2.7.1 - Foundations of Proof Systems

Exam

Nov. $27^{\text {th }} 2023$

Durée de l'épreuve : 2 heures. Length of the exam : 2 hours.

1 HOL

For conciseness I write $\forall X^{T} \ldots$ instead of ($\forall_{T} \lambda X^{T} \ldots$).
Question 1 Given two propositions A and B in HOL, what do the following propositions correspond to? (in natural language)

1. $\forall X^{o} \cdot A \Longrightarrow X^{o}$
2. $\forall X^{0} \cdot\left(A \Longrightarrow B \Longrightarrow X^{o}\right) \Longrightarrow X^{0}$
3. $\forall X^{o} \cdot\left(A \Longrightarrow X^{o}\right) \Longrightarrow X^{o}$
4. $\forall X^{o} \cdot\left((A \Longrightarrow B) \Longrightarrow X^{o}\right) \Longrightarrow\left((B \Longrightarrow A) \Longrightarrow X^{o}\right) \Longrightarrow X^{o}$

Solution. 1. $\neg A$
2. $A \wedge B$
3. equivalent to A
4. $(A \Longrightarrow B) \vee(B \Longrightarrow A)$

Question 2 Same question for the following constructions, given a property $P: \iota \rightarrow o$ and a relation $R: \iota \rightarrow \iota \rightarrow 0$.

1. $\forall x^{l} \cdot \forall y^{l} \cdot\left(R x^{l} y^{l}\right) \Longrightarrow\left(R y^{l} x^{l}\right) \Longrightarrow \forall Q^{l \rightarrow o} \cdot\left(Q x^{l}\right) \Longrightarrow\left(Q y^{l}\right)$
2. $\forall X^{o} \cdot\left(\forall x^{l} \cdot\left(P x^{l}\right) \Longrightarrow X^{o}\right) \Longrightarrow X^{o}$
3. $\lambda a^{l} \cdot \lambda b^{l} \cdot \forall X^{\iota \rightarrow 0} \cdot\left(X^{\iota \rightarrow o} a^{l}\right) \Longrightarrow\left(\forall x^{l} \cdot \forall y^{l} \cdot\left(X^{\iota \rightarrow o} x^{l}\right) \Longrightarrow\left(R x^{l} y^{l}\right) \Longrightarrow\left(X^{\iota \rightarrow o} y^{l}\right)\right) \Longrightarrow$ $\left(X^{\iota \rightarrow o} b^{c}\right)$

Solution. 1. R is anti-symmetrical
2. $\exists x . P(x)$
3. The transitive closure of R

2 System F

We use the usual encoding of natural numbers in System F as Church Numerals of the following type :

$$
\text { nat } \equiv \forall X . X \rightarrow(X \rightarrow X) \rightarrow X
$$

Question 3 Define the type $N N$ which encodes the pairs of natural numbers, as well as the corresponding terms :

$$
\begin{aligned}
\text { pair } & : \text { nat } \rightarrow \text { nat } \rightarrow N N \\
\pi_{1} & : N N \rightarrow \text { nat } \\
\pi_{2} & : N N \rightarrow \text { nat }
\end{aligned}
$$

Solution.

$$
\begin{aligned}
& N N \equiv \forall X .(\text { nat } \rightarrow \text { nat } \rightarrow X) \rightarrow X \\
& \text { pair } \equiv \lambda a b: \text { nat. } \Lambda X . \lambda f: \text { nat } \rightarrow \text { nat } \rightarrow X . f a b
\end{aligned}
$$

Question 4 Define the term $s: N N \rightarrow N N$ corresponding to the function $(n, m) \mapsto$ ($S n, n$).

Solution.

$$
s \equiv \lambda c: N N . p a i r\left(S\left(\pi_{1} c\right)\right)\left(\pi_{1} c\right)
$$

Question 5 Use this to define a predecessor function over nat.
Solution.

$$
\text { pred } \equiv \lambda n \cdot \pi_{1}(n N N(\text { pair } 00) p p)
$$

3 Lists in Type Theory

We start not in Type Theory, but in System T, that is simply-typed λ-calculus with the constants :

$$
\begin{array}{rll}
0 & : N \\
S & : N \rightarrow N \\
R_{T} & : T \rightarrow(N \rightarrow T \rightarrow T) \rightarrow N \rightarrow T & (\text { for any type } T)
\end{array}
$$

and the usual reduction rules for R_{T}.
Question 6 Extend this with corresponding constructions for a type list T_{T} of lists whose elements are of type T with constants $n i l_{T}$ and cons_{T}. You can call $R L_{T}$ the recursion operator over these lists. Give the corresponding reduction rules.

