2.7.1 — Foundations of Proof Systems

Exam

Nov. 27th 2023

Durée de l'épreuve : 2 heures. Length of the exam : 2 hours.

1 HOL

For conciseness I write $\forall X^T$ instead of $(\forall_T \lambda X^T$).

Question 1 Given two propositions *A* and *B* in HOL, what do the following propositions correspond to? (in natural language)

1. $\forall X^{o} . A \implies X^{o}$ 2. $\forall X^{o} . (A \implies B \implies X^{o}) \implies X^{o}$ 3. $\forall X^{o} . (A \implies X^{o}) \implies X^{o}$ 4. $\forall X^{o} . ((A \implies B) \implies X^{o}) \implies ((B \implies A) \implies X^{o}) \implies X^{o}$

Solution. 1.
$$\neg A$$

2. $A \land B$
3. equivalent to A
4. $(A \implies B) \lor (B \implies A)$

Question 2 Same question for the following constructions, given a property $P : \iota \to o$ and a relation $R : \iota \to \iota \to o$.

1. $\forall x^{\iota}.\forall y^{\iota}.(R \ x^{\iota} \ y^{\iota}) \Longrightarrow (R \ y^{\iota} \ x^{\iota}) \Longrightarrow \forall Q^{\iota \to o} . (Q \ x^{\iota}) \Longrightarrow (Q \ y^{\iota})$ 2. $\forall X^{o} . (\forall x^{\iota} . (P \ x^{\iota}) \Longrightarrow X^{o}) \Longrightarrow X^{o}$ 3. $\lambda a^{\iota}.\lambda b^{\iota} . \forall X^{\iota \to o} . (X^{\iota \to o} \ a^{\iota}) \Longrightarrow (\forall x^{\iota}.\forall y^{\iota}.(X^{\iota \to o} \ x^{\iota}) \Longrightarrow (R \ x^{\iota} \ y^{\iota}) \Longrightarrow (X^{\iota \to o} \ y^{\iota})) \Longrightarrow (X^{\iota \to o} \ b^{\iota})$

Solution. 1. *R* is anti-symmetrical

2. $\exists x.P(x)$

3. The transitive closure of R

2 System F

We use the usual encoding of natural numbers in System F as Church Numerals of the following type :

$$nat \equiv \forall X . X \to (X \to X) \to X$$

Question 3 Define the type *NN* which encodes the pairs of natural numbers, as well as the corresponding terms :

$$pair : nat \rightarrow nat \rightarrow NN$$

$$\pi_1 : NN \rightarrow nat$$

$$\pi_2 : NN \rightarrow nat \qquad \diamond$$

 \diamond

Solution.

$$NN \equiv \forall X.(nat \rightarrow nat \rightarrow X) \rightarrow X$$

pair $\equiv \lambda a \ b : nat .\Lambda X.\lambda f : nat \rightarrow nat \rightarrow X.f \ a \ b$

Question 4 Define the term $s : NN \to NN$ corresponding to the function $(n,m) \mapsto (S n, n)$.

Solution.

$$s \equiv \lambda c : NN.pair (S(\pi_1 c))(\pi_1 c)$$

Question 5 Use this to define a predecessor function over nat.

Solution.

$$pred \equiv \lambda n.\pi_1 (n NN (pair 0 0) pp)$$

3 Lists in Type Theory

We start not in Type Theory, but in System T, that is simply-typed λ -calculus with the constants :

$$0 : N$$

$$S : N \to N$$

$$R_T : T \to (N \to T \to T) \to N \to T \quad \text{(for any type } T\text{)}$$

and the usual reduction rules for R_T .

Question 6 Extend this with corresponding constructions for a type $list_T$ of lists whose elements are of type *T* with constants nil_T and $cons_T$. You can call RL_T the recursion operator over these lists. Give the corresponding reduction rules.

