
2.7.1 — Foundations of Proof Systems

Exam

2017-2018

Try to be as concise as possible. The aim is to show you understand what is going on.
Syntactical details are for the computer, not for the paper.

1 Warming up...

Question 1 Give a proof in natural deduction of the following proposition :

( f =⇒ (g =⇒ h)) =⇒ (( f =⇒ g) =⇒ ( f =⇒ h)). �

Solution.

f ⇒ (g⇒ h); f ⇒ g; f ` f f ⇒ (g⇒ h); f ⇒ g; f ` f ⇒ (g⇒ h)

f ⇒ (g⇒ h); f ⇒ g; f ` g⇒ h
f ⇒ (g⇒ h); f ⇒ g; f ` f f ⇒ (g⇒ h); f ⇒ g; f ` f ⇒ g

f ⇒ (g⇒ h); f ⇒ g; f ` g
f ⇒ (g⇒ h); f ⇒ g; f ` h

f ⇒ (g⇒ h); f ⇒ g ` f ⇒ h
f ⇒ (g⇒ h) ` ( f ⇒ g)⇒ ( f ⇒ h)

( f ⇒ (g⇒ h))⇒ (( f ⇒ g)⇒ ( f ⇒ h))

Question 2 Consider a closed term t in Martin-Löf type theory whose type is :

t : ∀n : nat . Σ p : nat . prime p ∧ n < p ∧ (∀ k : nat .n < k < p→ ¬prime k).

where prime p is a predicate that holds iff p is a prime number.

Give the normal form of π1(t 8) where π1 is the first projection for Σ-types. �

Solution. The normal form is 11 (the smallest prime number larger than 8). �

Question 3 Give a closed term whose type is :

∀(A B : Type)(P : A→ B→ Prop).
(Σ y : B. ∀ x : A.P x y)→ (∀ x : A. Σ y : B.P x y). �

Solution. λA : Type.λB : Type.λP : A → B → Prop.λc : Σ(y : B). ∀(x : A).P x y.λx :
A.(π1(c), π2(c) x). �



2 Strong vs Weak Induction

Question 4 How would you prove in type theory the following scheme :

∀(P : nat→ Prop).
(∀(n : nat). (∀(p : nat). p < n→ P p)→ P n)→

∀(n : nat).P n

from the usual induction scheme :

∀(P : nat→ Prop).
P 0→
(∀(n : nat).P n− > P (S n))→

∀(n : nat).P n

You do not have to give a deduction tree or a proof-term. Describe the proof is a
convincing way. The fact whether we are in arithmetic, Coq or HOL is not very relevant
here. �

Solution. One has to use the induction scheme with the following predicate over n :
∀m,m ≤ n→ P m.

This predicate is true for 0 (because (P 0)).
If it is true for n, then we have in particular (P n), so (P (S n)) also holds and the

predicate is true for all m ≤ (S n).

3 Limited Principle of Omniscience

We define the following three propositions.

EM , ∀(P : Prop).P ∨ ¬P

LPO , ∀(P : nat→ bool). (∀(n : nat).P n = ⊥) ∨ (Σ(n : nat).P n = >)

LLPO , ∀(P : nat→ bool).
(∀(n p : nat).P n = >∧ P p = > → n = p)→
(∀(i : nat).P(2i) = ⊥) ∨ (∀(i : nat), P(2i + 1) = ⊥)

Question 5 Prove constructively that EM→ LPO and that LPO→ LLPO. (same remark
regarding the level of detail as for the previous question.) �

Solution. [EM→ LPO] — let P : nat → bool. By EM, we know that Σ(n : nat).P n = >
or ¬(Σ(n : nat).P n = >). In the first case, we are done. Otherwise, we prove that
∀(n : nat).P n = ⊥. Assume that h : ¬(Σ(n : nat).P n = >) and let n0 : nat. Since
P n0 : bool, we can do a case analysis on P n0. If P n0 = ⊥, we are done. If P n0 = >,
then Σ(n : nat).P n = >. We can conclude using h.
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[LPO→ LLPO] — let P : nat→ bool and assume that

h : ∀(n p : nat).P n = >∧P p = > → n = p.

Let Qe i := P (2i) and Qo i := P (2i + 1). By LPO on Qe, we know that ∀(n :
nat).P (2i) = ⊥ or Σ(n : nat).P (2i) = >. In the first case, we are done. Otherwise,
by LPO on Qo, we know that ∀(n : nat).P (2i + 1) = ⊥ or Σ(n : nat).P (2i + 1) = >.
Yet again, in the first case we are done. It remains the case where we know two
natural numbers ne and no s.t. P (2ne) = > and P (2no + 1) = >. By h, we have that
2ne = 2no + 1, obtaining a contradiction. �

We now give a variant of LPO where the predicates in consideration are not necessarily
decidable :

LPPO , ∀(P : nat→ Prop). (∀(n : nat).¬P n) ∨ (Σ(n : nat).P n)

Question 6 Prove that LPPO→ EM. �

Solution. Given P : Prop let Q be λx : nat .P. LPPO applied to Q gives us (∀(n : nat).¬P)∨
(Σ(n : nat).P). In the first case we can deduce ¬P and in the second case P. �

4 Being even

We remind the usual definition of addition in Coq :

Fixpoint add n m :=
match n with
| 0 => m
| S p => S (add p m)

end.

