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Proofs of Propositions 1–4
Proof of Proposition 1

By Lemma 1, it is enough to prove that the minimum non-zero value ofD0 is 1, and that all pairs T, T ′ ∈ UT n

such that D0(T, T ′) = 1 also satisfy that Dp(T, T ′) = 1 for every p > 1.

As we have seen in Example 2, if we contract a pendant arc in a tree T , we obtain a new tree T ′ such that

Dp(T, T ′) = 1, for every p ∈ {0}∪ [1,∞[, and this is of course the smallest possible non-negative value of Dp

on UT n. It remains to prove that this is the only way we can obtain a pair of trees such that D0(T, T ′) = 1.

So, let T, T ′ ∈ UT n be such that ϕ(T ) = ϕ(T ′) + m · ei,j for some m > 1 and 1 6 i, j 6 n (where ei,j

stands for the vector of length n(n+1)/2 with all entries 0 except an 1 in the entry corresponding to the pair

(i, j)); that is, T and T ′ are such that ϕT (i, j) = ϕT ′(i, j) + m, for some m > 1, and ϕT (x, y) = ϕT ′(x, y)

for every (x, y) 6= (i, j). Let us prove first of all that m = 1. So, assume that m > 2 and let us reach a

contradiction.

Since ϕT (i, j) > 0, there exists some taxon k 6= i, j that is a descendant in T of the parent of [i, j]T . In

other words, such that [i, k]T = [j, k]T is the parent of [i, j]T . But then

ϕT ′(i, k) = ϕT (i, k) = ϕT (i, j)− 1 = ϕT ′(i, j) + (m− 1) > ϕT ′(i, j)
ϕT ′(j, k) = ϕT (j, k) = ϕT (i, j)− 1 = ϕT ′(i, j) + (m− 1) > ϕT ′(i, j)

which cannot hold simultaneously: if ϕT ′(i, k) > ϕT ′(i, j), then ϕT ′(j, k) = ϕT ′(i, j). This shows thatm = 1,

and thus ϕ(T ) = ϕ(T ′) + ei,j .

Let us prove now that it cannot happen that i 6= j. Indeed, assume that i 6= j. If ϕT ′(i, j) = δT ′(i), then

ϕT (i, j) = ϕT ′(i, j) + 1 = δT ′(i) + 1 = δT (i) + 1,
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which is impossible. This implies that ϕT ′(i, j) < δT ′(i), δT ′(j). If, now, ϕT ′(i, j) < δT ′(i) − 1, then

there will exist some leaf k such that [i, k]T ′ is the child of [i, j]T ′ in the path from [i, j]T ′ to i. Then

ϕT ′(i, k) = ϕT ′(i, j) + 1 and ϕT ′(j, k) = ϕT ′(i, j), which entail that

ϕT (i, k) = ϕT ′(i, k) = ϕT ′(i, j) + 1 = ϕT (i, j) > ϕT ′(i, j) = ϕT ′(j, k) = ϕT (j, k),

which is also impossible. So, if i 6= j, the only possibility is that ϕT ′(i, j) = δT ′(i)− 1 = δT ′(j)− 1, but then

it would imply that ϕT (i, j) = ϕT ′(i, j) + 1 = δT (i) = δT (j) and hence that [i, j]T = i = j, which is again

impossible.

So, if ϕ(T ) = ϕ(T ′) + ei,j then it must happen that i = j. In this case, moreover, i must be a leaf in T

with unlabeled parent. Indeed, if i is not a leaf, then there is some leaf k such that i = [i, k]T and hence

δT (i) = ϕT (i, k). Then, δT ′(i) = δT (i) − 1 = ϕT (i, k) − 1 = ϕT ′(i, k) − 1, which is impossible. So, i is a

leaf in T . And if its parent is labeled, say with l, then δT (i) = δT (l) + 1 and δT (l) = ϕT (i, l). Thus, in T ′,

δT ′(i) = δT (i) − 1 = δT (l) = δT ′(l) and δT ′(i) = δT (l) = ϕT (i, l) = ϕT ′(i, l), which is also impossible, since

it would imply that [i, l]T ′ = i = l.

So, finally, it must happen that i is a leaf in T and its parent is not labeled. Let T0 be the phylogenetic

tree obtained from T by contracting the pendant arc ending in i. Then ϕ(T0) = ϕ(T ) − ei,i = ϕ(T ′), and

this implies, by Theorem 1, that T0 = T ′.

This finishes the proof that the only pairs T, T ′ ∈ WT n such that D0(T, T ′) = 1 are those where one of

them is obtained from the other by the contraction of a pendant arc. Since these pairs of trees also satisfy

that Dp(T, T ′) = 1 for every p > 1, this completes the proof of the proposition.

Proof of Proposition 2

To ease the task of the reader, we split this proof into several lemmas. To begin with, notice that there are

pairs of trees T, T ′ ∈ Tn such that Dp(T, T ′) = 3 for every p ∈ {0} ∪ [1,∞[: for instance, by Example 2,

when T ′ is obtained from T by contracting an arc ending in the root of a cherry. So, the minimum non-zero

value of Dp(T, T ′) on Tn is at most 3.

Lemma 1. If T, T ′ ∈ Tn are such that D0(T, T ′) > 0, then there exists a pair of different taxa i 6= j such

that ϕT (i, j) 6= ϕT ′(i, j).

Proof. If ϕT (i, j) = ϕT ′(i, j) for every i 6= j, then, by Corollary 1, T = T ′ and therefore D0(T, T ′) = 0.

