PRFSYS — Foundations of Proof Systems

Exam

Nov. 25th 2025

1 Trees in system F

We suppose we have already defined the type nat of natural numbers together with 0 and S and the addition function over them.

Question 1 Define a type Tree representing binary trees with natural numbers at the nodes, and nothing at the leaves.

That is, define Tree and two terms:

- Leaf : Tree
- Node : nat \rightarrow Tree \rightarrow Tree \rightarrow Tree.

Question 2 Construct a function count : Tree \rightarrow nat which counts the number of nodes of a tree (without taking the leaves into account).

 \Diamond

 \Diamond

Question 3 Construct function tsum : Tree \rightarrow nat which returns the sum of the values at the nodes.

2 Impredicative Definitions of Properties

We are in HOL. We consider as given the type nat with 0 and S, as well as a type list and two constants nil : list and cons : nat \rightarrow list \rightarrow list.

Question 4 Define \leq : nat \rightarrow nat \rightarrow o which states that a number is less or equal than another.

Question 5 Define low: nat \rightarrow list \rightarrow o which states that either a number is less or equal than the first element of a list, or the list is empty.

Question 6 Define sorted : list $\rightarrow o$ which states that a list is sorted.

3 Exercises in Type Theory

Question 7 We are in Martin-Löf's Type Theory.

Fill in the blanks, so that the following statements ought to hold; or say when they cannot hold.

For instance, for $[] \vdash 0 : \Box$, you should answer N (it is not necessary to mention wellformed types convertible to N). You may want to add some remarks or side conditions, but do not go into long explanations.

$$[] \vdash (a,b):$$

$$\Gamma \vdash \lambda x : A.t :$$

$$(2)$$

$$\Gamma + \lambda x : A.t :$$
 (2)

$$[] \vdash \square : A + B \tag{3}$$

$$\Gamma \vdash (\mathsf{refl}_A \ t) :$$
 (4)

$$[] \vdash \square : a =_A b \tag{5}$$

$$[(x:N)] \vdash \square : N \tag{6}$$

 \Diamond

 \Diamond

 \Diamond

4 A paradox in Type: Type

We consider the pure type system with a unique sort Type such that Type: Type. That is Martin-Löf's original, paradoxical type theory of 1971.

$$\frac{\Gamma \vdash T : \mathsf{Type}}{\Gamma(x : T) \; \mathsf{wf}} \qquad \frac{\Gamma \; \mathsf{wf}}{\Gamma \vdash \mathsf{Type} : \mathsf{Type}} \qquad \frac{\Gamma \; \mathsf{wf}}{\Gamma \vdash x : T} \; \; (\mathsf{lf} \; (x : T) \in \Gamma)$$

$$\frac{\Gamma \vdash T_1 : \mathsf{Type} \quad \Gamma(x : T_1) \vdash T_2 : \mathsf{Type}}{\Gamma \vdash \Pi x : T_1 . T_2 : \mathsf{Type}} \qquad \frac{\Gamma(x : U) \vdash t : T}{\Gamma \vdash \lambda x : U . t : \Pi x : U . T}$$

$$\frac{\Gamma \vdash t : \Pi x : U . T \quad \Gamma \vdash u : U}{\Gamma \vdash (t \; u) : T[x \setminus u]} \qquad \frac{\Gamma \vdash t : T \quad \Gamma \vdash U : \mathsf{Type}}{\Gamma \vdash t : U} \; \; (\mathsf{if} \; T =_{\beta} U)$$

Question 8 Describe a (very) simple transformation *f* over terms of PTSs, such that :

- if $\Gamma \vdash t : T$ in some PTS,
- then $f(\Gamma) \vdash f(t) : f(T)$ in the PTS above.
- With the requirement that if $t \triangleright_{\beta} t'$ then $f(t) \triangleright_{\beta} f(t')$.

Question 9 We define

$$U \equiv \Pi X : Type.X \rightarrow Type.$$

What is the type of U?

Question 10 Given u : U, how do you, simply, turn u into a property over U, that is a term of type $U \rightarrow Type$?

Question 11 Construct a relation \in : $U \rightarrow U \rightarrow Type$.

From now on, we write $u \in v$ for $(\in u v)$.