Solution.

$$
\begin{align*}
n i l_{T} & : \text { list }_{T} \tag{1}\\
\operatorname{cons}_{T} & : T \rightarrow \text { list }_{T} \rightarrow \text { list }_{T} \tag{2}\\
R L_{T, U} & : U \rightarrow\left(T \rightarrow \text { list }_{T} \rightarrow U \rightarrow U\right) \rightarrow \text { list }_{T} \rightarrow U \tag{3}
\end{align*}
$$

and the reductions :

$$
\begin{align*}
\left(R L_{T, u} t_{0} t_{c} n i l_{T}\right) & \triangleright t_{0} \tag{4}\\
\left(R L_{T, u} t_{0} t_{c}\left(\operatorname{cons}_{T} u l\right)\right) & \triangleright\left(t_{c} u l\left(R L_{T, u} t_{0} t_{c} l\right)\right) \tag{5}
\end{align*}
$$

Question 7 Transpose this to Martin-Löf's Type Theory (MLTT) by giving a dependent typing for this $R L_{T}$ operator, so that it becomes an extension of MLTT.

Solution. With $P: N \rightarrow$ Type,

$$
R L_{T, P}:\left(P \operatorname{nil}_{T}\right) \rightarrow\left(\forall x: T . \forall l: \operatorname{list}_{T} \cdot(P l) \rightarrow\left(P\left(\text { cons }_{T} x l\right)\right) \rightarrow \forall l: \operatorname{list}_{T} \rightarrow(P l) .\right.
$$

Independently, we extend MLTT with an operator $D: N \rightarrow$ Type with two reduction rules:

$$
\begin{array}{rrr}
(D 0) & \triangleright & \top \\
(D(S t)) & \triangleright & \perp
\end{array}
$$

Question 8 Use this new operator to prove $0={ }_{N}(S 0) \rightarrow \perp$ in this extension of MLTT. \diamond
Solution. You can prove $\left.0={ }_{N}(S 0) \rightarrow(D 0) \rightarrow(D 1)\right)$ and since $(D 0)$ is provable, you get $\left.0={ }_{N}(S 0) \rightarrow(D 1)\right)$ which is identical to $0=_{N}(S 0) \rightarrow \perp$.

Question 9 We now want to prove $\Pi x: T . \Pi l: \operatorname{list}_{T} . n i l_{T}=\operatorname{list}_{T}\left(\operatorname{cons}_{T} x l\right) \rightarrow \perp$.
Do you need additional operator to prove this or can you do with the operator D of the previous question? How do you proceed?

Solution. You do not need any new operator or extension. Just translate lists to numbers with

$$
\operatorname{tr} \equiv \lambda l: \text { list }_{T} \cdot R L_{T, N} 0 \lambda_{-} \cdot \lambda_{-} .1 l
$$

and then use the previous question to prove $\operatorname{tr} \operatorname{nil}_{T} \neq \operatorname{cons}_{T} n l$.

4 Surjective Pairing

One considers the following additional reduction rule for Martin-Löf's Type Theory :

$$
\left(\pi_{1}(t), \pi_{2}(t)\right) \triangleright_{S R} t
$$

This reduction rule is know as the surjective pairing reduction. Note that the rule is not linear (the two occurrences of t in the left hand part need to be identical).

Question 10 Show that this rule enjoys the subject reduction property. That is, if $\Gamma \vdash$ $\left(\pi_{1}(t), \pi_{2}(t)\right): U$, then $\Gamma \vdash t: U$.

Solution. We remember that we have uniqueness of typing modulo conversion : if $\Gamma \vdash u: U_{1}$ and $\Gamma \vdash u: U_{2}$, then $U_{1}={ }_{\beta} U_{2}$.

If $\left(\pi_{1}(t), \pi_{2}(t)\right)_{\Sigma x: A . B}$ is well typed in Γ, then so is $\pi_{1}(t)$ and thus there exists A and B such that $\Gamma \vdash t: \Sigma x: A . B$.

Thus $\Gamma \vdash \pi_{1}(t): A$ and $\Gamma \vdash \pi_{2}(t): B i\left[x \backslash \pi_{1}(t)\right]$.
Thus $\Gamma \vdash\left(\pi_{1}(t), \pi_{2}(t)\right): \Sigma x: A . B$.
Thus $\Gamma \vdash T:$ Type and $T={ }_{\beta} \Sigma x: A \cdot B$, and thus $\Gamma \vdash t: T$.

5 Markov's Principle

In this section, we work in Martin-Löf's Type Theory (MLTT). We consider that P is a predicate over natural numbers, that is an object of type $N \rightarrow$ Type.

Question 11 Show that, for at least some values of P, the proposition $\neg \neg(\Sigma n:$ N.P $n) \rightarrow$ $\Sigma n:$ N.P n is not provable in MLTT.