So, every pair of phylogenetic trees in Tn at non-zero D0 distance must have a pair of different leaves

with different cophenetic values.
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Lemma 2. Let T, T ′ ∈ Tn be such that ϕT (i, j) = ϕT ′(i, j) +m, for some 1 6 i < j 6 n and some m > 1.

Let k 6= i, j be a leaf such that there exists a path from [i, j]T ′ to [i, k]T ′ of length l, for some l > 1. Then:

(a) If ϕT (i, k) = ϕT ′(i, k), then ϕT (j, k) > ϕT ′(j, k) + min{m, l}

(b) If ϕT (j, k) = ϕT ′(j, k), then ϕT (i, k) = ϕT ′(i, k)− l

Proof. From the assumptions we have that ϕT ′(i, k) = ϕT ′(i, j) + l = ϕT ′(j, k) + l. Now:

(a) Assume that ϕT (i, k) = ϕT ′(i, k). Then,

ϕT (i, k) = ϕT ′(i, k) = ϕT ′(i, j) + l = ϕT (i, j)− (m− l),

and then

• If m > l, then ϕT (i, k) < ϕT (i, j), that is, [i, j]T ≺ [i, k]T , and thus

ϕT (j, k) = ϕT (i, k) = ϕT ′(i, k) = ϕT ′(j, k) + l

• If m = l, then ϕT (i, k) = ϕT (i, j), that is, [i, k]T = [i, j]T , and thus

ϕT (j, k) > ϕT (i, j) = ϕT ′(i, j) +m = ϕT ′(j, k) +m

• If m < l, then ϕT (i, k) > ϕT (i, j), that is, [i, k]T ≺ [i, j]T , and thus

ϕT (j, k) = ϕT (i, j) = ϕT ′(i, j) +m = ϕT ′(j, k) +m

(b) Assume that ϕT (j, k) = ϕT ′(j, k). Then

ϕT (j, k) = ϕT ′(j, k) = ϕT ′(i, j) = ϕT (i, j)−m,

so that [i, j]T ≺ [j, k]T , and thus

ϕT (i, k) = ϕT (j, k) = ϕT ′(j, k) = ϕT ′(i, j) = ϕT ′(i, k)− l

As a direct consequence of this lemma we obtain the following result.

Corollary 1. Let T, T ′ ∈ Tn be such that ϕT (i, j) = ϕT ′(i, j) +m, for some 1 6 i < j 6 n and some m > 1.

Let N be the number of leaves k such that k 6= i, j and either [i, k]T ′ ≺ [i, j]T ′ or [j, k]T ′ ≺ [i, j]T ′ . Then,

D0(T, T ′) > N + 1.
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Lemma 3. Let T, T ′ ∈ Tn be such that D0(T, T ′) 6 3. If ϕT (i, j) = ϕT ′(i, j) + m, for some 1 6 i < j 6 n

and some m > 1, then m = 1.

Proof. If δT ′(i) = δT (i), then δT ′(i) = δT (i) > ϕT (i, j) = ϕT ′(i, j) +m which implies that there are at least

m leaves k such that [i, k]T ′ ≺ [i, j]T ′ . Then, by the last corollary, D0(T, T ′) > m+1. Now, if δT ′(j) = δT (j),

then for the same reason there are at least m leaves k such that [j, k]T ′ ≺ [i, j]T ′ and they increase D0(T, T ′)

to at least 2m+ 1, while if δT ′(j) 6= δT (j), then D0(T, T ′) > m+ 2. We conclude then that if δT ′(i) = δT (i),

then m = 1. By symmetry, if δT ′(j) = δT (j), then m = 1, either.

Finally, if δT ′(i) 6= δT (i) and δT ′(j) 6= δT (j), and since ϕT (i, j) 6= ϕT ′(i, j), we have that ϕT (x, y) =

ϕT ′(x, y) for every (x, y) 6= (i, i), (j, j), (i, j). Let now k 6= i, j be a taxon such that [i, k]T = [j, k]T is the

parent of [i, j]T in T . Then

ϕT ′(i, k) = ϕT (i, k) = ϕT (i, j)− 1 = ϕT ′(i, j) + (m− 1)

and therefore, if m > 2, ϕT ′(i, k) > ϕT ′(i, j) and then, by Lemma 2, either ϕT (i, k) 6= ϕT ′(i, k) or ϕT (j, k) 6=

ϕT ′(j, k), which, as we have seen, is impossible. Thus, m = 1 in all cases.

Lemma 4. Let T, T ′ ∈ Tn be such that D0(T, T ′) 6 3. If ϕT (i, j) = ϕT ′(i, j) + 1, for some 1 6 i < j 6 n,

then (δT ′(i)− ϕT ′(i, j)) + (δT ′(j)− ϕT ′(i, j)) 6 3.

Proof. Let us assume that (δT ′(i)− ϕT ′(i, j)) + (δT ′(j)− ϕT ′(i, j)) > 4 and let us reach a contradiction.

Assume first that δT ′(i) > ϕT ′(i, j) + 3. Then, there are at least two leaves k1, k2 such that

[i, k1]T ′ , [i, k2]T ′ ≺ [i, j]T ′ . Since each such leaf contributes at least 1 to D0(T, T ′) 6 3, we conclude

that there must be exactly two such leaves and, moreover, ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6=

(i, j), (i, k1), (j, k1), (i, k2), (j, k2). But then, on the one hand, δT (j) = δT ′(j) and, on the other hand,

δT ′(j) = ϕT ′(i, j) + 1 (otherwise, there would be some other leaf k such that [j, k]T ′ ≺ [i, j]T ′ , which, by

Lemma 2 would satisfy that ϕT (i, k) 6= ϕT ′(i, k) or ϕT (j, k) 6= ϕT ′(j, k)). Combining these two equal-

ities we obtain δT (j) = ϕT (i, j), which is impossible in a tree without nested taxa. This proves that

δT ′(i) 6 ϕT ′(i, j) + 2 and, by symmetry, that δT ′(j) 6 ϕT ′(i, j) + 2, as we claimed.

