public class Arrays extends Object
The methods in this class all throw a NullPointerException
,
if the specified array reference is null, except where noted.
The documentation for the methods contained in this class includes
briefs description of the implementations. Such descriptions should
be regarded as implementation notes, rather than parts of the
specification. Implementors should feel free to substitute other
algorithms, so long as the specification itself is adhered to. (For
example, the algorithm used by sort(Object[])
does not have to be
a MergeSort, but it does have to be stable.)
This class is a member of the Java Collections Framework.
Modifier and Type  Method and Description 

static <T> List<T> 
asList(T... a)
Returns a fixedsize list backed by the specified array.

static int 
binarySearch(byte[] a,
byte key)
Searches the specified array of bytes for the specified value using the
binary search algorithm.

static int 
binarySearch(byte[] a,
int fromIndex,
int toIndex,
byte key)
Searches a range of
the specified array of bytes for the specified value using the
binary search algorithm.

static int 
binarySearch(char[] a,
char key)
Searches the specified array of chars for the specified value using the
binary search algorithm.

static int 
binarySearch(char[] a,
int fromIndex,
int toIndex,
char key)
Searches a range of
the specified array of chars for the specified value using the
binary search algorithm.

static int 
binarySearch(double[] a,
double key)
Searches the specified array of doubles for the specified value using
the binary search algorithm.

static int 
binarySearch(double[] a,
int fromIndex,
int toIndex,
double key)
Searches a range of
the specified array of doubles for the specified value using
the binary search algorithm.

static int 
binarySearch(float[] a,
float key)
Searches the specified array of floats for the specified value using
the binary search algorithm.

static int 
binarySearch(float[] a,
int fromIndex,
int toIndex,
float key)
Searches a range of
the specified array of floats for the specified value using
the binary search algorithm.

static int 
binarySearch(int[] a,
int key)
Searches the specified array of ints for the specified value using the
binary search algorithm.

static int 
binarySearch(int[] a,
int fromIndex,
int toIndex,
int key)
Searches a range of
the specified array of ints for the specified value using the
binary search algorithm.

static int 
binarySearch(long[] a,
int fromIndex,
int toIndex,
long key)
Searches a range of
the specified array of longs for the specified value using the
binary search algorithm.

static int 
binarySearch(long[] a,
long key)
Searches the specified array of longs for the specified value using the
binary search algorithm.

static int 
binarySearch(Object[] a,
int fromIndex,
int toIndex,
Object key)
Searches a range of
the specified array for the specified object using the binary
search algorithm.

static int 
binarySearch(Object[] a,
Object key)
Searches the specified array for the specified object using the binary
search algorithm.

static int 
binarySearch(short[] a,
int fromIndex,
int toIndex,
short key)
Searches a range of
the specified array of shorts for the specified value using
the binary search algorithm.

static int 
binarySearch(short[] a,
short key)
Searches the specified array of shorts for the specified value using
the binary search algorithm.

static <T> int 
binarySearch(T[] a,
int fromIndex,
int toIndex,
T key,
Comparator<? super T> c)
Searches a range of
the specified array for the specified object using the binary
search algorithm.

static <T> int 
binarySearch(T[] a,
T key,
Comparator<? super T> c)
Searches the specified array for the specified object using the binary
search algorithm.

static boolean[] 
copyOf(boolean[] original,
int newLength)
Copies the specified array, truncating or padding with false (if necessary)
so the copy has the specified length.

static byte[] 
copyOf(byte[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static char[] 
copyOf(char[] original,
int newLength)
Copies the specified array, truncating or padding with null characters (if necessary)
so the copy has the specified length.

static double[] 
copyOf(double[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static float[] 
copyOf(float[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static int[] 
copyOf(int[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static long[] 
copyOf(long[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static short[] 
copyOf(short[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.

static <T> T[] 
copyOf(T[] original,
int newLength)
Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length.

static <T,U> T[] 
copyOf(U[] original,
int newLength,
Class<? extends T[]> newType)
Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length.

static boolean[] 
copyOfRange(boolean[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static byte[] 
copyOfRange(byte[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static char[] 
copyOfRange(char[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static double[] 
copyOfRange(double[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static float[] 
copyOfRange(float[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static int[] 
copyOfRange(int[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static long[] 
copyOfRange(long[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static short[] 
copyOfRange(short[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static <T> T[] 
copyOfRange(T[] original,
int from,
int to)
Copies the specified range of the specified array into a new array.

static <T,U> T[] 
copyOfRange(U[] original,
int from,
int to,
Class<? extends T[]> newType)
Copies the specified range of the specified array into a new array.

static boolean 
deepEquals(Object[] a1,
Object[] a2)
Returns true if the two specified arrays are deeply
equal to one another.

static int 
deepHashCode(Object[] a)
Returns a hash code based on the "deep contents" of the specified
array.

static String 
deepToString(Object[] a)
Returns a string representation of the "deep contents" of the specified
array.

static boolean 
equals(boolean[] a,
boolean[] a2)
Returns true if the two specified arrays of booleans are
equal to one another.

static boolean 
equals(byte[] a,
byte[] a2)
Returns true if the two specified arrays of bytes are
equal to one another.