Solution. Take a variable X : Type and $P \equiv \lambda x: N . X$. Then $\Sigma n: N . P n$ is equivalent to X and the principle would entail $X+\neg X$ thus giving full classical logic.

The soviet mathematician Andrei Markov proposed a version of this proposition, weakened in order to preserve constructivity. He suggested to admit the axiom $\neg \neg(\Sigma n$: $N . P n) \rightarrow \Sigma n: N . P n$ but only for decidable properties, that is provided the following is provable : $\forall n: N . P n+\neg(P n)$. (Here + denotes the sum type operator in MLTT).

In other words, Markov proposed to accept the following axiom scheme, which is thus known as Markov's principle :

$$
(\forall n: N . P n+\neg(P n)) \rightarrow \neg \neg(\Sigma n: N . P n) \rightarrow \Sigma n: N . P n .
$$

Question 12 Explain informally why Markov's principle can be constructive; that is how one could give evidence for Markov's principle in Heyting's semantics.

Solution. Evidence for (1) $\forall n: N . P n+\neg(P n)$ is a function giving evidence for $P n+\neg(P n)$ for any n.

Evidence for $\neg \neg\left(\sum n: N . P n\right)$ entails, classically, that there exists a number α for which $P \alpha$ is true.

So enumerating all natural numbers and checking (1) one will find α and a proof of P α.
(For the record, it is possible, but difficult, to show that Markov's principle is not provable in MLTT (or in Heyting's arithmetic).)

One proposes to extend MLTT with a specific term corresponding to Markov's principle in the Curry-Howard setting.

Given terms P, d, p, n, one has a new term $M P_{P}(d, p, n)$. One adds the following typing rule :

$$
\frac{\Gamma \vdash P: N \rightarrow \text { Type } \quad \Gamma \vdash d: \forall n: N . P n+\neg(P n) \quad \Gamma \vdash p: \neg \neg(\Sigma n: N . P n)}{\Gamma \vdash M P_{P}(d, p, 0): \Sigma n: N . P n}
$$

One suggests the following reduction rule :

$$
\left(R_{M P}\right) \quad M P_{P}(d, p, n) \quad \delta \quad \delta\left(d n, x \cdot(n x), y \cdot M P_{P}(d, p,(S n))\right)
$$

Remember δ is the elimination operator for sum types, that is logical disjunction.
Question 13 Explain the idea behind this MP operator and this reduction rule.
Solution. It is precisely what is described in the response to the previous question.
Question 14 Show that this $R_{M P}$ reduction rule is not strongly normalizable (or in other words, that MLTT with this reduction rule in not strongly normalizable). This should be very short.

Solution. The reduction rule can obviously be repeated infinitely :

$$
\begin{aligned}
M P_{P}(d, p, 0) & \triangleright \delta\left(d n, x .(n x), y \cdot M P_{P}(d, p,(S n))\right) \\
& \triangleright \delta\left(d 0, x .(n x), y \cdot \delta\left(d 1, x \cdot(n x), y \cdot M P_{P}(d, p, 2)\right)\right) \\
& \triangleright \delta\left(d 0, x .(n x), y \cdot \delta\left(d 1, x .(n x), y \cdot \delta\left(d 1, x \cdot(n x), y \cdot M P_{P}(d, p, 3)\right)\right)\right) \\
& \triangleright \ldots
\end{aligned}
$$

Question 15 Show that the system with the $R_{M P}$ reduction rule is not weakly normalizable either. Hint : you may look at the next question to find the idea.

Solution. If we are in an incoherent context with $b: \perp$, then one can use b to prove $\neg \neg \Sigma x: N . \perp$. Using the simple proof of $\forall x: N . \perp+\neg \perp$ which always returns the proof of $\neg \perp$, the operator will never find a witness and loop forever.

One therefore suggests the following restriction : the $R_{M P}$ reduction can only be performed when the terms d and p are closed (that is they contain no free variable).

Question 16 Sketch a proof of weak normalization for MLTT extended by this restricted $R_{M P}$ reduction rule.

Solution. For any well-typed term t, we call \#(t) the size of its normal form (for conventional reduction, that is without considering $R_{M P}$.

Suppose $\Gamma \vdash t: T$. We show by induction over $\#(t)$ that t has a normal form for the extended reduction.

We take the conventional normal form of t. Suppose it contains a $R_{M P}$ redex $M P(d, p, 0)$ (the third argument of $M P$ must be convertible to 0 because of the typing rule and because we have not performed any $R_{M P}$ reduction). By induction hypothesis, we can normalize d and p. We suppose thus that d and p are closed and normal.

We can thus argue that there must exists a closed term $S^{(i)} 0$ sucht that $d S^{(i)} 0$ reduces to some $i(q)$ (because p is closed). Thus $M P(d, p, 0)$ reduces to $\left(S^{(i)} 0, q\right)$.