Solution.

$$nil_T$$
 : list_T (1)

 $cons_T$: $T \to \text{list}_T \to \text{list}_T$ (2)

$$RL_{T,U}$$
 : $U \to (T \to \text{list}_T \to U \to U) \to \text{list}_T \to U$ (3)

and the reductions :

$$(RL_{T,U} t_0 t_c nil_T) \triangleright t_0 \tag{4}$$

$$(RL_{T,U} t_0 t_c (cons_T u l)) \triangleright (t_c u l (RL_{T,U} t_0 t_c l))$$

$$(5)$$

Question 7 Transpose this to Martin-Löf's Type Theory (MLTT) by giving a dependent typing for this RL_T operator, so that it becomes an extension of MLTT.

Solution. With $P: N \rightarrow \text{Type}$,

$$RL_{T,P}: (P \ nil_T) \to (\forall x: T.\forall l: \mathsf{list}_T.(P \ l) \to (P \ (cons_T \ x \ l)) \to \forall l: \mathsf{list}_T \to (P \ l).$$

Independently, we extend MLTT with an operator $D : N \rightarrow \mathsf{Type}$ with two reduction rules :

$$\begin{array}{ccc} (D \ 0) & \rhd & \top \\ (D \ (S \ t)) & \rhd & \bot \end{array}$$

Question 8 Use this new operator to prove $0 =_N (S \ 0) \rightarrow \bot$ in this extension of MLTT.

Solution. You can prove $0 =_N (S \ 0) \to (D \ 0) \to (D \ 1)$ and since $(D \ 0)$ is provable, you get $0 =_N (S \ 0) \to (D \ 1)$ which is identical to $0 =_N (S \ 0) \to \bot$.

Question 9 We now want to prove $\Pi x : T \cdot \Pi l : \text{list}_T \cdot nil_T =_{\text{list}_T} (cons_T x l) \rightarrow \bot$.

Do you need additional operator to prove this or can you do with the operator D of the previous question? How do you proceed?

Solution. You do not need any new operator or extension. Just translate lists to numbers with

$$tr \equiv \lambda l$$
: list_T.RL_{T,N} 0 λ _. λ _.1 l

and then use the previous question to prove $tr nil_T \neq cons_T n l$.

4 Surjective Pairing

One considers the following additional reduction rule for Martin-Löf's Type Theory :

$$(\pi_1(t),\pi_2(t)) \triangleright_{SR} t$$

This reduction rule is know as the *surjective pairing* reduction. Note that the rule is not linear (the two occurrences of *t* in the left hand part need to be identical).

Question 10 Show that this rule enjoys the subject reduction property. That is, if $\Gamma \vdash (\pi_1(t), \pi_2(t)) : U$, then $\Gamma \vdash t : U$.

Solution. We remember that we have uniqueness of typing modulo conversion : if $\Gamma \vdash u : U_1$ and $\Gamma \vdash u : U_2$, then $U_1 =_{\beta} U_2$.

If $(\pi_1(t), \pi_2(t))_{\Sigma x:A:B}$ is well typed in Γ , then so is $\pi_1(t)$ and thus there exists A and B such that $\Gamma \vdash t : \Sigma x : A:B$.

Thus $\Gamma \vdash \pi_1(t) : A$ and $\Gamma \vdash \pi_2(t) : Bi[x \setminus \pi_1(t)].$

Thus $\Gamma \vdash (\pi_1(t), \pi_2(t)) : \Sigma x : A.B.$

Thus $\Gamma \vdash T$: Type and $T =_{\beta} \Sigma x : A.B$, and thus $\Gamma \vdash t : T$.

5 Markov's Principle

In this section, we work in Martin-Löf's Type Theory (MLTT). We consider that *P* is a predicate over natural numbers, that is an object of type $N \rightarrow$ Type.

Question 11 Show that, for at least some values of *P*, the proposition $\neg\neg(\Sigma n : N.P n) \rightarrow \Sigma n : N.P n$ is not provable in MLTT. \diamond

Solution. Take a variable X : Type and $P \equiv \lambda x : N.X$. Then $\Sigma n : N.P n$ is equivalent to X and the principle would entail $X + \neg X$ thus giving full classical logic.

The soviet mathematician Andrei Markov proposed a version of this proposition, weakened in order to preserve constructivity. He suggested to admit the axiom $\neg \neg (\Sigma n : N.P n) \rightarrow \Sigma n : N.P n$ but only for decidable properties, that is provided the following is provable : $\forall n : N.P n + \neg (P n)$. (Here + denotes the sum type operator in MLTT).