static boolean 
equals(char[] a,
char[] a2)
Returns true if the two specified arrays of chars are
equal to one another.

static boolean 
equals(double[] a,
double[] a2)
Returns true if the two specified arrays of doubles are
equal to one another.

static boolean 
equals(float[] a,
float[] a2)
Returns true if the two specified arrays of floats are
equal to one another.

static boolean 
equals(int[] a,
int[] a2)
Returns true if the two specified arrays of ints are
equal to one another.

static boolean 
equals(long[] a,
long[] a2)
Returns true if the two specified arrays of longs are
equal to one another.

static boolean 
equals(Object[] a,
Object[] a2)
Returns true if the two specified arrays of Objects are
equal to one another.

static boolean 
equals(short[] a,
short[] a2)
Returns true if the two specified arrays of shorts are
equal to one another.

static void 
fill(boolean[] a,
boolean val)
Assigns the specified boolean value to each element of the specified
array of booleans.

static void 
fill(boolean[] a,
int fromIndex,
int toIndex,
boolean val)
Assigns the specified boolean value to each element of the specified
range of the specified array of booleans.

static void 
fill(byte[] a,
byte val)
Assigns the specified byte value to each element of the specified array
of bytes.

static void 
fill(byte[] a,
int fromIndex,
int toIndex,
byte val)
Assigns the specified byte value to each element of the specified
range of the specified array of bytes.

static void 
fill(char[] a,
char val)
Assigns the specified char value to each element of the specified array
of chars.

static void 
fill(char[] a,
int fromIndex,
int toIndex,
char val)
Assigns the specified char value to each element of the specified
range of the specified array of chars.

static void 
fill(double[] a,
double val)
Assigns the specified double value to each element of the specified
array of doubles.

static void 
fill(double[] a,
int fromIndex,
int toIndex,
double val)
Assigns the specified double value to each element of the specified
range of the specified array of doubles.

static void 
fill(float[] a,
float val)
Assigns the specified float value to each element of the specified array
of floats.

static void 
fill(float[] a,
int fromIndex,
int toIndex,
float val)
Assigns the specified float value to each element of the specified
range of the specified array of floats.

static void 
fill(int[] a,
int val)
Assigns the specified int value to each element of the specified array
of ints.

static void 
fill(int[] a,
int fromIndex,
int toIndex,
int val)
Assigns the specified int value to each element of the specified
range of the specified array of ints.

static void 
fill(long[] a,
int fromIndex,
int toIndex,
long val)
Assigns the specified long value to each element of the specified
range of the specified array of longs.

static void 
fill(long[] a,
long val)
Assigns the specified long value to each element of the specified array
of longs.

static void 
fill(Object[] a,
int fromIndex,
int toIndex,
Object val)
Assigns the specified Object reference to each element of the specified
range of the specified array of Objects.

static void 
fill(Object[] a,
Object val)
Assigns the specified Object reference to each element of the specified
array of Objects.

static void 
fill(short[] a,
int fromIndex,
int toIndex,
short val)
Assigns the specified short value to each element of the specified
range of the specified array of shorts.

static void 
fill(short[] a,
short val)
Assigns the specified short value to each element of the specified array
of shorts.

static int 
hashCode(boolean[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(byte[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(char[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(double[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(float[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(int[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(long[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(Object[] a)
Returns a hash code based on the contents of the specified array.

static int 
hashCode(short[] a)
Returns a hash code based on the contents of the specified array.

static void 
parallelPrefix(double[] array,
DoubleBinaryOperator op)
Cumulates, in parallel, each element of the given array in place,
using the supplied function.

static void 
parallelPrefix(double[] array,
int fromIndex,
int toIndex,
DoubleBinaryOperator op)
Performs
parallelPrefix(double[], DoubleBinaryOperator)
for the given subrange of the array. 
static void 
parallelPrefix(int[] array,
IntBinaryOperator op)
Cumulates, in parallel, each element of the given array in place,
using the supplied function.

static void 
parallelPrefix(int[] array,
int fromIndex,
int toIndex,
IntBinaryOperator op)
Performs
parallelPrefix(int[], IntBinaryOperator)
for the given subrange of the array. 
static void 
parallelPrefix(long[] array,
int fromIndex,
int toIndex,
LongBinaryOperator op)
Performs
parallelPrefix(long[], LongBinaryOperator)
for the given subrange of the array. 
static void 
parallelPrefix(long[] array,
LongBinaryOperator op)
Cumulates, in parallel, each element of the given array in place,
using the supplied function.

static <T> void 
parallelPrefix(T[] array,
BinaryOperator<T> op)
Cumulates, in parallel, each element of the given array in place,
using the supplied function.

static <T> void 
parallelPrefix(T[] array,
int fromIndex,
int toIndex,
BinaryOperator<T> op)
Performs
parallelPrefix(Object[], BinaryOperator)
for the given subrange of the array. 
static void 
parallelSetAll(double[] array,
IntToDoubleFunction generator)
Set all elements of the specified array, in parallel, using the
provided generator function to compute each element.

static void 
parallelSetAll(int[] array,
IntUnaryOperator generator)
Set all elements of the specified array, in parallel, using the
provided generator function to compute each element.

