

Example of semantic rule: Class [1]
• English: If a Class is concrete, all the Operations of the Class should have a

realizing Method in the full descriptor.

• OCL: not self.isAbstract implies self.allOperations->
forAll (op | self.allMethods->

exists (m | m.specification-> includes(op)))

Example of syntactic rules: Class
• Basic Notation:

• e.g. “A class is drawn as a solid-outline rectangle with three compartments separated
by horizontal lines.”

• Presentation Option
• e.g. “Either or both of the attribute and operation compartments may be suppressed.”

F. Terrier

▌ 4

Model Diagrams/Views

Model Element Graphical Element Diagram
11 1 *

UML: A GRAPHICAL MODELING LANGUAGE

• When you delete an element from the model you delete all its graphical
elements from the diagram.

• When you delete a graphical element, you DO NOT necessarily delete
the corresponding element in the model.

▌ 5

A unique formalism for any application type
• Data base, embedded systems, multimedia, information system…

! But UML stay at the language level
 it does not propose any development process/method

• nor concerning development task organisation

• or concerning responsability distribiution

• or related to usage rules

UML SCOPE

▌ 6

View point synthesis
• Static and structural

• Dynamic and behavioral

• Fonctionnal

An incremental approach
• From analysis to implementation through design with

iterative refiment steps using the same formalism
• No language discontinuity
• Possibility of continuous tool chain

A UML BASED APPROACH

▌ 7

UML is a notation, not a method
UML is adequat for all the object methods
UML is a modeling language almost but not

necessarly object oriented…
UML is free and public

SUMMARY

UML is the standard notation to build object
models, architectures and

to describe behaviors

▌ 8

UMLStructure
Diagram

UMLStructure
Diagram

Package
Diagram
Package
Diagram

Class
Diagram

Class
Diagram

Composite
Structure
Diagram

Composite
Structure
Diagram

Component
Diagram

Component
Diagram

Deployment
Diagram

Deployment
Diagram

Profile
Diagram
Profile

Diagram

UML Behavior
Diagram

UML Behavior
Diagram

StateMachine
Diagram

StateMachine
Diagram

Activity
Diagram
Activity
Diagram

Use Case
Diagram
Use Case
Diagram

Interaction DiagramInteraction Diagram

Sequence
Diagram

Sequence
Diagram

Communication
Diagram

Communication
Diagram

Timing
Diagram
Timing

Diagram
Interaction
Overview
Diagram

Interaction
Overview
Diagram

UML DIAGRAMS

Model
organization Language

extension

Functional views

Dynamic (behavioral, reactive) views

Static (structural) views

Functional views

▌ 9

Synthesis of several view points
• Fonctionnal: usage and algorithms
• Static: structure
• Dynamic: reactive behaviour and interactions
 Ensure the consistency among the view points

Incremental approach of the development process
from problem analysis to system implementation
through iterative refinements of the system model (or
set of models) using the same formalism!
• No language discontinuity
• Possibility of continuity among the tools

UML BASED APPROACH

▌ 10

Complementary models for complementary views
of a complete model in an incremental approach

F. Terrier

Model 1: use of the system

Model 2: system interaction with
the external environment

Model 3: internal
structure

Model 4: system
component interactions

Model 5: system
component behavior

 Consistency rules to ensure non ambiguous modeling
 Formal analysis of the models becomes possible

Model 6: component
operation specification

Model 0: Requirements

UMLStructure
Diagram

UMLStructure
Diagram

Package
Diagram
Package
Diagram

Class
Diagram

Class
Diagram

Composite
Structure
Diagram

Composite
Structure
Diagram

Component
Diagram

Component
Diagram

Deployment
Diagram

Deployment
Diagram

Profile
Diagram
Profile

Diagram

UML Behavior
Diagram

UML Behavior
Diagram

StateMachine
Diagram

StateMachine
Diagram

Activity
Diagram
Activity
Diagram

Use Case
Diagram
Use Case
Diagram

Interaction DiagramInteraction Diagram

Sequence
Diagram

Sequence
Diagram

Communication
Diagram

Communication
Diagram

Timing
Diagram
Timing

Diagram
Interaction
Overview
Diagram

Interaction
Overview
Diagram

UML Class Diagrams

▌ 12

WHAT IS FOR THE STRUCTURAL DIAGRAM

A structural model is a view of a system that
emphasizes the structure of its elements: here its
objects, including their classifiers, relationships,

attributes and operations

▌ 13

Core elements are:
• Class is a description of a set of objects that share the same

attributes, operations, methods, relationships and semantics;
• Interface is a named set of operations that characterize the

behavior of an element;
• Package is a way to organize the models into parts.

