
2.7.1 — Foundations of Proof Systems

Exam

Nov. 27th 2023

Durée de l’épreuve : 2 heures. Length of the exam : 2 hours.

1 HOL

For conciseness I write ∀XT. . . . instead of (∀T λXT. . . .).

Question 1 Given two propositions A and B in HOL, what do the following propositions
correspond to? (in natural language)

1. ∀Xo . A =⇒ Xo

2. ∀Xo . (A =⇒ B =⇒ Xo) =⇒ Xo

3. ∀Xo . (A =⇒ Xo) =⇒ Xo

4. ∀Xo . ((A =⇒ B) =⇒ Xo) =⇒ ((B =⇒ A) =⇒ Xo) =⇒ Xo
⋄

Solution. 1. ¬A

2. A ∧ B

3. equivalent to A

4. (A =⇒ B) ∨ (B =⇒ A) □

Question 2 Same question for the following constructions, given a property P : ι→ o
and a relation R : ι→ ι→ o.

1. ∀xι.∀yι.(R xι yι) =⇒ (R yι xι) =⇒ ∀Qι→o . (Q xι) =⇒ (Q yι)

2. ∀Xo . (∀xι . (P xι) =⇒ Xo) =⇒ Xo

3. λaι.λbι . ∀Xι→o . (Xι→o aι) =⇒ (∀xι.∀yι.(Xι→o xι) =⇒ (R xι yι) =⇒ (Xι→o yι)) =⇒
(Xι→o bι) ⋄

Solution. 1. R is anti-symmetrical

2. ∃x.P(x)

3. The transitive closure of R □

2 System F

We use the usual encoding of natural numbers in System F as Church Numerals of
the following type :

nat ≡ ∀X . X→ (X→ X)→ X

Question 3 Define the type NN which encodes the pairs of natural numbers, as well as
the corresponding terms :

pair : nat→ nat→ NN
π1 : NN→ nat
π2 : NN→ nat ⋄

Solution.

NN ≡ ∀X.(nat→ nat→ X)→ X
pair ≡ λa b : nat .ΛX.λ f : nat→ nat→ X. f a b □

Question 4 Define the term s : NN → NN corresponding to the function (n,m) 7→
(S n,n). ⋄

Solution.
s ≡ λc : NN.pair (S (π1 c)) (π1 c)

Question 5 Use this to define a predecessor function over nat. ⋄

Solution.
pred ≡ λn.π1 (n NN (pair 0 0) pp)

3 Lists in Type Theory

We start not in Type Theory, but in System T, that is simply-typed λ-calculus with the
constants :

0 : N
S : N→ N

RT : T→ (N→ T→ T)→ N→ T (for any type T)

and the usual reduction rules for RT.

Question 6 Extend this with corresponding constructions for a type listT of lists whose
elements are of type T with constants nilT and consT. You can call RLT the recursion
operator over these lists. Give the corresponding reduction rules. ⋄

2

Solution.

nilT : listT (1)
consT : T→ listT → listT (2)
RLT,U : U→ (T→ listT → U→ U)→ listT → U (3)

and the reductions :

(RLT,U t0 tc nilT) ▷ t0 (4)
(RLT,U t0 tc (consT u l)) ▷ (tc u l (RLT,U t0 tc l)) (5)

□

Question 7 Transpose this to Martin-Löf’s Type Theory (MLTT) by giving a dependent
typing for this RLT operator, so that it becomes an extension of MLTT. ⋄

Solution. With P : N→ Type,

RLT,P : (P nilT)→ (∀x : T.∀l : listT.(P l)→ (P (consT x l))→ ∀l : listT → (P l).

Independently, we extend MLTT with an operator D : N → Type with two reduction
rules :

(D 0) ▷ ⊤

(D (S t)) ▷ ⊥

Question 8 Use this new operator to prove 0 =N (S 0)→ ⊥ in this extension of MLTT.⋄

Solution. You can prove 0 =N (S 0)→ (D 0)→ (D 1)) and since (D 0) is provable, you get
0 =N (S 0)→ (D 1)) which is identical to 0 =N (S 0)→ ⊥ . □

Question 9 We now want to prove Πx : T . Πl : listT . nilT =listT
(consT x l)→ ⊥.

Do you need additional operator to prove this or can you do with the operator D of
the previous question? How do you proceed? ⋄

Solution. You do not need any new operator or extension. Just translate lists to numbers
with

tr ≡ λl : listT.RLT,N 0 λ_.λ_.1 l

and then use the previous question to prove tr nilT , consT n l. □

4 Surjective Pairing

One considers the following additional reduction rule for Martin-Löf’s Type Theory :

(π1(t), π2(t)) ▷SR t

This reduction rule is know as the surjective pairing reduction. Note that the rule is not
linear (the two occurrences of t in the left hand part need to be identical).

3

Question 10 Show that this rule enjoys the subject reduction property. That is, if Γ ⊢
(π1(t), π2(t)) : U, then Γ ⊢ t : U. ⋄

Solution. We remember that we have uniqueness of typing modulo conversion : if
Γ ⊢ u : U1 and Γ ⊢ u : U2, then U1 =β U2.