static void 
parallelSetAll(long[] array,
IntToLongFunction generator)
Set all elements of the specified array, in parallel, using the
provided generator function to compute each element.

static <T> void 
parallelSetAll(T[] array,
IntFunction<? extends T> generator)
Set all elements of the specified array, in parallel, using the
provided generator function to compute each element.

static void 
parallelSort(byte[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(byte[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(char[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(char[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(double[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(double[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(float[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(float[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(int[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(int[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(long[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(long[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static void 
parallelSort(short[] a)
Sorts the specified array into ascending numerical order.

static void 
parallelSort(short[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending numerical order.

static <T extends Comparable<? super T>> 
parallelSort(T[] a)
Sorts the specified array of objects into ascending order, according
to the natural ordering of its elements.

static <T> void 
parallelSort(T[] a,
Comparator<? super T> cmp)
Sorts the specified array of objects according to the order induced by
the specified comparator.

static <T extends Comparable<? super T>> 
parallelSort(T[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of objects into
ascending order, according to the
natural ordering of its
elements.

static <T> void 
parallelSort(T[] a,
int fromIndex,
int toIndex,
Comparator<? super T> cmp)
Sorts the specified range of the specified array of objects according
to the order induced by the specified comparator.

static void 
setAll(double[] array,
IntToDoubleFunction generator)
Set all elements of the specified array, using the provided
generator function to compute each element.

static void 
setAll(int[] array,
IntUnaryOperator generator)
Set all elements of the specified array, using the provided
generator function to compute each element.

static void 
setAll(long[] array,
IntToLongFunction generator)
Set all elements of the specified array, using the provided
generator function to compute each element.

static <T> void 
setAll(T[] array,
IntFunction<? extends T> generator)
Set all elements of the specified array, using the provided
generator function to compute each element.

static void 
sort(byte[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(byte[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(char[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(char[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(double[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(double[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(float[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(float[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(int[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(int[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(long[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(long[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static void 
sort(Object[] a)
Sorts the specified array of objects into ascending order, according
to the natural ordering of its elements.

static void 
sort(Object[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of objects into
ascending order, according to the
natural ordering of its
elements.

static void 
sort(short[] a)
Sorts the specified array into ascending numerical order.

static void 
sort(short[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.

static <T> void 
sort(T[] a,
Comparator<? super T> c)
Sorts the specified array of objects according to the order induced by
the specified comparator.

static <T> void 
sort(T[] a,
int fromIndex,
int toIndex,
Comparator<? super T> c)
Sorts the specified range of the specified array of objects according
to the order induced by the specified comparator.

static Spliterator.OfDouble 
spliterator(double[] array)
Returns a
Spliterator.OfDouble covering all of the specified
array. 
static Spliterator.OfDouble 
spliterator(double[] array,
int startInclusive,
int endExclusive)
Returns a
Spliterator.OfDouble covering the specified range of
the specified array. 
static Spliterator.OfInt 
spliterator(int[] array)
Returns a
Spliterator.OfInt covering all of the specified array. 
static Spliterator.OfInt 
spliterator(int[] array,
int startInclusive,
int endExclusive)
Returns a
Spliterator.OfInt covering the specified range of the
specified array. 
static Spliterator.OfLong 
spliterator(long[] array)
Returns a
Spliterator.OfLong covering all of the specified array. 
static Spliterator.OfLong 
spliterator(long[] array,
int startInclusive,
int endExclusive)
Returns a
Spliterator.OfLong covering the specified range of the
specified array. 
static <T> Spliterator<T> 
spliterator(T[] array)
Returns a
Spliterator covering all of the specified array. 
static <T> Spliterator<T> 
spliterator(T[] array,
int startInclusive,
int endExclusive)
Returns a
Spliterator covering the specified range of the
specified array. 
static DoubleStream 
stream(double[] array)
Returns a sequential
DoubleStream with the specified array as its
source. 
static DoubleStream 
stream(double[] array,
int startInclusive,
int endExclusive)
Returns a sequential
DoubleStream with the specified range of the
specified array as its source. 
static IntStream 
stream(int[] array)
Returns a sequential
IntStream with the specified array as its
source. 
static IntStream 
stream(int[] array,
int startInclusive,
int endExclusive)
Returns a sequential
IntStream with the specified range of the
specified array as its source. 
static LongStream 
stream(long[] array)
Returns a sequential
LongStream with the specified array as its
source. 
static LongStream 
stream(long[] array,
int startInclusive,
int endExclusive)
Returns a sequential
LongStream with the specified range of the
specified array as its source. 
static <T> Stream<T> 
stream(T[] array)
Returns a sequential
Stream with the specified array as its
source. 
static <T> Stream<T> 
stream(T[] array,
int startInclusive,
int endExclusive)
Returns a sequential
Stream with the specified range of the
specified array as its source. 
static String 
toString(boolean[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(byte[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(char[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(double[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(float[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(int[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(long[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(Object[] a)
Returns a string representation of the contents of the specified array.

static String 
toString(short[] a)
Returns a string representation of the contents of the specified array.