We also add to the type system the, usual, primitive equality, together with the additional axiom K which states unicity of equality proofs :

= : ΠX : Type . $X \to X \to X \to T$ ype we write $t =_T u$ for (= T t u). refl : ΠX : Type . Πx : $X : X =_X x$

L: $\Pi X : \mathsf{Type} . \Pi x : X . \Pi y : X . \Pi P : X \to \mathsf{Type} . (P x) \to x =_X y \to (P y)$

 $K : \Pi X : \mathsf{Type} . \Pi x : X . \Pi P : x =_X x \to \mathsf{Type} . \Pi e : x =_X x . (P (\mathsf{refl} X x)) \to (P e)$

with the (usual) reduction rules:

$$(L T t t' P p (refl T' t'')) \triangleright p$$

 $(K T t P (refl T' t') p) \triangleright p$

Remark: you will not need the second reduction rule.

Using this equality, we will now build the construction dual to \in . That is construct an term comp : $(U \to \mathsf{Type}) \to \mathsf{U}$, such that $u \in (\mathsf{comp}\, P)$ will be equivalent to Pu.

Question 12 Construct

$$\mathsf{tr}: \Pi X: \mathsf{Type}.\mathsf{U} =_{\mathsf{Type}} X \to (\mathsf{U} \to \mathsf{Type}) \to (X \to \mathsf{Type}).$$

What is a notable reduct of (tr U (refl U) P)?

We can now define

$$\mathsf{comp} \equiv \lambda P : \mathsf{U} \to \mathsf{Type} \ . \ \lambda X : \mathsf{Type} \ . \ \lambda x : X \ . \ \Pi e : \mathsf{U} =_{\mathsf{Type}} X \ . \ \mathsf{tr} \ X \ e \ P \ x.$$

 \Diamond

 \Diamond

Question 13 Give a proof trid : $\Pi e : U =_{\mathsf{Type}} U$. tr U e P = P.

Question 14 Give a term:

$$g: \Pi P: \mathsf{U} \to \mathsf{Type}.\Pi u: \mathsf{U} . P u \to (u \in (\mathsf{comp}\ P))$$

Question 15 Given $u : U, P : U \to \mathsf{Type}$ and $i : (In \ u \ (\mathsf{comp} \ P))$, give a term $t : (P \ u)$. \diamond

We now give ourselves a variable α : Type. We write $\neg^{\alpha}T$ for $T \to \alpha$.

Question 16 Define R of type U which corresponds to Russell's paradoxical set $\{x | \neg^{\alpha}(x \in x)\}$.

Show
$$\neg^{\alpha}(R \in R)$$
 \diamond

Question 17 Show ($R \in R$). Deduce α .

Question 18 Explain, from this, why the type system cannot enjoy normalization. \diamond

Fixed-Point Operator

In this last part, we want to go a little further and build a real fixed-point operator. For that, for any x : U and $P : U \to \mathsf{Type}$, we admit that we can construct two terms :

$$F_P^x$$
: $P x \to x \in (\text{comp } P)$
 G_D^x : $x \in (\text{comp } P) \to P x$

with the property that $(G_P^x(F_P^xp)) \triangleright_{\beta}^* p$.

We write:

$$\begin{array}{rcl} P & \equiv & \lambda x : \mathsf{U} . \, \neg^{\alpha}(x \in x) \\ F_0 & \equiv & F_P^\mathsf{R} : \neg^{\alpha}(\mathsf{R} \in \mathsf{R}) \to \mathsf{R} \in \mathsf{R} \\ G_0 & \equiv & G_P^\mathsf{R} : \mathsf{R} \in \mathsf{R} \to \neg^{\alpha}(\mathsf{R} \in \mathsf{R}) \end{array}$$

Question 19 Using G_0 and F_0 , construct two terms of type:

$$H_1 : \neg^{\alpha}(R \in R)$$

 $H_2 : R \in R$

What does $(H_1 H_2)$ reduce to?

Question 20 We give ourselves a variable $f : \alpha \to \alpha$. By modifying the terms of the previous question, build a term $Y : \alpha$, such that $Y \triangleright_{\beta}^* f Y$.

 \Diamond

 \Diamond

Question 21 Show that all λ -terms are typable in this type system.