If (π1(t), π2(t))Σx:A.B is well typed in Γ, then so is π1(t) and thus there exists A and B
such that Γ ⊢ t : Σx : A.B.

Thus Γ ⊢ π1(t) : A and Γ ⊢ π2(t) : Bi[x \ π1(t)].
Thus Γ ⊢ (π1(t), π2(t)) : Σx : A.B.
Thus Γ ⊢ T : Type and T =β Σx : A.B, and thus Γ ⊢ t : T.

5 Markov’s Principle

In this section, we work in Martin-Löf’s Type Theory (MLTT). We consider that P is a
predicate over natural numbers, that is an object of type N→ Type.

Question 11 Show that, for at least some values of P, the proposition ¬¬(Σn : N.P n)→
Σn : N.P n is not provable in MLTT. ⋄

Solution. Take a variable X : Type and P ≡ λx : N.X. Then Σn : N.P n is equivalent to X
and the principle would entail X + ¬X thus giving full classical logic. □

The soviet mathematician Andrei Markov proposed a version of this proposition,
weakened in order to preserve constructivity. He suggested to admit the axiom ¬¬(Σn :
N.P n)→ Σn : N.P n but only for decidable properties, that is provided the following is
provable : ∀n : N.P n + ¬(P n). (Here + denotes the sum type operator in MLTT).

In other words, Markov proposed to accept the following axiom scheme, which is
thus known as Markov’s principle :

(∀n : N.P n + ¬(P n))→ ¬¬(Σn : N.P n)→ Σn : N.P n.

Question 12 Explain informally why Markov’s principle can be constructive ; that is
how one could give evidence for Markov’s principle in Heyting’s semantics. ⋄

Solution. Evidence for (1) ∀n : N.P n+¬(P n) is a function giving evidence for P n+¬(P n)
for any n.

Evidence for ¬¬(Σn : N.P n) entails, classically, that there exists a number α for which
P α is true.

So enumerating all natural numbers and checking (1) one will find α and a proof of
P α. □

(For the record, it is possible, but difficult, to show that Markov’s principle is not
provable in MLTT (or in Heyting’s arithmetic).)

One proposes to extend MLTT with a specific term corresponding to Markov’s
principle in the Curry-Howard setting.

Given terms P, d, p,n, one has a new term MPP(d, p,n). One adds the following typing
rule :

4

Γ ⊢ P : N→ Type Γ ⊢ d : ∀n : N.P n + ¬(P n) Γ ⊢ p : ¬¬(Σn : N.P n)

Γ ⊢MPP(d, p, 0) : Σn : N.P n

One suggests the following reduction rule :

(RMP) MPP(d, p,n) ▷ δ(d n, x.(n x), y.MPP(d, p, (S n)))

Remember δ is the elimination operator for sum types, that is logical disjunction.

Question 13 Explain the idea behind this MP operator and this reduction rule. ⋄

Solution. It is precisely what is described in the response to the previous question. □

Question 14 Show that this RMP reduction rule is not strongly normalizable (or in other
words, that MLTT with this reduction rule in not strongly normalizable). This should be
very short. ⋄

Solution. The reduction rule can obviously be repeated infinitely :

MPP(d, p, 0) ▷ δ(d n, x.(n x), y.MPP(d, p, (S n)))
▷ δ(d 0, x.(n x), y.δ(d 1, x.(n x), y.MPP(d, p, 2)))
▷ δ(d 0, x.(n x), y.δ(d 1, x.(n x), y.δ(d 1, x.(n x), y.MPP(d, p, 3))))
▷ . . . □

Question 15 Show that the system with the RMP reduction rule is not weakly normali-
zable either. Hint : you may look at the next question to find the idea. ⋄

Solution. If we are in an incoherent context with b : ⊥, then one can use b to prove
¬¬Σx : N.⊥. Using the simple proof of ∀x : N.⊥ + ¬⊥ which always returns the proof of
¬⊥, the operator will never find a witness and loop forever. □

One therefore suggests the following restriction : the RMP reduction can only be performed
when the terms d and p are closed (that is they contain no free variable).

Question 16 Sketch a proof of weak normalization for MLTT extended by this restricted
RMP reduction rule. ⋄

Solution. For any well-typed term t, we call #(t) the size of its normal form (for conven-
tional reduction, that is without considering RMP.

Suppose Γ ⊢ t : T. We show by induction over #(t) that t has a normal form for the
extended reduction.

We take the conventional normal form of t. Suppose it contains a RMP redex MP(d, p, 0)
(the third argument of MP must be convertible to 0 because of the typing rule and because
we have not performed any RMP reduction). By induction hypothesis, we can normalize
d and p. We suppose thus that d and p are closed and normal.

We can thus argue that there must exists a closed term S(i) 0 sucht that d S(i) 0 reduces
to some i(q) (because p is closed). Thus MP(d, p, 0) reduces to (S(i) 0, q). □

5