public static void sort(int[] a)
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(int[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(long[] a)
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(long[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(short[] a)
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(short[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(char[] a)
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(char[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(byte[] a)
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(byte[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(float[] a)
The <
relation does not provide a total order on all float
values: 0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: 0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(float[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
The <
relation does not provide a total order on all float
values: 0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: 0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void sort(double[] a)
The <
relation does not provide a total order on all double
values: 0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: 0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedpublic static void sort(double[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
The <
relation does not provide a total order on all double
values: 0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: 0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Implementation note: The sorting algorithm is a DualPivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (onepivot) Quicksort implementations.
a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(byte[] a)
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(byte[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(char[] a)
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(char[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(short[] a)
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(short[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(int[] a)
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(int[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(long[] a)
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(long[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(float[] a)
The <
relation does not provide a total order on all float
values: 0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: 0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(float[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.
The <
relation does not provide a total order on all float
values: 0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: 0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static void parallelSort(double[] a)
The <
relation does not provide a total order on all double
values: 0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: 0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.a
 the array to be sortedpublic static void parallelSort(double[] a, int fromIndex, int toIndex)
fromIndex
,
inclusive, to the index toIndex
, exclusive. If
fromIndex == toIndex
, the range to be sorted is empty.
The <
relation does not provide a total order on all double
values: 0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: 0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.a
 the array to be sortedfromIndex
 the index of the first element, inclusive, to be sortedtoIndex
 the index of the last element, exclusive, to be sortedIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > a.length
public static <T extends Comparable<? super T>> void parallelSort(T[] a)
Comparable
interface. Furthermore, all elements in the array must be
mutually comparable (that is, e1.compareTo(e2)
must
not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.T
 the class of the objects to be sorteda
 the array to be sortedClassCastException
 if the array contains elements that are not
mutually comparable (for example, strings and integers)IllegalArgumentException
 (optional) if the natural
ordering of the array elements is found to violate the
Comparable
contractpublic static <T extends Comparable<? super T>> void parallelSort(T[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to index toIndex
, exclusive.
(If fromIndex==toIndex
, the range to be sorted is empty.) All
elements in this range must implement the Comparable
interface. Furthermore, all elements in this range must be mutually
comparable (that is, e1.compareTo(e2)
must not throw a
ClassCastException
for any elements e1
and
e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.T
 the class of the objects to be sorteda
 the array to be sortedfromIndex
 the index of the first element (inclusive) to be
sortedtoIndex
 the index of the last element (exclusive) to be sortedIllegalArgumentException
 if fromIndex > toIndex
or
(optional) if the natural ordering of the array elements is
found to violate the Comparable
contractArrayIndexOutOfBoundsException
 if fromIndex < 0
or
toIndex > a.length
ClassCastException
 if the array contains elements that are
not mutually comparable (for example, strings and
integers).public static <T> void parallelSort(T[] a, Comparator<? super T> cmp)
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a
working space no greater than the size of the original array. The
ForkJoin common pool
is used to
execute any parallel tasks.T
 the class of the objects to be sorteda
 the array to be sortedcmp
 the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.ClassCastException
 if the array contains elements that are
not mutually comparable using the specified comparatorIllegalArgumentException
 (optional) if the comparator is
found to violate the Comparator
contractpublic static <T> void parallelSort(T[] a, int fromIndex, int toIndex, Comparator<? super T> cmp)
fromIndex
, inclusive, to index
toIndex
, exclusive. (If fromIndex==toIndex
, the
range to be sorted is empty.) All elements in the range must be
mutually comparable by the specified comparator (that is,
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the range).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Arrays.sort
method. If the length of the specified array is less than the minimum
granularity, then it is sorted using the appropriate Arrays.sort
method. The algorithm requires a working
space no greater than the size of the specified range of the original
array. The ForkJoin common pool
is
used to execute any parallel tasks.T
 the class of the objects to be sorteda
 the array to be sortedfromIndex
 the index of the first element (inclusive) to be
sortedtoIndex
 the index of the last element (exclusive) to be sortedcmp
 the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.IllegalArgumentException
 if fromIndex > toIndex
or
(optional) if the natural ordering of the array elements is
found to violate the Comparable
contractArrayIndexOutOfBoundsException
 if fromIndex < 0
or
toIndex > a.length
ClassCastException
 if the array contains elements that are
not mutually comparable (for example, strings and
integers).public static void sort(Object[] a)
Comparable
interface. Furthermore, all elements in the array must be
mutually comparable (that is, e1.compareTo(e2)
must
not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is wellsuited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACMSIAM Symposium on Discrete Algorithms, pp 467474, January 1993.