Thus, it remains to prove that the case δT ′(i) = δT ′(j) = ϕT ′(i, j) + 2 is impossible. So, assume this case

holds, and let’s reach a contradiction. By Corollary 1, if D0(T, T ′) 6 3 and δT ′(i) = δT ′(j) = ϕT ′(i, j) + 2,

then there can exist only one extra leaf k pending from the parent of i and one extra leaf l pending from the

parent of j: see Fig. 1, where the grey triangle stands for the (possibly empty) subtree consisting of all other

descendants of [i, j]T ′ . Moreover, since ϕT (i, j) = ϕT ′(i, j) + 1 and since both k and l contribute at least 1
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to D0(T, T ′) 6 3, we conclude that ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k), (j, k), (i, l), (j, l). In

particular
ϕT (k, l) = ϕT ′(k, l) = ϕT ′(i, j) = ϕT (i, j)− 1
δT (i) = δT ′(i) = ϕT ′(i, j) + 2 = ϕT (i, j) + 1
δT (j) = δT (k) = δT (l) = ϕT (i, j) + 1 for the same reason

i k l j

[i, j]T ′

Figure 1: The subtree of T ′ rooted at [i, j]T ′ in the proof of Lemma 4.

Now we shall prove that, in this situation, each one of k, l contributes actually at least 2 to D0(T, T ′),

and therefore D0(T, T ′) > 5, which contradicts the assumption that D0(T, T ′) 6 3 .

(1) Assume that ϕT (i, k) = ϕT ′(i, k). Then, by Lemmas 2.(a) and 3, ϕT (j, k) = ϕT ′(j, k) + 1, and hence

ϕT (i, k) = ϕT ′(i, k) = ϕT ′(j, k) + 1 = ϕT (j, k)
ϕT (i, k) = ϕT ′(i, k) = ϕT ′(i, j) + 1 = ϕT (i, j)
δT (i) = δT (j) = δT (k) = δT (l) = ϕT (i, j) + 1
ϕT (k, l) = ϕT (i, j)− 1

Thus, the subtree of T rooted at [k, l]T contains a subtree of the form described in Fig. 2, for at least

one leaf h. But then

ϕT ′(l, h) = ϕT (l, h) = ϕT (i, j) = ϕT ′(i, j) + 1 = ϕT ′(l, j)

which is impossible, since it would imply that h is another descendant of [l, j]T ′ . Therefore, ϕT (i, k) 6=

ϕT ′(i, k) and, by symmetry, ϕT (j, l) 6= ϕT ′(j, l).

i k j h l

[k, l]T

Figure 2: A subtree of the subtree of T rooted at [k, l]T in case (1) in the proof of Lemma 4.
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(2) Assume now that ϕT (i, l) = ϕT ′(i, l). Then, by Lemma 2.(b), ϕT (j, l) = ϕT ′(j, l)− 1, and then

ϕT (i, l) = ϕT ′(i, l) = ϕT ′(i, j) = ϕT (i, j)− 1
ϕT (j, l) = ϕT ′(j, l)− 1 = ϕT ′(i, j) = ϕT (i, j)− 1
ϕT (k, l) = ϕT (i, j)− 1
δT (i) = δT (j) = δT (k) = δT (l) = ϕT (i, j) + 1

Therefore, the subtree of T rooted at [k, l]T contains a subtree of the form described in Fig. 3, for at

least one leaf h. Moreover, h 6= k because ϕT (h, l) > ϕT (j, l) = ϕT (k, l). But then, again,

ϕT ′(l, h) = ϕT (l, h) = ϕT (i, j) = ϕT ′(i, j) + 1 = ϕT ′(l, j)

which is again impossible by the same reason as in (1). Therefore, ϕT (i, l) 6= ϕT ′(i, l) and, by symmetry,

ϕT (j, k) 6= ϕT ′(j, k).

i j h lk

[k, l]T

Figure 3: A subtree of the subtree of T rooted at [k, l]T in case (2) in the proof of Lemma 4.

So,

ϕT (i, k) 6= ϕT ′(i, k), ϕT (i, l) 6= ϕT ′(i, l), ϕT (j, k) 6= ϕT ′(j, k), ϕT (j, l) 6= ϕT ′(j, l)

and thus D0(T, T ′) > 5.

Summarizing the last lemmas, we have proved so far that if D0(T, T ′) 6 3 and ϕT (i, j) 6= ϕT ′(i, j), then,

up to interchanging T and T ′, ϕT (i, j) = ϕT ′(i, j) + 1 and either i and j are sibling in T ′ or one of these

leaves is a sibling of the parent of the other one in T ′. Next two lemmas cover these two remaining cases.

Lemma 5. Let T, T ′ ∈ Tn be such that D0(T, T ′) 6 3, and assume that ϕT (i, j) = ϕT ′(i, j) + 1, for some

1 6 i < j 6 n. If i and j are sibling in T ′, then they are also sibling in T , they have no other sibling in T ,

and T ′ is obtained from T by contracting the arc ending in [i, j]T . And then, D0(T, T ′) = 3.

Proof. If δT ′(i) = δT ′(j) = ϕT ′(i, j) + 1, then it must happen that δT (i) = δT ′(i) + 1 and δT (j) = δT ′(j) + 1.