Relationship elements are:
• Association representing a structural relation
• Generalization representing a conceptual abstraction relation
• Dependency representing a technical link relation

FEATURES OF THE STRUCTURAL DIAGRAM

▌ 14

start()
stop()
calcTorque(curSp: in float): TorqueValue

Operation

CLASSIFIER

maxSp: float
targetSp: float

Properties

TorqueManager

Class

Public +
+

+Private

-

-

Signature

myTorqueMng: TorqueManager
Object = Instance of

a Classifier

maxSp = 130
targetSp = 90

Object with
valuated properties

▌ 15

Association links communicating classes
(~ message support medium)

• Multiplicity
• Role names
• Association name
• Navigabiltiy

Special forms of association
• Aggregation specifies a whole-part relationship

between the container and the contained parts
• contained parts may exist independently of their container

• Composition denotes a strong ownership
• life of contained objects is dependent of the container life

RELATIONSHIP - ASSOCIATION

▌ 16

It denotes the delegation of some subprocessing to
other objects…
Example

RELATIONSHIP - ASSOCIATION

SpeedSensor

getSpeed()

RegulatingLaw

An object of RegulatingLaw type
needs to access to the current speed
value via the call of an operation of
an object of SpeedSensor type

Reference name of
SpeedSensor object is: mySpS
 called « role »

mySpS

▌ 17

Example

RELATIONSHIP - COMPOSITION

RegulatingLaw Regulator

Instances of RegulatingLaw used by
Regulator objects are created only after
the regulator is created and destroyed at
last when it will be destroyed = Regulator
objects are responsabile of the
management of the RegulatingLaw
objects it needs.

Number of used
instances : « arity »

regLaw
0...*

Regulator

RegulatingLaw

 Equivalent notation:

▌ 18

It denotes a semantic (or functional) usage between
two classes (technical dependency).
Example

RELATIONSHIP - DEPENDENCY

SpeedSensor

getSpeed() : Speed
Speed

Functional link
 Dependency relationship with the Speed class

▌ 19

It introduces inheritance relationship
• link parent to children classes

• inheritance of features
• Structural – Attributes & Relationships
• Behavioral – Statemachine & Operations

• Multiple inheritance is possible

RELATIONSHIP - GENERALIZATION

Regulator

Regulator_S

regLaw

0..*
RegulatingLaw Regulator

role

arityassociation

SpeedSensor

sp 0..*

generalization
composition

maintanSpeed();

tgSpeed: integer;

UMLStructure
Diagram

UMLStructure
Diagram

Package
Diagram
Package
Diagram

Class
Diagram

Class
Diagram

Composite
Structure
Diagram

Composite
Structure
Diagram

Component
Diagram

Component
Diagram

Deployment
Diagram

Deployment
Diagram

Profile
Diagram
Profile

Diagram

UML Behavior
Diagram

UML Behavior
Diagram

StateMachine
Diagram

StateMachine
Diagram

Activity
Diagram
Activity
Diagram

Use Case
Diagram
Use Case
Diagram

Interaction DiagramInteraction Diagram

Sequence
Diagram

Sequence
Diagram

Communication
Diagram

Communication
Diagram

Timing
Diagram
Timing

Diagram
Interaction
Overview
Diagram

Interaction
Overview
Diagram

UML Package Diagrams

▌ 21

RegulatorDisplay

0..1display

Regulator_S

Regulator_S

tgSpeed: integer;
maintanSpeed();

Regulator
regLaw

0..*

Speed

sp 0..*

RegulatingLaw

sp: SpeedSensor
0..1

CLASS DIAGRAM - PACKAGE

Package

Dependency

Just a way to:
- organize the models
- Identify dependencies among model subsets
- Define naming scopes

UML Communications

▌ 23

Communication: only by message passing
• A message = an action + an event

• Usually point to point communication,
but possibility to have a set of targets

Two types of message sending
• Operation call (CallAction + CallEvent)