a
 the array to be sortedClassCastException
 if the array contains elements that are not
mutually comparable (for example, strings and integers)IllegalArgumentException
 (optional) if the natural
ordering of the array elements is found to violate the
Comparable
contractpublic static void sort(Object[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to index toIndex
, exclusive.
(If fromIndex==toIndex
, the range to be sorted is empty.) All
elements in this range must implement the Comparable
interface. Furthermore, all elements in this range must be mutually
comparable (that is, e1.compareTo(e2)
must not throw a
ClassCastException
for any elements e1
and
e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is wellsuited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACMSIAM Symposium on Discrete Algorithms, pp 467474, January 1993.
a
 the array to be sortedfromIndex
 the index of the first element (inclusive) to be
sortedtoIndex
 the index of the last element (exclusive) to be sortedIllegalArgumentException
 if fromIndex > toIndex
or
(optional) if the natural ordering of the array elements is
found to violate the Comparable
contractArrayIndexOutOfBoundsException
 if fromIndex < 0
or
toIndex > a.length
ClassCastException
 if the array contains elements that are
not mutually comparable (for example, strings and
integers).public static <T> void sort(T[] a, Comparator<? super T> c)
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is wellsuited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACMSIAM Symposium on Discrete Algorithms, pp 467474, January 1993.
T
 the class of the objects to be sorteda
 the array to be sortedc
 the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.ClassCastException
 if the array contains elements that are
not mutually comparable using the specified comparatorIllegalArgumentException
 (optional) if the comparator is
found to violate the Comparator
contractpublic static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c)
fromIndex
, inclusive, to index
toIndex
, exclusive. (If fromIndex==toIndex
, the
range to be sorted is empty.) All elements in the range must be
mutually comparable by the specified comparator (that is,
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the range).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than n lg(n) comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons. Temporary storage requirements vary from a small constant for nearly sorted input arrays to n/2 object references for randomly ordered input arrays.
The implementation takes equal advantage of ascending and descending order in its input array, and can take advantage of ascending and descending order in different parts of the the same input array. It is wellsuited to merging two or more sorted arrays: simply concatenate the arrays and sort the resulting array.
The implementation was adapted from Tim Peters's list sort for Python ( TimSort). It uses techniques from Peter McIlroy's "Optimistic Sorting and Information Theoretic Complexity", in Proceedings of the Fourth Annual ACMSIAM Symposium on Discrete Algorithms, pp 467474, January 1993.
T
 the class of the objects to be sorteda
 the array to be sortedfromIndex
 the index of the first element (inclusive) to be
sortedtoIndex
 the index of the last element (exclusive) to be sortedc
 the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.ClassCastException
 if the array contains elements that are not
mutually comparable using the specified comparator.IllegalArgumentException
 if fromIndex > toIndex
or
(optional) if the comparator is found to violate the
Comparator
contractArrayIndexOutOfBoundsException
 if fromIndex < 0
or
toIndex > a.length
public static <T> void parallelPrefix(T[] array, BinaryOperator<T> op)
[2, 1, 0, 3]
and the operation performs addition,
then upon return the array holds [2, 3, 3, 6]
.
Parallel prefix computation is usually more efficient than
sequential loops for large arrays.T
 the class of the objects in the arrayarray
 the array, which is modified inplace by this methodop
 a sideeffectfree, associative function to perform the
cumulationNullPointerException
 if the specified array or function is nullpublic static <T> void parallelPrefix(T[] array, int fromIndex, int toIndex, BinaryOperator<T> op)
parallelPrefix(Object[], BinaryOperator)
for the given subrange of the array.T
 the class of the objects in the arrayarray
 the arrayfromIndex
 the index of the first element, inclusivetoIndex
 the index of the last element, exclusiveop
 a sideeffectfree, associative function to perform the
cumulationIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > array.length
NullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(long[] array, LongBinaryOperator op)
[2, 1, 0, 3]
and the operation performs addition,
then upon return the array holds [2, 3, 3, 6]
.
Parallel prefix computation is usually more efficient than
sequential loops for large arrays.array
 the array, which is modified inplace by this methodop
 a sideeffectfree, associative function to perform the
cumulationNullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(long[] array, int fromIndex, int toIndex, LongBinaryOperator op)
parallelPrefix(long[], LongBinaryOperator)
for the given subrange of the array.array
 the arrayfromIndex
 the index of the first element, inclusivetoIndex
 the index of the last element, exclusiveop
 a sideeffectfree, associative function to perform the
cumulationIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > array.length
NullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(double[] array, DoubleBinaryOperator op)
[2.0, 1.0, 0.0, 3.0]
and the operation performs addition,
then upon return the array holds [2.0, 3.0, 3.0, 6.0]
.
Parallel prefix computation is usually more efficient than
sequential loops for large arrays.
Because floatingpoint operations may not be strictly associative, the returned result may not be identical to the value that would be obtained if the operation was performed sequentially.
array
 the array, which is modified inplace by this methodop
 a sideeffectfree function to perform the cumulationNullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(double[] array, int fromIndex, int toIndex, DoubleBinaryOperator op)
parallelPrefix(double[], DoubleBinaryOperator)
for the given subrange of the array.array
 the arrayfromIndex
 the index of the first element, inclusivetoIndex
 the index of the last element, exclusiveop
 a sideeffectfree, associative function to perform the
cumulationIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > array.length
NullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(int[] array, IntBinaryOperator op)
[2, 1, 0, 3]
and the operation performs addition,
then upon return the array holds [2, 3, 3, 6]
.
Parallel prefix computation is usually more efficient than
sequential loops for large arrays.array
 the array, which is modified inplace by this methodop
 a sideeffectfree, associative function to perform the
cumulationNullPointerException
 if the specified array or function is nullpublic static void parallelPrefix(int[] array, int fromIndex, int toIndex, IntBinaryOperator op)
parallelPrefix(int[], IntBinaryOperator)
for the given subrange of the array.array
 the arrayfromIndex
 the index of the first element, inclusivetoIndex
 the index of the last element, exclusiveop