The following is a possible definition of the property of being even in Coq :

Inductive even : nat -> Prop :=
| E0 : even 0
| ESS : forall n, even n -> even (S (S n)).

Question 7 What is the elimination scheme associated to this definition? �

Solution. even_ind
: forall P : nat -> Prop,

P 0 ->
(forall n : nat, even n -> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

A friend comes up with the following alternative definition :

Definition evs (n : nat) : Prop :=
exists x, n = x + x.
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Question 8 We want to show that forall n, even n -> evs n. What would the main
steps be? �

Solution. By induction over the proof of (even n). Two cases :

— n = 0, in which case we have to prove exists x, 0 = x+x which is done by
providing 0 as the witness.

— In the second case we have to prove exists x, (S (S n)) = x+x knowing
exists x, n = x+x. We eliminate the latter hypothesis to obtain x and provide
(S x) as the witness. The proof boils down to (S (S n)) =(S x)+(S x) which
is proved using add_Sn. �

Question 9 Conversely, how would you prove forall n, evs n -> even n. �

Solution. One proves even (n+n) by induction over n. The result follows easily. �

5 Recursive and inductive predicates

We consider the usual definition of natural numbers in Coq (with constructors O and
S) and the following (usual) definition of lists :

Inductive list : Type :=
nil : list

| cons : nat -> list -> list.

Question 10 Here are four predicates defined by case analysis and recursion. For each
of them, give an equivalent inductive predicate of the same type. You do not have to
give the proof that your formulation is equivalent to the given predicate. However, try to
give an inductive predicate that is as concise and elegant as possible. Every time, give also the
type of the generated elimination principle.

Fixpoint N1 (n : nat) : Prop :=
match n with
| O => True
| S O => False
| S (S O) => False
| S (S (S m)) => N1 m
end.

Fixpoint L1 (l : list) : Prop :=
match l with
| nil => True
| cons n l’ => (n1 n)/\(L1 l’)
end.

Fixpoint L2 (n:nat)(l:list) : Prop :=
match l with
| nil => False
| cons m l’ => n=m \/ L2 n l’
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end.

Fixpoint addChain (l : list) : Prop :=
match l with
| nil => False
| cons (S O) nil => True
| cons _ nil => False
| cons m l’ => exists x, exists y, (L2 x l’)/\(L2 y l’)/\m=x+y/\addChain l’
end.

Solution. Inductive N1p : nat -> Prop :=
NI0 : N1p 0

| N1S : forall n, N1p n -> N1p (S (S (S n))).

N1p_ind
: forall P : nat -> Prop,

P 0 ->
(forall n : nat, N1p n -> P n -> P (S (S (S n)))) ->
forall n : nat, N1p n -> P n

Inductive L1p : list -> Prop :=
| L1p0 : L1p nil
| L1pc : forall n l, N1 n -> L1p l -> L1p (cons n l).

L1p_ind
: forall P : list -> Prop,

P nil ->
(forall (n : nat) (l : list), N1 n -> L1p l -> P l -> P (cons n l)) ->
forall l : list, L1p l -> P l

Inductive L2p : nat -> list -> Prop :=
| L2p1 : forall l n m, L2p n l -> L2p n (cons m l)
| L2p2 : forall l n, L2p n (cons n l).

L2p_ind
: forall P : nat -> list -> Prop,

(forall (l : list) (n m : nat), L2p n l -> P n l -> P n (cons m l)) ->
(forall (l : list) (n : nat), P n (cons n l)) ->
forall (n : nat) (l : list), L2p n l -> P n l

(* alternative definition *)
Inductive L2pp (n : nat) : list -> Prop :=
| L2pp1 : forall l m, L2pp n l -> L2pp n (cons m l)
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| L2pp2 : forall l, L2pp n (cons n l).

Inductive ADC : list -> Prop :=
| ADC1 : ADC (cons 1 nil)
| ADCc : forall l a b, L2 a l -> L2 b l -> ADC l -> ADC (cons (a+b) l).

ADC_ind
: forall P : list -> Prop,

P (cons 1 nil) ->
(forall (l : list) (a b : nat),
L2 a l -> L2 b l -> ADC l -> P l -> P (cons (a + b) l)) ->

forall l : list, ADC l -> P l

Question 11 (optional) The last predicate characterizes so called addition chains. An
addition chain ending with number n gives a way to compute an in a time proportional
to the length of the list. Can you see why? �

(Finding the shortest addition chain ending with n is an open problem. There is no
known reasonably efficient algorithm.)

Solution. Once one has computed an and am one can compute an+m with one single multi-
plication. So given an addition chain [1; n1; n2; . . . ; nk] one can compute all exponentiations
ani in k multiplications. �
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