Indeed, if δT (i) 6 δT ′(i), then δT (i) 6 ϕT ′(i, j) + 1 = ϕT (i, j), which is impossible. Therefore, δT (i) > δT ′(i)
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and by symmetry δT (j) > δT ′(j). Since ϕT (i, j) = ϕT ′(i, j) + 1, D0(T, T ′) 6 3 implies that ϕT (x, y) =

ϕT ′(x, y), for every (x, y) 6= (i, j), (i, i), (j, j). Now, if, say δT (i) > δT ′(i) + 2, then

δT (i) > δT ′(i) + 2 = ϕT ′(i, j) + 3 = ϕT (i, j) + 2

and there would exist some leaf k such that [i, k]T is a child of [i, j]T . But then

ϕT ′(i, k) = ϕT (i, k) = ϕT (i, j) + 1 = ϕT ′(i, j) + 2 = δT ′(i) + 1,

which is impossible. This proves that δT (i) = δT ′(i) + 1 and, by symmetry, δT (j) = δT ′(j) + 1.

So, in summary, ϕT (i, j) = ϕT ′(i, j) + 1, δT (i) = δT ′(i) + 1, δT (j) = δT ′(j) + 1 and ϕT (x, y) = ϕT ′(x, y),

for every (x, y) 6= (i, j), (i, i), (j, j), and in particular dϕ,p(T, T ′) = 3.

Now, δT (i) = δT ′(i) + 1 = ϕT ′(i, j) + 2 = ϕT (i, j) + 1, and by symmetry, δT (j) = ϕT (i, j) + 1, either.

Therefore, i and j are sibling in T . Let us see that they have no other sibling in this tree. Indeed, if k is a

sibling of i and j in T , then

ϕT ′(i, k) = ϕT (i, k) = ϕT (i, j) = ϕT ′(i, j) + 1 = δT ′(i)

which is impossible.

Let x be the parent of [i, j]T , and assume that the subtree T0 of T rooted at x is as described in Fig.

4.(a), for some (possibly empty) subtree T̂ . Moreover, let T ′0 be the subtree of T ′ rooted at [i, j]T ′ , which is

as described in Fig. 4.(b) for some subtree T̂ ′. We shall prove that T̂ = T̂ ′.

i j

x

T̂

(a) T0

i j T̂ ′

(b) T ′0

Figure 4: (a) The subtree T0 of T rooted at the parent of [i, j]T in the proof of Lemma 5. (b) The subtree
T ′0 of T ′ rooted at [i, j]T ′ in the proof of the same Lemma.

For every k ∈ L(T̂ ),

ϕT ′(i, k) = ϕT (i, k) = ϕT (i, j)− 1 = ϕT ′(i, j),

which entails that k ∈ L(T̂ ′). Conversely, if k ∈ L(T̂ ′), then

ϕT (i, k) = ϕT ′(i, k) = ϕT ′(i, j) = ϕT (i, j)− 1,
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which entails that k ∈ L(T̂ ). Thus, L(T̂ ) = L(T̂ ′). And finally, for every (not necessarily different)

k, l ∈ L(T̂ ),

ϕ
T̂

(k, l) = ϕT (k, l)− δT (x) = ϕT (k, l)− ϕT (i, j) + 1 = ϕT ′(k, l)− ϕT ′(i, j) = ϕ“T ′(k, l),
which implies by Theorem 1 that T̂ = T̂ ′ (notice that T̂ and T̂ ′ can have elementary roots).

Finally, let us prove now that T and T ′ are exactly the same except for T0 and T ′0. More specifically, let

T1 and T ′1 be obtained by replacing in T and T ′ the subtrees T0 and T ′0 by a single leaf x. Since for every

p, q /∈ L(T0) = L(T ′0),
ϕT ′1

(p, q) = ϕT ′(p, q) = ϕT (p, q) = ϕT1(p, q),

ϕT ′1
(x, p) = ϕT ′(i, p) = ϕT (i, p) = ϕT1

(p, x),

we deduce, again by Theorem 1, that T1 = T ′1.

This completes the proof that T ′ is obtained from T by replacing in it the subtree T0 rooted at the parent

x of [i, j]T by the subtree T ′0 obtained from T0 by contracting the arc (x, [i, j]T ).

Lemma 6. Let T, T ′ ∈ Tn be such that D0(T, T ′) 6 3. Assume that ϕT (i, j) = ϕT ′(i, j) + 1, for some

1 6 i < j 6 n, and that j is a sibling of the parent of i in T ′. Then, the subtree of T ′ rooted at [i, j]T ′ is

the tree T ′0 depicted in Fig. 5.(a), for some taxon k 6= i, j and some (possibly empty) subtree T̂ ′, and T is

obtained from T ′ by replacing T ′0 by the tree T0 depicted in Fig. 5.(b). And then, D0(T, T ′) = 3.

i k j
T̂ ′

(a) T ′0

i k j
T̂ ′

(b) T0

Figure 5: (a) The subtree T ′0 of T ′ rooted at [i, j]T ′ in the statement of Lemma 6. (b) The subtree T0 which
replaces T ′0 in T in the same statement.