 a sideeffectfree, associative function to perform the
cumulationIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0
or toIndex > array.length
NullPointerException
 if the specified array or function is nullpublic static int binarySearch(long[] a, long key)
sort(long[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(long[] a, int fromIndex, int toIndex, long key)
sort(long[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(int[] a, int key)
sort(int[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(int[] a, int fromIndex, int toIndex, int key)
sort(int[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(short[] a, short key)
sort(short[])
method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(short[] a, int fromIndex, int toIndex, short key)
sort(short[], int, int)
method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(char[] a, char key)
sort(char[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(char[] a, int fromIndex, int toIndex, char key)
sort(char[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(byte[] a, byte key)
sort(byte[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(byte[] a, int fromIndex, int toIndex, byte key)
sort(byte[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(double[] a, double key)
sort(double[])
method) prior to making this call.
If it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(double[] a, int fromIndex, int toIndex, double key)
sort(double[], int, int)
method)
prior to making this call.
If it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(float[] a, float key)
sort(float[])
method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
 the array to be searchedkey
 the value to be searched forpublic static int binarySearch(float[] a, int fromIndex, int toIndex, float key)
sort(float[], int, int)
method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forIllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static int binarySearch(Object[] a, Object key)
sort(Object[])
method) prior to making this call.
If it is not sorted, the results are undefined.
(If the array contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the array contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.a
 the array to be searchedkey
 the value to be searched forClassCastException
 if the search key is not comparable to the
elements of the array.public static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key)
sort(Object[], int, int)
method) prior to making this
call. If it is not sorted, the results are undefined.
(If the range contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the range contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.a
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forClassCastException
 if the search key is not comparable to the
elements of the array within the specified range.IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
sort(T[], Comparator)
method) prior to making this call. If it is
not sorted, the results are undefined.
If the array contains multiple
elements equal to the specified object, there is no guarantee which one
will be found.T
 the class of the objects in the arraya
 the array to be searchedkey
 the value to be searched forc
 the comparator by which the array is ordered. A
null value indicates that the elements'
natural ordering should be used.ClassCastException
 if the array contains elements that are not
mutually comparable using the specified comparator,
or the search key is not comparable to the
elements of the array using this comparator.public static <T> int binarySearch(T[] a, int fromIndex, int toIndex, T key, Comparator<? super T> c)
sort(T[], int, int, Comparator)
method) prior to making this call.
If it is not sorted, the results are undefined.
If the range contains multiple elements equal to the specified object,
there is no guarantee which one will be found.T
 the class of the objects in the arraya
 the array to be searchedfromIndex
 the index of the first element (inclusive) to be
searchedtoIndex
 the index of the last element (exclusive) to be searchedkey
 the value to be searched forc
 the comparator by which the array is ordered. A
null value indicates that the elements'
natural ordering should be used.ClassCastException
 if the range contains elements that are not
mutually comparable using the specified comparator,
or the search key is not comparable to the
elements in the range using this comparator.IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or toIndex > a.length
public static boolean equals(long[] a, long[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(int[] a, int[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(short[] a, short[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(char[] a, char[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(byte[] a, byte[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(boolean[] a, boolean[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static boolean equals(double[] a, double[] a2)
Two doubles d1 and d2 are considered equal if:
new Double(d1).equals(new Double(d2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0d unequal to 0.0d.)
a
 one array to be tested for equalitya2
 the other array to be tested for equalityDouble.equals(Object)
public static boolean equals(float[] a, float[] a2)
Two floats f1 and f2 are considered equal if:
new Float(f1).equals(new Float(f2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0f unequal to 0.0f.)
a
 one array to be tested for equalitya2
 the other array to be tested for equalityFloat.equals(Object)
public static boolean equals(Object[] a, Object[] a2)
a
 one array to be tested for equalitya2
 the other array to be tested for equalitypublic static void fill(long[] a, long val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(long[] a, int fromIndex, int toIndex, long val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(int[] a, int val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(int[] a, int fromIndex, int toIndex, int val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(short[] a, short val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(short[] a, int fromIndex, int toIndex, short val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(char[] a, char val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(char[] a, int fromIndex, int toIndex, char val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(byte[] a, byte val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(byte[] a, int fromIndex, int toIndex, byte val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(boolean[] a, boolean val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(double[] a, double val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(double[] a, int fromIndex, int toIndex, double val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(float[] a, float val)
a
 the array to be filledval
 the value to be stored in all elements of the arraypublic static void fill(float[] a, int fromIndex, int toIndex, float val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(Object[] a, Object val)
a
 the array to be filledval
 the value to be stored in all elements of the arrayArrayStoreException
 if the specified value is not of a
runtime type that can be stored in the specified arraypublic static void fill(Object[] a, int fromIndex, int toIndex, Object val)
a
 the array to be filledfromIndex
 the index of the first element (inclusive) to be
