
MPRI

2-7-1

Benjamin Werner

Cuts in Heyting Arithmetic

 Sept. 2023

A presentation of Heyting Arithmetic
Axioms

 ∀ x. x=x

 ∀ x.∀ y. x=y∧ P(x) ⇒ P(y)

 P(0)∧(∀ x.P(x)⇒ P(S(x)) ⇒ ∀ y. P(y)

Rewrite rules

 0 + x ⊳ x

S(x) + y ⊳ S(x+y)

 0 × x ⊳ 0

S(x) × y ⊳ x × y + y

 pred(S(x)) ⊳ x pred(0) ⊳ 0

EQZ(S(x)) ⊳ ⊥ EQZ(0) ⊳ ⊤

closed normal object:

0, S(0), S(S(O)), …

closed normal atomic proposition:

n=m (⊤ and ⊥ are not atomic)

Cuts in deduction modulo
Previous presentation: new additional rule

Γ⊢ A

Γ⊢ B if A =R B

but we do not want it to interfere with cuts.

(conv)

Γ⊢ A∧B

Γ⊢ A'∧B

Γ⊢ A Γ⊢ B

Γ⊢ A'

(conv)
∧-i

∧-eshould be a cut

Γ⊢C
Γ⊢ A Γ⊢ B

∧-i if C =R A∧B

We can rather reformulate the rules:

Γ⊢ A'∧B

Γ⊢ A Γ⊢ B

Γ⊢ A'

∧-i
∧-e

is now a cut

(we do the same for all rules)

Axiomatic Cuts

Equality Cut

∀ x . x=x

t=t

σP

P(t) ∀ x y. x=y ∧ P(x) ⇒ P(y)

t=t ∧ P(t) ⇒ P(t)

P(t)

σP

P(t)

t=t ∧ P(t)

Induction Cut (1)

(P(0) ∧ ∀ x P(x)⇒P(S(x))) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x))

∀ y.P(y)
P(0)

σ0

P(0)

σ0

P(0)

Induction cut (2)

(P(0) ∧ ∀ x P(x)⇒P(S(x))) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x))

∀ y.P(y)
P(S(t))

σS

∀ x P(x)⇒P(S(x))

P(t)⇒P(S(t))
P(S(t))

(P(0) ∧ ∀ x P(x)⇒P(S(x))) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x))

∀ y.P(y)

P(t)

Cut Free Proofs

Cut free proofs:

Take A without free variables. Any cut-free proof of A in HA either :

- ends with an introduction

- is refl or t=t (from refl)

- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=t∧ P(t) ⇒ P(u)

- Is Induction or a partial application of it: ∀ y. P(y)

by induction over the structure of the proof (somewhat tedious)

Properties

easy:

If t is a term without free variables, then t ⊳* Sn(0)

A without free variables. A cut-free proof of A in HA is either :

- ends with an introduction

- is refl or t=t (from refl)

- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=y∧ P(t) ⇒ P(u)

- Is Induction of proof partial application: ∀ y. P(y)

Constructivity :

- If ⊢HA A∨ B, then either ⊢HA A or ⊢HA B

- if ⊢HA ∃ x. A(x) then we can extract n and a proof of ⊢HA A(n)

Consider : ∀ x. ∃ y. x=y+y ∨ x = S(y+y)

Heyting's semantics

‣ a proof of n=n is 0 (some trivial object)

‣ a proof of A ∧ B is (can be reduced to) (a,b) with a:A and b:B

‣ a canonical proof of A ∨ B is (ε,c) with ε=0 and c:A or ε=1 and c:B

‣ a proof of A⇒B is a computational function f, s.t. if a:A, then f(a) : B

‣ a canonical proof of ∃ x.A is a pair (t,a) s.t. a: A[x \ t]

‣ a proof of ∀ x.A is a computational function f, s.t. for all n, f(n) : A[x \ n]

To make the point of constructivity

Why is arithmetic undecidable ?
t=u is decidable

If A and B are decidable, so are A∧B, A∨B, A⇒ B

Undecidability comes "only" from the quantifiers

Even if for all x, we can determine A(x) or ¬ A(x), we do not know

whether ∀ x.A(x) is true or not

In HA, we can prove ∀ x, ∀ y, x=y ∨ x≠y

(which is the good way to state decidability)

Let's do it

Simple game semantics
Let us keep a first−order language (actually arithmetic)

We drop the implication ⇒

For every predicate P we add its negation *P (same arity)

We define the negation of any proposition as:

¬ P(t₁, … , tₙ) ≡ *P(t₁, … , tₙ)

¬ (A ∨ B) ≡ ¬ A ∧ ¬ B

¬ (A ∧ B) ≡ ¬ A ∨ ¬ B

¬ ∀ x. A ≡ ∃ x. ¬ A

¬ ∃ x. A ≡ ∀ x. ¬ A

Now ! Every closed proposition can be viewed as a game !

a game between the mathematician and nature

The game
The mathematician plays when the proposition is:

‣ ∃ x . A

‣ A ∨ B

Nature plays when the proposition is:

‣ ∀ x. A

‣ A ∧ B

The game stops when the proposition is atomic P(t₁, … tₙ)

‣ if P(t₁, … tₙ) is true, mathematician wins

‣ if P(t₁, … tₙ) is false, nature wins

provides an object t, game becomes A[x \ t]

chose left or right, game becomes A or B

provides an object t, game becomes A[x \ t]

chose left or right, game becomes A or B

A true intuitionistically: mathematician has a winning strategy

Paul Lorenzen (1958)

Going beyond intuitionistic logic
Remember we have classical logic in sequent calculus by authorizing
sequents with several conclusions: A₁, … , Aₙ ⊢ B₁, … Bₘ

We go to multigames: A₁, … , Aₙ

idea: mathematician has to "prove" only one Aᵢ

- if nature has to play on at least one Aᵢ, it plays

- if not, mathematician plays on one Aᵢ

- if Aᵢ is B ∨ C, mathematician can break it without choosing
B ∨ C ⇝ B, C

- if Aᵢ is ∃ x.A, then mathematician can "keep" the existential for
another later attempt ∃ x.A ⇝ ∃ x.A, A[x \ t]

Excluded Middle in multi-games
A ∨ ¬ A ⇝ A, ¬ A

Now let us look at A:

if B ∧ C, then nature plays B or C

if B ∨ C, then nature plays ¬B or ¬C

if ∀ x.B, then nature plays B[x\t]

if ∃ x.B, then nature plays ¬B[x\t]

mathematician plays ¬ B or ¬ C

mathematician plays B or C

mathematician plays ¬B[x\t]

mathematician plays B[x\t]

when ⊢ A (in classical logic), there is a winning strategy (essentially a
termination argument)

see for instance the page of Thierry Coquand about game semantics

Mathematician wins !

Links with Curry-Howard for classical logic