Proof. We assume that δT ′(i) = ϕT ′(i, j) + 2 and δT ′(j) = ϕT ′(i, j) + 1. This implies that there exists at

least one leaf k such that [i, k]T ′ ≺ [i, j]T ′ . Since ϕT (i, j) = ϕT ′(i, j) + 1, |ϕT (i, k)− ϕT ′(i, k)|+ |ϕT (j, k)−

ϕT ′(j, k)| > 1 and δT (j) > δT ′(j) (because, otherwise, δT (j) 6 δT ′(j) = ϕT ′(i, j) + 1 = ϕT (i, j), which

is impossible), D0(T, T ′) 6 3 entails that ϕT (i, k) = ϕT ′(i, k) or ϕT (j, k) = ϕT (j, k), and that ϕT (x, y) =

ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k), (j, k), (j, j) (and, in particular, k is the only leaf different from i such

that [i, k]T ′ ≺ [i, j]T ′). Moreover, we have that D0(T, T ′) = 3.
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Let us see now that δT (j) = δT ′(j) + 1. Indeed, if δT (j) > δT ′(j) + 2, then

δT (j) > δT ′(j) + 2 = ϕT ′(i, j) + 3 = ϕT (i, j) + 2

and there would exist some leaf l such that [j, l]T is a child of [i, j]T . But then

ϕT ′(j, l) = ϕT (j, l) = ϕT (i, j) + 1 = ϕT ′(i, j) + 2 = δT ′(j) + 1

and we reach a contradiction.

So, in summary, the subtree T ′0 of T ′ rooted a [i, j]T ′ is as described in Fig. 5.(a), and ϕT (i, j) =

ϕT ′(i, j) + 1, δT (j) = δT ′(j) + 1, ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k), (j, k), (j, j), and either

ϕT (i, k) = ϕT ′(i, k) or ϕT (j, k) = ϕT (j, k). Now, we discuss these two possibilities.

(a) If ϕT (j, k) = ϕT ′(j, k), then ϕT (i, k) = ϕT ′(i, k)− 1 by Lemma 2.(b). In this case

ϕT (i, k) = ϕT ′(i, k)− 1 = ϕT ′(i, j) = ϕT (i, j)− 1
ϕT (j, k) = ϕT ′(j, k) = ϕT ′(i, j) = ϕT (i, j)− 1
δT (i) = δT ′(i) = ϕT ′(i, j) + 2 = ϕT (i, j) + 1
δT (j) = δT ′(j) + 1 = ϕT ′(i, j) + 2 = ϕT (i, j) + 1
δT (k) = δT ′(k) = ϕT ′(i, j) + 2 = ϕT (i, j) + 1

This means that the subtree of T rooted at [i, k]T = [j, k]T contains a subtree of the form described in

Fig. 6, for at least some new leaf h. But then

ϕT ′(k, h) = ϕT (k, h) = ϕT (i, j) = ϕT ′(i, j) + 1 = ϕT ′(i, k)

which is impossible in T ′, because i and k are the only descendants of [i, k]T ′ in T ′. So, this case is

impossible.

i j h k

Figure 6: A subtree contained in the subtree of T rooted at [i, j]T in case (a) in the proof of Lemma 6.

(b) If ϕT (i, k) = ϕT ′(i, k), then ϕT (j, k) = ϕT ′(j, k) + 1 Lemmas 2.(a) and 3. In this case

ϕT (i, k) = ϕT ′(i, k) = ϕT ′(i, j) + 1 = ϕT (i, j)
ϕT (j, k) = ϕT ′(j, k) + 1 = ϕT ′(i, j) + 1 = ϕT (i, j)
δT (i) = δT (j) = δT (k) = ϕT (i, j) + 1 as in (a)
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This implies that i, j, k are sibling in T . If l is any other sibling of them in T , then

ϕT ′(i, l) = ϕT (i, l) = ϕT (i, k) = ϕT ′(i, k)

which entails that l is another descendant of [i, k]T ′ in T ′, which is impossible. Therefore, the subtree

T0 of T rooted at the parent of [i, j]T has the form depicted in Fig. 7, for some subtree T̂ .

Finally, the same argument as in the last part of the proof of the last lemma shows that T̂ = T̂ ′, and

that if T1 and T ′1 are obtained by replacing in T and T ′ the subtrees T0 and T ′0 by a single leaf x, then

T1 = T ′1. We leave the details to the reader.

i k j
T̂

Figure 7: The subtree T0 rooted at the parent of [i, j]T in case (b) in the proof of Lemma 6.

This completes the proof that T and T ′ are as described in the statement.

We have proved so far that the minimum value of D0 on Tn is 3, and we have characterized those pairs

of trees T, T ′ ∈ Tn such that D0(T, T ′) = 3. To extend this result to every Dp, p > 1, it is enough to check

that every pair of trees in Tn such that D0(T, T ′) = 3 also satisfies that Dp(T, T ′) = 3 for every p > 1, which

is straightforward. This completes the proof of Proposition 2.

Proof of Proposition 3

As in Proposition 2, we also split this proof into several lemmas. First of all, notice that there are pairs of

trees T, T ′ ∈ BT n such that Dp(T, T ′) = 4 for every p ∈ {0} ∪ [1,∞[: see, for instance, Fig. 8. Therefore,

the minimum value of Dp on BT n is at most 4.

1 2 3

T

1 2 3

T ′

Figure 8: A pair of binary trees such that Dp(T, T ′) = 4. The grey triangles represent the same tree.
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Notice also that Lemma 1 also applies in BT n, and therefore, if T, T ′ ∈ BT n are such that D0(T, T ′) > 0,

then there exist two taxa i 6= j such that ϕT (i, j) 6= ϕT ′(i, j). And, of course, Lemma 2 also applies in BT n.

Lemma 7. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j) +m, for some 1 6 i < j 6 n

and some m > 1, then m = 1.

Proof. Assume that ϕT (i, j) = ϕT ′(i, j) +m with m > 2, and let us reach a contradiction.

If δT ′(i) = δT (i), then δT ′(i) > ϕT (i, j) = ϕT ′(i, j) +m, and therefore there exist leaves x1, . . . , xm such

that ϕT (i, xl) = ϕT ′(i, j) + l, for l = 1, . . . ,m. By Lemma 2, each such leaf xl adds at least 1 to D0(T, T ′).