filled with the specified valuetoIndex
 the index of the last element (exclusive) to be
filled with the specified valueval
 the value to be stored in all elements of the arrayIllegalArgumentException
 if fromIndex > toIndexArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthArrayStoreException
 if the specified value is not of a
runtime type that can be stored in the specified arraypublic static <T> T[] copyOf(T[] original, int newLength)
T
 the class of the objects in the arrayoriginal
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType)
U
 the class of the objects in the original arrayT
 the class of the objects in the returned arrayoriginal
 the array to be copiednewLength
 the length of the copy to be returnednewType
 the class of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullArrayStoreException
 if an element copied from
original is not of a runtime type that can be stored in
an array of class newTypepublic static byte[] copyOf(byte[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static short[] copyOf(short[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static int[] copyOf(int[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static long[] copyOf(long[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static char[] copyOf(char[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static float[] copyOf(float[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static double[] copyOf(double[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static boolean[] copyOf(boolean[] original, int newLength)
original
 the array to be copiednewLength
 the length of the copy to be returnedNegativeArraySizeException
 if newLength is negativeNullPointerException
 if original is nullpublic static <T> T[] copyOfRange(T[] original, int from, int to)
The resulting array is of exactly the same class as the original array.
T
 the class of the objects in the arrayoriginal
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType)
U
 the class of the objects in the original arrayT
 the class of the objects in the returned arrayoriginal
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)newType
 the class of the copy to be returnedArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullArrayStoreException
 if an element copied from
original is not of a runtime type that can be stored in
an array of class newType.public static byte[] copyOfRange(byte[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static short[] copyOfRange(short[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static int[] copyOfRange(int[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static long[] copyOfRange(long[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static char[] copyOfRange(char[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static float[] copyOfRange(float[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static double[] copyOfRange(double[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is nullpublic static boolean[] copyOfRange(boolean[] original, int from, int to)
original
 the array from which a range is to be copiedfrom
 the initial index of the range to be copied, inclusiveto
 the final index of the range to be copied, exclusive.
(This index may lie outside the array.)ArrayIndexOutOfBoundsException
 if from < 0
or from > original.length
IllegalArgumentException
 if from > toNullPointerException
 if original is null@SafeVarargs public static <T> List<T> asList(T... a)
Collection.toArray()
. The returned list is
serializable and implements RandomAccess
.
This method also provides a convenient way to create a fixedsize list initialized to contain several elements:
List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
T
 the class of the objects in the arraya
 the array by which the list will be backedpublic static int hashCode(long[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Long
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(int[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Integer
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(short[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Short
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(char[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Character
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(byte[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Byte
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(boolean[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Boolean
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(float[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Float
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(double[] a)
The value returned by this method is the same value that would be
obtained by invoking the hashCode
method on a List
containing a sequence of Double
instances representing the elements of a in the same order.
If a is null, this method returns 0.
a
 the array whose hash value to computepublic static int hashCode(Object[] a)
For any two arrays a and b such that Arrays.equals(a, b), it is also the case that Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is equal to the value that would be returned by Arrays.asList(a).hashCode(), unless a is null, in which case 0 is returned.
a
 the array whose contentbased hash code to computedeepHashCode(Object[])
public static int deepHashCode(Object[] a)
For any two arrays a and b such that Arrays.deepEquals(a, b), it is also the case that Arrays.deepHashCode(a) == Arrays.deepHashCode(b).
The computation of the value returned by this method is similar to
that of the value returned by List.hashCode()
on a list
containing the same elements as a in the same order, with one
difference: If an element e of a is itself an array,
its hash code is computed not by calling e.hashCode(), but as
by calling the appropriate overloading of Arrays.hashCode(e)
if e is an array of a primitive type, or as by calling
Arrays.deepHashCode(e) recursively if e is an array
of a reference type. If a is null, this method
returns 0.
a
 the array whose deepcontentbased hash code to computehashCode(Object[])
public static boolean deepEquals(Object[] a1, Object[] a2)
equals(Object[],Object[])
method, this method is appropriate for use with nested arrays of
arbitrary depth.
Two array references are considered deeply equal if both are null, or if they refer to arrays that contain the same number of elements and all corresponding pairs of elements in the two arrays are deeply equal.
Two possibly null elements e1 and e2 are deeply equal if any of the following conditions hold:
If either of the specified arrays contain themselves as elements either directly or indirectly through one or more levels of arrays, the behavior of this method is undefined.
a1
 one array to be tested for equalitya2
 the other array to be tested for equalityequals(Object[],Object[])
,
Objects.deepEquals(Object, Object)
public static String toString(long[] a)
a
 the array whose string representation to returnpublic static String toString(int[] a)
a
 the array whose string representation to returnpublic static String toString(short[] a)
a
 the array whose string representation to returnpublic static String toString(char[] a)
a
 the array whose string representation to returnpublic static String toString(byte[] a)
a
 the array whose string representation to returnpublic static String toString(boolean[] a)
