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A presentation of Heyting Arithmetic
Axioms 

   ∀ x. x=x

   ∀ x.∀ y. x=y∧ P(x) ⇒ P(y)


   P(0)∧(∀ x.P(x)⇒ P(S(x))   ⇒  ∀ y. P(y)

Rewrite rules

   0 + x    ⊳  x

S(x) + y   ⊳ S(x+y)

   0 × x    ⊳  0

S(x) × y   ⊳ x × y + y

  pred(S(x))   ⊳  x       pred(0) ⊳ 0

EQZ(S(x)) ⊳ ⊥          EQZ(0)  ⊳ ⊤

closed normal object:

0, S(0), S(S(O)), …

closed normal atomic proposition:

n=m   (⊤ and ⊥ are not atomic)



Cuts in deduction modulo
Previous presentation: new additional rule

Γ⊢ A  

Γ⊢ B if A =R B

but we do not want it to interfere with cuts. 

(conv)

Γ⊢ A∧B

Γ⊢ A'∧B


Γ⊢ A       Γ⊢ B

Γ⊢ A'

(conv)
∧-i

∧-eshould be a cut

Γ⊢C
Γ⊢ A       Γ⊢ B

∧-i if C =R  A∧B

We can rather reformulate the rules:

Γ⊢ A'∧B

Γ⊢ A       Γ⊢ B

Γ⊢ A'

∧-i
∧-e

is now a cut

(we do the same for all rules)



Axiomatic Cuts



Equality Cut

∀ x . x=x

t=t

σP

P(t) ∀ x y. x=y ∧ P(x) ⇒ P(y)

t=t ∧ P(t) ⇒ P(t)

P(t)

σP

P(t)

t=t ∧ P(t)



Induction Cut (1)

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)
P(0)

σ0

P(0)

σ0

P(0)



Induction cut (2)

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)
P(S(t))

σS

∀ x P(x)⇒P(S(x)) 

P(t)⇒P(S(t)) 
P(S(t)) 

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)

P(t)



Cut Free Proofs

Cut free proofs:

Take A without free variables. Any cut-free proof of A in HA either :

- ends with an introduction

- is refl or t=t (from refl)

- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=t∧ P(t) ⇒ P(u)


- Is Induction or a partial application of it:  ∀ y.  P(y)


by induction over the structure of the proof (somewhat tedious)

Properties

easy:

If t is a term without free variables, then t ⊳* Sn(0)




A without free variables. A cut-free proof of A in HA is either :

- ends with an introduction

- is refl or t=t (from refl)

- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=y∧ P(t) ⇒ P(u)


- Is Induction of proof partial application:  ∀ y.  P(y)


Constructivity :

- If ⊢HA A∨ B, then either ⊢HA A or ⊢HA B

- if ⊢HA ∃ x. A(x) then we can extract n and a proof of ⊢HA A(n)

Consider :  ∀ x. ∃ y. x=y+y ∨ x = S(y+y)



Heyting's semantics

‣ a proof of  n=n   is  0  (some trivial object)

‣ a proof of A ∧ B is (can be reduced to)  (a,b) with a:A  and b:B


‣ a canonical proof of A ∨ B is (ε,c) with    ε=0 and c:A   or   ε=1 and c:B


‣ a proof of A⇒B  is a computational function f, s.t.  if a:A, then  f(a) : B


‣ a canonical proof of ∃ x.A is a pair (t,a)  s.t.  a: A[x \ t]


‣ a proof of ∀ x.A is a computational function f, s.t. for all n,  f(n) : A[x \ n] 

To make the point of constructivity 



Why is arithmetic undecidable ?
t=u  is decidable


If A  and B are decidable, so are  A∧B,  A∨B,   A⇒ B

Undecidability comes "only" from the quantifiers


Even if for all x, we can determine  A(x)  or  ¬ A(x),  we do not know 

whether ∀ x.A(x) is true or not

In HA, we can prove  ∀ x, ∀ y,  x=y ∨ x≠y

(which is the good way to state decidability)

Let's do it



Simple game semantics
Let us keep a first−order language (actually arithmetic) 

We drop the implication ⇒

For every predicate P we add its negation *P (same arity)

We define the negation of any proposition as:

¬ P(t₁, … , tₙ) ≡ *P(t₁, … , tₙ)

¬ (A ∨ B) ≡ ¬ A  ∧ ¬ B

¬ (A ∧ B) ≡ ¬ A  ∨ ¬ B

¬ ∀ x. A ≡ ∃ x. ¬ A 

¬ ∃ x. A ≡ ∀ x. ¬ A

Now !   Every closed proposition can be viewed as a game !

a game between the mathematician and nature



The game
The mathematician plays when the proposition is:

‣ ∃ x . A


‣ A ∨ B

Nature plays when the proposition is:

‣ ∀ x. A 


‣ A ∧ B 


The game stops when the proposition is atomic P(t₁, … tₙ)

‣ if P(t₁, … tₙ) is true, mathematician wins

‣ if P(t₁, … tₙ) is false, nature wins

provides an object t, game becomes A[x \ t]

chose left or right, game becomes A or B

provides an object t, game becomes A[x \ t]

chose left or right, game becomes A or B

A true intuitionistically: mathematician has a winning strategy

Paul Lorenzen (1958)



Going beyond intuitionistic logic
Remember we have classical logic in sequent calculus by authorizing 
sequents with several conclusions:      A₁, … , Aₙ  ⊢  B₁, … Bₘ

We go to multigames:     A₁, … , Aₙ

idea: mathematician has to "prove" only one  Aᵢ


- if nature has to play on at least one  Aᵢ,  it plays


- if not, mathematician plays on one Aᵢ


- if Aᵢ is  B ∨ C, mathematician can break it without choosing                
B ∨ C ⇝  B, C


- if Aᵢ  is ∃ x.A, then mathematician can "keep" the existential for 
another later attempt    ∃ x.A ⇝  ∃ x.A, A[x \ t]



Excluded Middle in multi-games
A ∨ ¬ A    ⇝    A, ¬ A

Now let us look at A:

if B ∧ C, then nature plays B or C

if B ∨ C, then nature plays ¬B or ¬C

if ∀ x.B, then nature plays B[x\t]

if ∃ x.B, then nature plays ¬B[x\t]


mathematician plays ¬ B or ¬ C

mathematician plays     B or  C

mathematician plays    ¬B[x\t]

mathematician plays     B[x\t]

when ⊢ A (in classical logic), there is a winning strategy (essentially a 
termination argument)

see for instance the page of Thierry Coquand about game semantics

Mathematician wins !



Links with Curry-Howard for classical logic