Therefore D0(T, T ′) > 1 +m. Now, if moreover δT ′(j) = δT (j), then there also exist leaves y1, . . . , ym such

that ϕT (j, yl) = ϕT ′(i, j) + l, for l = 1, . . . ,m, and each such leaf yl also adds at least 1 to D0(T, T ′), which

entails D0(T, T ′) > 1 + 2m > 5. So, if D0(T, T ′) 6 4, it must happen that δT ′(i) 6= δT (i) or δT ′(j) 6= δT (j)

(or both). Let assume that δT ′(j) 6= δT (j).

Now, ϕT (i, j) = ϕT ′(i, j) + m > m, and therefore there exist leaves z1, . . . , zm such that ϕT (i, zl) =

ϕT (j, zl) = ϕT (i, j)− l, for l = 1, . . . ,m. If ϕT (i, kl) = ϕT ′(i, kl), then

ϕT ′(i, kl) = ϕT (i, kl) = ϕT (i, j)− l = ϕT ′(i, j) + (m− l) > ϕT ′(i, j)

and therefore, by Lemma 2, ϕT ′(j, kl) 6= ϕT (j, kl), and thus, each such leaf zl adds at least 1 to D0(T, T ′),

which entails D0(T, T ′) > 2 + m. Therefore, if D0(T, T ′) 6 4 and m > 2, it must happen m = 2 and,

moreover, ϕT (a, b) = ϕT ′(a, b) for every (a, b) 6= (i, j), (j, j), (i, z1), (i, z2), (j, z1), (j, z2).

In particular, δT (i) = δT ′(i), which as we have seen implies that there are at least two leaves x1, x2 such

that i ≺ [i, x2]T ′ ≺ [i, x1]T ′ ≺ [i, j]T ′ . Since

ϕT ′(z1, z2) = ϕT (z1, z2) = ϕT (i, j)− 2 = ϕT ′(i, j)

implies that (up to interchanging z1 and z2) i ≺ [i, z1]T ′ ≺ [i, j]T ′ and j ≺ [j, z2]T ′ ≺ [i, j]T ′ , we conclude

that {x1, x2, z1, z2} are at least 3 different leaves and hence they contribute at least 3 to D0(T, T ′), making

D0(T, T ′) > 5.

Lemma 8. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j) + 1, for some 1 6 i < j 6 n,

then δT ′(i), δT ′(j) 6 ϕT ′(i, j) + 2.

Proof. Let us assume that δT ′(i) > ϕT ′(i, j) + 3, and let us reach a contradiction. The case when δT ′(j) >

ϕT ′(i, j) + 3 is symmetrical.
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Since ϕT (i, j) = ϕT ′(i, j) + 1 > 0, there exists some taxon k0 such that [i, k0]T is the parent of [i, j]T .

Let us distinguish several cases.

(a) Assume that ϕT (i, k0) = ϕT ′(i, k0). Then, ϕT ′(i, k0) = ϕT (i, k0) = ϕT (i, j)− 1 = ϕT ′(i, j) implies that

[j, k0]T ′ ≺ [i, j]T ′ and thus ϕT ′(j, k0) > ϕT ′(i, j) = ϕT (i, j) − 1 = ϕT (j, k0) and in particular, by the

previous lemma ϕT ′(j, k0) = ϕT (j, k0) + 1 = ϕT (i, j) = ϕT ′(i, j) + 1. Now, since D0(T, T ′) 6 4, by

Lemma 3 the number of leaves a 6= i, j, k0 such that a ≺ [i, j]T ′ is at most 2.

If δT ′(i) > ϕT ′(i, j) + 3, then there exist leaves k1, k2 such that ϕT ′(i, k1) = ϕT ′(i, j) −

1 and ϕT ′(i, k2) = ϕT ′(i, j) − 2 and then ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6=

(i, j), (i, k0), (j, k0), (k1, i), (k1, j), (k2, i), (k2, j). In particular, no leaf other than i, j, k0, k1, k2 descends

from [i, j]T ′ . But then

ϕT (k1, k0) = ϕT ′(k1, k0) = ϕT ′(i, j) = ϕT (i, j)− 1, ϕT (k2, k0) = ϕT (i, j)− 1
ϕT (k1, k2) = ϕT ′(k1, k2) = ϕT ′(i, j) + 1 = ϕT (i, j)

imply that, up to interchanging k1 and k2, i ≺ [i, k1]T ≺ [i, j]T and j ≺ [j, k2]T ≺ [i, j]T , and then

δT ′(j) = δT (j) > ϕT (i, j) + 1 = ϕT ′(i, j) + 2

implies the existence of at least another leaf h such that j ≺ [j, h]T ′ ≺ [j, k0]T ′ ≺ [i, j]T ′ , which, as we

have mentioned, is impossible. So, this case cannot happen.

(b) Assume now that ϕT (j, k0) = ϕT ′(j, k0). By symmetry with the previous case, this implies that

ϕT ′(i, k0) = ϕT ′(i, j) + 1, ϕT ′(i, k0) = ϕT (i, k0) + 1 and that the number of leaves a 6= i, j, k0 such

that a ≺ [i, j]T ′ is at most 2. Now we have three new subcases to discuss.

(b.1) If δT ′(i) = ϕT ′(i, j) + 4, so that there exist leaves k1, k2 6= i such that

ϕT ′(i, k0), ϕT ′(i, k1), ϕT ′(i, k2) > ϕT ′(i, j), and no leaf other that i, j, k0, k1, k2 descends from [i, j]T ′ .