In other words, Markov proposed to accept the following axiom scheme, which is thus known as *Markov's principle* :

 $(\forall n : N.P \ n + \neg (P \ n)) \rightarrow \neg \neg (\Sigma n : N.P \ n) \rightarrow \Sigma n : N.P \ n.$

Question 12 Explain informally why Markov's principle can be constructive; that is how one could give evidence for Markov's principle in Heyting's semantics.

Solution. Evidence for (1) $\forall n : N.P \ n + \neg(P \ n)$ is a function giving evidence for $P \ n + \neg(P \ n)$ for any *n*.

Evidence for $\neg \neg (\Sigma n : N.P n)$ entails, classically, that there exists a number α for which $P \alpha$ is true.

So enumerating all natural numbers and checking (1) one will find α and a proof of *P* α .

(For the record, it is possible, but difficult, to show that Markov's principle is not provable in MLTT (or in Heyting's arithmetic).)

One proposes to extend MLTT with a specific term corresponding to Markov's principle in the Curry-Howard setting.

Given terms P, d, p, n, one has a new term $MP_P(d, p, n)$. One adds the following typing rule :

$$\frac{\Gamma \vdash P : N \to \mathsf{Type} \qquad \Gamma \vdash d : \forall n : N.P \ n + \neg (P \ n) \qquad \Gamma \vdash p : \neg \neg (\Sigma n : N.P \ n)}{\Gamma \vdash MP_P(d, p, 0) : \Sigma n : N.P \ n}$$

One suggests the following reduction rule :

 (R_{MP}) $MP_P(d, p, n) \triangleright \delta(d n, x.(n x), y.MP_P(d, p, (S n)))$

Remember δ is the elimination operator for sum types, that is logical disjunction.

Question 13 Explain the idea behind this *MP* operator and this reduction rule.

Solution. It is precisely what is described in the response to the previous question.

Question 14 Show that this R_{MP} reduction rule is not strongly normalizable (or in other words, that MLTT with this reduction rule in not strongly normalizable). *This should be very short.* \diamond

Solution. The reduction rule can obviously be repeated infinitely :

$MP_P(d, p, 0)$	\triangleright	$\delta(d n, x.(n x), y.MP_P(d, p, (S n)))$	
	\triangleright	$\delta(d \ 0, x.(n \ x), y.\delta(d \ 1, x.(n \ x), y.MP_P(d, p, 2)))$	
	\triangleright	$\delta(d\;0,x.(n\;x),y.\delta(d\;1,x.(n\;x),y.\delta(d\;1,x.(n\;x),y.MP_P(d,p,3))))$	
	\triangleright		

Question 15 Show that the system with the R_{MP} reduction rule is not weakly normalizable either. *Hint : you may look at the next question to find the idea.* \diamond

Solution. If we are in an incoherent context with $b : \bot$, then one can use b to prove $\neg \neg \Sigma x : N.\bot$. Using the simple proof of $\forall x : N.\bot + \neg \bot$ which always returns the proof of $\neg \bot$, the operator will never find a witness and loop forever.

One therefore suggests the following restriction : the R_{MP} reduction can only be performed when the terms d and p are closed (that is they contain no free variable).

Question 16 Sketch a proof of weak normalization for MLTT extended by this restricted R_{MP} reduction rule.

Solution. For any well-typed term t, we call #(t) the size of its normal form (for conventional reduction, that is without considering R_{MP} .

Suppose $\Gamma \vdash t$: *T*. We show by induction over #(t) that *t* has a normal form for the extended reduction.

We take the conventional normal form of t. Suppose it contains a R_{MP} redex MP(d, p, 0) (the third argument of MP must be convertible to 0 because of the typing rule and because we have not performed any R_{MP} reduction). By induction hypothesis, we can normalize d and p. We suppose thus that d and p are closed and normal.

We can thus argue that there must exists a closed term $S^{(i)}$ 0 such that $d S^{(i)}$ 0 reduces to some i(q) (because p is closed). Thus MP(d, p, 0) reduces to $(S^{(i)} 0, q)$.