a
 the array whose string representation to returnpublic static String toString(float[] a)
a
 the array whose string representation to returnpublic static String toString(double[] a)
a
 the array whose string representation to returnpublic static String toString(Object[] a)
Object.toString()
method inherited from
Object, which describes their identities rather than
their contents.
The value returned by this method is equal to the value that would be returned by Arrays.asList(a).toString(), unless a is null, in which case "null" is returned.
a
 the array whose string representation to returndeepToString(Object[])
public static String deepToString(Object[] a)
The string representation consists of a list of the array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Elements are converted to strings as by String.valueOf(Object), unless they are themselves arrays.
If an element e is an array of a primitive type, it is converted to a string as by invoking the appropriate overloading of Arrays.toString(e). If an element e is an array of a reference type, it is converted to a string as by invoking this method recursively.
To avoid infinite recursion, if the specified array contains itself as an element, or contains an indirect reference to itself through one or more levels of arrays, the selfreference is converted to the string "[...]". For example, an array containing only a reference to itself would be rendered as "[[...]]".
This method returns "null" if the specified array is null.
a
 the array whose string representation to returntoString(Object[])
public static <T> void setAll(T[] array, IntFunction<? extends T> generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
T
 type of elements of the arrayarray
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static <T> void parallelSetAll(T[] array, IntFunction<? extends T> generator)
If the generator function throws an exception, an unchecked exception
is thrown from parallelSetAll
and the array is left in an
indeterminate state.
T
 type of elements of the arrayarray
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void setAll(int[] array, IntUnaryOperator generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void parallelSetAll(int[] array, IntUnaryOperator generator)
If the generator function throws an exception, an unchecked exception
is thrown from parallelSetAll
and the array is left in an
indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void setAll(long[] array, IntToLongFunction generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void parallelSetAll(long[] array, IntToLongFunction generator)
If the generator function throws an exception, an unchecked exception
is thrown from parallelSetAll
and the array is left in an
indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void setAll(double[] array, IntToDoubleFunction generator)
If the generator function throws an exception, it is relayed to the caller and the array is left in an indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static void parallelSetAll(double[] array, IntToDoubleFunction generator)
If the generator function throws an exception, an unchecked exception
is thrown from parallelSetAll
and the array is left in an
indeterminate state.
array
 array to be initializedgenerator
 a function accepting an index and producing the desired
value for that positionNullPointerException
 if the generator is nullpublic static <T> Spliterator<T> spliterator(T[] array)
Spliterator
covering all of the specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
T
 type of elementsarray
 the array, assumed to be unmodified during usepublic static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive)
Spliterator
covering the specified range of the
specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
T
 type of elementsarray
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static Spliterator.OfInt spliterator(int[] array)
Spliterator.OfInt
covering all of the specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usepublic static Spliterator.OfInt spliterator(int[] array, int startInclusive, int endExclusive)
Spliterator.OfInt
covering the specified range of the
specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static Spliterator.OfLong spliterator(long[] array)
Spliterator.OfLong
covering all of the specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usepublic static Spliterator.OfLong spliterator(long[] array, int startInclusive, int endExclusive)
Spliterator.OfLong
covering the specified range of the
specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static Spliterator.OfDouble spliterator(double[] array)
Spliterator.OfDouble
covering all of the specified
array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usepublic static Spliterator.OfDouble spliterator(double[] array, int startInclusive, int endExclusive)
Spliterator.OfDouble
covering the specified range of
the specified array.
The spliterator reports Spliterator.SIZED
,
Spliterator.SUBSIZED
, Spliterator.ORDERED
, and
Spliterator.IMMUTABLE
.
array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static <T> Stream<T> stream(T[] array)
Stream
with the specified array as its
source.T
 The type of the array elementsarray
 The array, assumed to be unmodified during useStream
for the arraypublic static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive)
Stream
with the specified range of the
specified array as its source.T
 the type of the array elementsarray
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverStream
for the array rangeArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static IntStream stream(int[] array)
IntStream
with the specified array as its
source.array
 the array, assumed to be unmodified during useIntStream
for the arraypublic static IntStream stream(int[] array, int startInclusive, int endExclusive)
IntStream
with the specified range of the
specified array as its source.array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverIntStream
for the array rangeArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static LongStream stream(long[] array)
LongStream
with the specified array as its
source.array
 the array, assumed to be unmodified during useLongStream
for the arraypublic static LongStream stream(long[] array, int startInclusive, int endExclusive)
LongStream
with the specified range of the
specified array as its source.array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverLongStream
for the array rangeArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array sizepublic static DoubleStream stream(double[] array)
DoubleStream
with the specified array as its
source.array
 the array, assumed to be unmodified during useDoubleStream
for the arraypublic static DoubleStream stream(double[] array, int startInclusive, int endExclusive)
DoubleStream
with the specified range of the
specified array as its source.array
 the array, assumed to be unmodified during usestartInclusive
 the first index to cover, inclusiveendExclusive
 index immediately past the last index to coverDoubleStream
for the array rangeArrayIndexOutOfBoundsException
 if startInclusive
is
negative, endExclusive
is less than
startInclusive
, or endExclusive
is greater than
the array size Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developertargeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2015, Oracle and/or its affiliates. All rights reserved.