• Synchronous/asynchronous, input and output parameters
Synchronous = wait the end of the process trigered by the call before
to continue the caller process serialization
Asynchronous = continue the caller process as soon as the message
has been sent (the call is made)  parallelism

• Signal sending (SendAction + SignalEvent)
• Asynchronous communication, input parameters only

UML COMMUNICATION MECHANISMS

▌ 24

In operation call:
• Call requires explicit link (knowledge) between

the sender and the receiver (target of the call)

OPERATION CALL

Class diagram
:Regulator regLaw:RegulatingLawgetDeltaTorque

Role diagram

Regulator
RegulatingLaw

getDeltaTorque(): float

regLaw

1maintanSpeed()

…

torque = regLaw->getDeltaTorque()

…

▌ 25

In operation call:
• Choice (static/dynamic) of called operation

as defined by the actual target type

OPERATION CALL AND INHERITENCE

Class diagram

Regulator
RegulatingLaw

getDeltaTorque(): float

RegulatingLaw_v1
getDeltaTorque(): float

RegulatingLaw_v2
getDeltaTorque(): float

regLaw

1

:Regulator regLaw:RegulatingLaw
getDeltaTorque

Role diagram

:Regulator
{self.regLaw=rl1} rl1:RegulatingLaw_v1

getDeltaTorque

Instance diagram:
RegulatingLaw_v1::getDeltaTorque called

:Regulator
{self.regLaw=rl2} rl2:RegulatingLaw_v2

getDeltaTorque

Instance diagram:
RegulatingLaw_v2::getDeltaTorque called

:Regulator
{self.regLaw=rl} rl:RegulatingLaw

getDeltaTorque

Instance diagram:
RegulatingLaw::getDeltaTorque calledmaintanSpeed()

…

torque =
regLaw->getDeltaTorque()

…

{rl=regLaw}

{rl1=regLaw}

{rl2=regLaw}

▌ 26

• Independent declaration of the signals

• Possibly no explicit link required between sender and receiver

• Choice of target depending of target set definition

• Any inheriting signal maps to base class reception

SIGNAL SENDING

Class diagram « signal »
Start

RegulatingLaw_v1

RegulatingLaw
« Reception »

Start

« signal »
Start_v1

Regulator

…

Start::send()

…

PowerManager
« Reception »

Start_v1

all instances of RegulatingLaw
catch Start

all instances of RegulatingLaw_v1
catch Start

all instances of PowerManager
catch Start_v1 (but not Start)

all instances of RegulatingLaw and RegulatingLaw_1
catch Start_v1 as a Start

ft4

Diapositive 26

ft4 Clarifier l’émission
ft121910; 05/01/2006

UML Active Objects

▌ 28

Active objects

Regulator_S

ACTIVE OBJECTS

regLaw

0..*
RegulatingLaw Regulator

SpeedSensor

sp 0..* Active objectsactive objects

maintanSpeed();

tgSpeed: integer;

 Object types having their own execution thread(s)
 A way to declare // entities inside the model
 Implementation agnostic

(virtual, task based, multi-cpu, distributed systems, etc.)

▌ 29

Simple server model:

OBJECT BEHAVIOR - GENERAL MODEL

Handle
Request

Initialize
Object

Terminate
Object

Wait for
Request

void:offHook ();
{busy = true;
obj.reqDialtone();
…
};

Handling depends on
specific request type

Passive or active objects

▌ 30

Handle
Request

Initialize
Object

Terminate
Object

Wait for
Request

Handle
Request

Initialize
Object

Terminate
Object

Wait for
Request

Passive objects: depend on external active resource
(e.g. thread of execution…)

Active objects: self-powered (e.g. own their thread of execution)

OBJECT NATURE AND THREADS

Passive object Active object

▌ 31

Encapsulation does not protect the object from concurrency conflicts!
Explicit synchronization is still required

DYNAMIC SEMANTICS OF PASSIVE OBJECTS

Handle
Request

Initialize
Object

Terminate
Object

Wait for
Request

▌ 32

Run-to-completion model:
• serialized event handling

• eliminates internal concurrency

• minimal context switching overhead

DYNAMIC SEMANTICS OF ACTIVE OBJECTS

anActiveObject:

UMLStructure
Diagram

UMLStructure
Diagram

Package
Diagram
Package
Diagram

Class
Diagram

Class
Diagram

Composite
Structure
Diagram

Composite
Structure
Diagram

Component
Diagram

Component
Diagram

Deployment
Diagram

Deployment
Diagram

Profile
Diagram
Profile

Diagram

UML Behavior
Diagram

UML Behavior
Diagram

StateMachine
Diagram

StateMachine
Diagram

Activity
Diagram
Activity
Diagram

Use Case
Diagram
Use Case
Diagram

Interaction DiagramInteraction Diagram

Sequence
Diagram

Sequence
Diagram

Communication
Diagram

Communication
Diagram

Timing
Diagram
Timing

Diagram
Interaction
Overview
Diagram

Interaction
Overview
Diagram

UML Compoent Diagrams

▌ 34

An external view (or “black-box” view)
• Publicly visible properties and operations.
• Behavior may be attached to interface and to the component itself.
• Component wiring via dependencies between interfaces.

An internal view (or “white-box” view)
• Private properties and realizing classifiers.
• External and internal views mapping:

• Delegation connectors to internal parts
• More detailed behavior specifications (e.g. interactions and activities)

may be used to detail the mapping.

NOTION OF COMPONENT: TWO VIEWS

▌ 35

Self contained unit that encapsulates the state and behavior of a
number of classifiers by specifying:
• Interfaces

• Provided interfaces
Formal contract of the services available for clients.

• Required interfaces
Requirements from other components or services in the system.

• Or ports
• Typed by required or/and provided interfaces

Substitutable unit that can be replaced at design time or run-time
by a component that offers equivalent functionality based on
compatibility of its interfaces.

OUTLINES OF THE COMPONENT CONCEPT

▌ 36

Required and provided interfaces allow for the specification of:
• Structural features (attribute, association…)

• Behavioral features (operation/reception, statemachine…)

Provided interfaces may be directly implemented by a component
or by some of its realizing classifiers.

Required interfaces are designated by a usage dependency from
the Component or one of its realizing classifiers.

Required and provided interfaces may optionally be organized
through ports.

INTERFACES OF COMPONENTS

▌ 37

Declaration of a set of coherent public features and obligations.
Contract that any instance realizing it must fulfill.

• Possible additional constraints
• pre- and post-conditions
• protocol state machine that imposes ordering restrictions

on interactions through one interface.

Since interfaces are declarations, they are not instantiable.

• Either realized by a component or parts of a component.

• Or realized by ports attached to component (or a composite class).

A given classifier may implement more than one interface.

One interface may be implemented by a number of different classifiers.

OUTLINES OF THE INTERFACE CONCEPT

▌ 38

NOTATION FOR EXTERNAL VIEW
("BLACK-BOX" VIEW)

Starter Display

« component »
SpeedRegulator

Figure1: condensed notation

« component »
SpeedRegulator

« use » « Interface »
Display

« Interface »
Starter

Figure2: notation with explicit interfaces

offered required
component

realization
usage

▌ 39

 PUBLIC, PARTIAL AND ABSTRACT VIEW
OF A CLASSIFIER

(WITHOUT IMPLEMENTATION: NO INSTANCES OF
INTERFACES)

RegStarter RegDisplay

« component »
SpeedRegulator

« component »
SpeedRegulator

« use » « interface »
Display

« interface »
Starter

Figure2: notation with
detailled interfaces

start()
stop()

maxSp: float

 Defined as types, apply to classifiers and component types

receptions
OnOff

▌ 40

INTERFACE: REALIZATION

« Interface »
Starter

start()
stop()

maxSp: float

TorqueManager

start()
stop()
calcTorque()

maxSp: float
targetSp: float

« Interface »
Alarm

stop()

 Realization relationship is a conforming realization dependencies

reception
OnOff

reception
OnOff

reception
OnOff

Commissariat à l’énergie atomique et aux énergies alternatives
Institut Carnot CEA LIST
Centre de Saclay | 91191 Gif-sur-Yvette Cedex
T. +33 (0)169 077 093 | M. +33 (0)688 200 047

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction DRT
Département DILS
Laboratoire LISE

www.eclipse.org/papyrus