Then ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k0), (j, k0), (k1, i), (k1, j), (k2, i), (k2, j). But

in this case it must happen that δT (j) = δT ′(j) = ϕT ′(i, j) + 1 = ϕT (i, j), which is impossible. So,

this case cannot happen.

(b.2) If δT ′(i) = ϕT ′(i, j) + 3 and δT ′(j) = ϕT ′(i, j) + 2, so that there exist leaves k1, k2 such that

ϕT ′(j, k1) = ϕT ′(i, j) + 1, ϕT ′(i, k2) = ϕT ′(i, j) + 2 and, recall, ϕT ′(i, k0) = ϕT ′(i, j) + 1, then

ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k0), (j, k0), (k1, i), (k1, j), (k2, i), (k2, j). But then

ϕT (k1, k0) = ϕT ′(k1, k0) = ϕT ′(i, j) = ϕT (i, j)− 1
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implies that k1 ≺ [i, j]T , and then

δT (j) = δT ′(j) = ϕT ′(i, j) + 2 = ϕT (i, j) + 1,
δT (k1) = δT ′(k1) = ϕT ′(i, j) + 2 = ϕT (i, j) + 1

imply that j and k1 are the only children of [i, j]T , which is, of course, impossible. So, this case

cannot happen, either.

(b.3) If δT ′(i) = ϕT ′(i, j)+3 and δT ′(j) = ϕT ′(i, j)+1, then on the one hand there exists a leaf k1 such that

ϕT ′(i, k1) = ϕT ′(j, k0)− 1 = ϕT ′(i, j)− 2 and, on the other hand, as we have seen in (b.1), δT (j) >

δT ′(j). Then, ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (j, j), (i, k0), (j, k0), (k1, i), (k1, j), and

in particular no leaf other than i, j, k0, k1 descends from [i, j]T ′ .

Now,

ϕT (k1, k0) = ϕT ′(k1, k0) = ϕT ′(i, j) + 1 = ϕT (i, j)

implies that k1 6≺ [i, j]T , and

δT (i) = δT ′(i) = ϕT ′(i, j) + 3 = ϕT (i, j) + 2

implies that there exists a leaf h 6= k0, k1 such that i ≺ [i, h]T ≺ [i, j]T and hence

ϕT ′(i, h) = ϕT (i, h) > ϕT (i, j) + 1 = ϕT ′(i, j)

would entail that h ≺ [i, j]T ′ , which is impossible. Thus, this case cannot happen, either.

(c) Assume finally that ϕT (i, k0) 6= ϕT ′(i, k0) and ϕT (j, k0) 6= ϕT ′(j, k0). The contribution to D0 of the

pairs (i, j), (i, k0), (j, k0) is at least 3, and therefore there can only exist at most one other pair of leaves

with different cophenetic value in T and in T ′. Since every x 6= i, j such that x ≺ [i, j]T ′ defines at least

one such pair, we conclude that if δT ′(i) > ϕT ′(i, j) + 3, then, it must happen that [i, k0]T ′ ≺ [i, j]T ′

and that there can only exist one leaf k1 6= k0, i such that [i, k1]T ′ ≺ [i, j]T ′ , and then, moreover

[i, k0]T ′ 6= [i, k1]T ′ . In this case, ϕT (x, y) = ϕT ′(x, y) for every (x, y) 6= (i, j), (i, k0), (j, k0), (k1, i), (k1, j).

But then, in particular, δT ′(j) = ϕT ′(i, j) + 1 and δT (j) = δT ′(j), which implies δT (i) = ϕT (i, j), which

is impossible

This finishes the proof that, if D0(T, T ′) 6 4, then δT ′(i) 6 ϕT ′(i, j) + 2 and δT ′(j) 6 ϕT ′(i, j) + 2.

Lemma 9. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j) + 1, for some 1 6 i < j 6 n,

then i, j are sibling in T .
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Proof. Let k0 be any leaf such that [i, k0]T = [j, k0]T is the parent of [i, j]T in T . If ϕT (i, k0) = ϕT ′(i, k0),

then ϕT ′(i, k0) = ϕT (i, k0) = ϕT (i, j) − 1 = ϕT ′(i, j) implies that [j, k0]T ′ ≺ [i, j]T ′ and thus ϕT ′(j, k0) >

ϕT ′(i, j) = ϕT (i, j)− 1 = ϕT (j, k0). Therefore, |ϕT (i, k0)− ϕT ′(i, k0)|+ |ϕT (j, k0)− ϕT ′(j, k0)| > 1.

Assume now that i, j are not sibling in T , and let h be a leaf such that [i, h]T is a child of [i, j]T . If

ϕT (i, h) 6 ϕT ′(i, h), then

δT ′(i) > ϕT ′(i, h) + 1 > ϕT (i, h) + 1 = ϕT (i, j) + 2 = ϕT ′(i, j) + 3

which is impossible by the previous lemma. Therefore, ϕT (i, h) > ϕT ′(i, h), and by Lemma 7, ϕT (i, h) =

ϕT ′(i, h) + 1.

In a similar way, if δT (i) = δT ′(i), then

δT ′(i) = δT (i) > ϕT (i, h) + 1 = ϕT (i, j) + 2 = ϕT ′(i, j) + 3

which is again impossible by the previous lemma. Therefore, δT (i) 6= δT ′(i), too. So, (i, j), (i, k0), (j, k0),

(i, i), and (i, h) contribute at least 4 to D0(T, T ′) 6 4, which implies that ϕT (x, y) = ϕT ′(x, y) for every

other pair of leaves (x, y). But then,

ϕT ′(j, h) = ϕT (j, h) = ϕT (i, j) = ϕT ′(i, j) + 1
ϕT ′(i, h) = ϕT (i, h)− 1 = ϕT (i, j) = ϕT ′(i, j) + 1

which is impossible. Therefore, i and j are sibling in T .

