
2.7.1 — Foundations of Proof Systems

Exam

Nov. 30th 2021

1 System F

Consider the following types in system F :

nat ≡ ∀α . (α→ α)→ α→ α

l ≡ ∀β . β→ (nat→ β→ β)→ β.

Question 1 Give two closed terms of type l. �

Question 2 Explain how the closed elements of this type can be viewed as lists of natural
numbers. �

Question 3 Construct a function from l to nat which sums all the elements of the list
(you can consider the addition function has already been defined). �

Question 4 Construct a function returning a when the sum of the elements of a list is 0
and b if not (where a and b are some terms of a given type). �

2 HOL

You are given, in HOL, a type T and a relation over this type :

R : T→ T→ o

Question 5 Define :

1. The reflexive-transitive closure of R,

2. the transitive closure of R,

3. the proposition “there exists a cycle in R”. �

Rp ≡ λa : Tλb : T.∀Q : T→ T→ o.(∀x : T.∀y : T.(R x y)→ (Q x y))→ (∀x : T.∀y : T.∀z : T.(Q x y)→ (R y z)→ (R x z))→ (Q a b)

λa : Tλb : T.∀Q : T→ T→ o.(∀x : T.(Q x x))→ (∀x : T.∀y : T.∀z : T.(Q x y)→ (R y z)→ (R x z))→ (Q a b)

∀X : o.(∀x : T.(RP x x)→ X)→ X

About partial functions in Type Theory

This part is in Martin-Löf’s Type Theory. In what follows I use the notation A ∨ B
for the sum type A + B in order to avoid confusion with the addition function a + b over
natural numbers. I also write A ∧ B for Σx : A . B when x does not occur in B.

A partial function from A to B is a function which is possibly not defined for some
elements of the domain A. Handling such partial functions in type theories is notoriously
not trivial, because elements of the type A→ B are total functions.

You are part of a research group which reflects on how to handle functions from a
type A to a type B, which are only defined for objects of type A which verify a property
P. That is you are given :

A,B : Type
P : A→ Type

A first colleague, Andrew, sugests two possible types for these partial functions :

part1 ≡ Πx : A . P x→ B
part2 ≡ (Σx : A . P x)→ B

Question 6 Show that these two types are isomorphic. That is give two functions

f 12 : part1→ part2
f 21 : part2→ part1

such that you can prove :

f 12c : Π f : part1 . Πx : A . Πp : P x . f x p = (f 21 (f 12 f) x p) (1)
f 21c : Πg : part2 . Πy : Σx : A . P x . g y = (f 12 (f 21 f) y) (2)

(you do not have to give the term f 21c) �

A colleague, Beate, sees a problem with Andrew’s proposal. She says that the result
of a function of type part1 can depend upon the proof p that the argument verifies P.
Thus, objects of type part1 (or part2) do not correspond to what a usual mathematician
would understand as a partial function.

Question 7 To help Beate make her point, describe a function f of the following type,
where q is a given natural number :

Πn : nat . (Σp1 : nat . Σp2 : nat . q = p1 ∗ p2 + n)→ nat

such that (f 4 h) and (f 4 h′) can return different results (for different terms h and h′,
obviously). �

A discussion follows. It is agreed that a possible fix is to ask every partial function to
come with a proof that the result of the function does not depend of the proof of (P x),
but this makes the proof developments quite tedious.

Andrew thus proposes to add a new construct to the type theory. Given A and P, one
adds a new type {x : A | P}, called subset type, which is very similar to Σx : A.P but where
one “forgets” the proof of (P x). Here is a first proposal for the new rules :

2

Γ ` A : Type Γ(x : A) ` P : Type
Γ ` {x : A | P} : Type

Γ ` {x : A | P} : Type Γ ` t : A Γ ` p : P[x \ t]
Γ ` cx.P(t) : {x : A | P}

Γ ` t : {x : A | P}
Γ ` π1(t) : A

Γ ` t : {x : A | P}
Γ ` oraclex.P(t) : P[π1(t)]

One also adds a reduction rule π1(cx.P(t)) B t.
We admit this system enjoys subject reduction.

Question 8 Explain why type checking in this system is not decidable. �

Question 9 Show that, in this system, you can prove, for all A and P :

Πx : A . Πy : A . cP(x) = cP(y)→ x = y.

�

Question 10 In this type theory, construct a closed term of type A ∨ B which does not
reduce to either i(u) or j(v). �

Question 11 Andrew says that his extension allows the encoding of unordered pairs in
the style of set theory. Given a and b two objects of type A, one defines :

{a; b} ≡ {x : A | x = a ∨ x = b}

.
Show that one can prove : Πx : {a; b} . π1(x) = a ∨ π1(x) = b. �

In the following questions, we assume the type theory is equipped with a primitive
type of booleans, with two elements true and false, and an operator similar to the R of
natural numbers. Thus you can decide equality over booleans, prove there are no other
booleans than true and false, etc. . .

Another colleague, Charly, now wonders how far constructivity is broken by these
subset types. He comes up with the following relation between {a; b} and booleans :

R ≡ λx : {a; b} . λy : bool.(y = true→ π1(x) = a) ∧ (y = false→ π1(x) = b)

Question 12 Show that Πx : {a; b} . Σy : bool . R x y. �

Question 13 From there, construct a function

f : {a; b} → bool

such that Πx : {a; b} . R x (f x). �

Question 14 Use this to prove a = b ∨ ¬a = b.
Hint : remember (f x) is a boolean, so you can reason by case over its value. �

3

The group thus considers that this version of “naive” subset types is a little too radical.
Two other colleagues, Desmond and Molly, come up with another approach, without
changing the type theory (thus dropping the addition of subset types).

To make things simpler, you can, from now on, use the following extentionality
axiom, for any types A and B :

ext : Π f : A→ B . Πg : A→ B . (Πx : A . (f x) = (g x))→ f = g.

Question 15 Prove that, for any type A, all proofs of ¬A are equal :

Πx : A→ ⊥ . Πy : A→ ⊥ . x = y.

�

Desmond and Molly’s idea is thus to use ¬¬A as a weakened version of A, since there
is at most one proof of ¬¬A. A partial function from A to B is thus a function of type :

(Σx : A . ¬¬(P x))→ B

.

Question 16 Show you have understood their point. How would you type a function
defined only over even natural numbers?

How would such a function div2 returning the number divided by two look like ? In
particular what can you say about the number of reductions to normalize (div2 n) ? What
is the difference with a function of type :

Πn : nat . (Σp : nat . n = p + p)→ nat ?

�

Molly says there may be an additional advantage to this approach. She claims that
for any types A and B, one can construct terms of the following types :

p1 : ¬¬(A ∨ ¬A)
p2 : ((A ∨ ¬A)→ ¬¬B)→ ¬¬B

Question 17 Show Molly is right by constructing the terms p1 and p2. �

Question 18 What does this mean when working with objects of types of the form
Σx : A . ¬¬B? �

4