Lemma 10. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j)+1, for some 1 6 i < j 6 n,

then i, j are not sibling in T ′.

Proof. Assume that i, j are sibling in T ′, and recall that we already know that they are sibling in T . Let k0

be any leaf such that [i, k0]T = [j, k0]T is the parent of [i, j]T in T . If ϕT (i, k0) = ϕT ′(i, k0), then

ϕT ′(i, k0) = ϕT (i, k0) = ϕT (i, j)− 1 = ϕT ′(i, j)

which is impossible if i, j are sibling in T ′. Thus, ϕT (i, k0) 6= ϕT ′(i, k0) and, by symmetry, ϕT (j, k0) 6=

ϕT ′(j, k0). On the other hand, if δT (i) = δT ′(i), then

δT (i) = δT ′(i) = ϕT ′(i, j) + 1 = ϕT (i, j)

which is also impossible. Therefore, δT (i) 6= δT ′(i) and, by symmetry, δT (j) 6= δT ′(j). But, then, D0(T, T ′) >

5.
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Summarizing what we know so far, we have proved that if D0(T, T ′) 6 4 and ϕT (i, j) 6= ϕT ′(i, j), then,

up to interchanging T and T ′, ϕT (i, j) = ϕT ′(i, j) + 1, i, j are sibling in T , and then the subtree of T ′ rooted

at [i, j]T ′ is a triplet or a totally balanced quartet; cf. Fig. 9. Next two lemmas cover these two possibilities.

i k j i k l j

Figure 9: The only possibilities for the subtree of T ′ rooted at [i, j]T ′ if D0(T, T ′) 6 4 and ϕT (i, j) =
ϕT ′(i, j) + 1.

Lemma 11. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j)+1, for some 1 6 i < j 6 n,

and the subtree of T ′ rooted at [i, j]T ′ is the triplet depicted in the left hand side of Fig. 9, then T is obtained

from T ′ by interchanging j and k: cf. Fig. 10. And, then D0(T, T ′) = 4.

i k j

T ′

i j k

T

Figure 10: The only pairs of trees T, T ′ such that D0(T, T ′) 6 4 and ϕT (i, j) = ϕT ′(i, j) + 1, when the
subtree of T ′ rooted at [i, j]T ′ is a triplet.

Proof. Assume that the subtree of T ′ rooted at [i, j]T ′ has the form depicted in the left hand side of Fig. 9,

and that ϕT (i, j) = ϕT ′(i, j) + 1. Then, since i and j are sibling in T ,

δT (j) = ϕT (i, j) + 1 = ϕT ′(i, j) + 2 = δT ′(j) + 1.

Now, if ϕT (i, k) > ϕT ′(i, k), then

ϕT (i, k) > ϕT ′(i, k) = ϕT ′(i, j) + 1 = ϕT (i, j)

which is impossible, because i and j are sibling in T . Therefore, ϕT (i, k) < ϕT ′(i, k) and, by Lemma 7,

ϕT (i, k) = ϕT ′(i, k)− 1, and in particular ϕT (i, k) = ϕT (j, k) = ϕT (i, j)− 1. Therefore, [i, k]T is the parent

of [i, j]T in T .
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Finally, if δT (k) > ϕT (i, j) + 1, then there exists at least some other leaf l ≺ [i, k]T = [j, k]T . But then

ϕT (i, l) 6= ϕT ′(i, l), because otherwise

ϕT ′(i, l) = ϕT (i, l) = ϕT (i, j)− 1 = ϕT ′(i, j),

which is impossible because the only leaves descending from [i, j]T ′ are i, j, k. And, by symmetry ϕT (j, l) 6=

ϕT ′(j, l), and we reach D0(T, T ′) > 5. Therefore,

δT (k) = ϕT (i, j) = ϕT ′(i, j) + 1 = δT ′(k)− 1.

So, in summary, ϕT (i, j) = ϕT ′(i, j) + 1, δT (j) = δT ′(j) + 1, ϕT (i, k) = ϕT ′(i, k)− 1, and δT (k) = δT ′(k)− 1,

and ϕT (x, y) = ϕT ′(x, y) for every (x, y) other than (i, j), (j, j), (i, k), (k, k). Moreover, in T , k is the other

child of the parent of [i, j]T .

So, the subtree T0 of T rooted at the parent of [i, j]T is obtained by interchanging j and k in the subtree

T ′0 of T ′ rooted at [i, j]T ′ . Finally, let us prove now that T and T ′ are exactly the same except for T0 and

T ′0. More specifically, let T1 and T ′1 be obtained by replacing in T and T ′ the subtrees T0 and T ′0 by a single

leaf x. Since for every p, q /∈ {i, j, k},

ϕT ′1
(p, q) = ϕT ′(p, q) = ϕT (p, q) = ϕT1

(p, q),

ϕT ′1
(x, p) = ϕT ′(i, p) = ϕT (i, p) = ϕT1

(x, p),

we deduce, by Theorem 1, that T1 = T ′1.

This completes the proof that T is obtained from T ′ by interchanging the leaf j and its nephew k.

Lemma 12. Let T, T ′ ∈ BT n be such that D0(T, T ′) 6 4. If ϕT (i, j) = ϕT ′(i, j)+1, for some 1 6 i < j 6 n,

and the subtree of T ′ rooted at [i, j]T ′ is the quartet depicted in the right hand side of Fig. 9, then T is obtained

from T ′ by interchanging j and k: cf. Fig. 11. And, then D0(T, T ′) = 4.

i k l j

T ′

i j l k

T

Figure 11: The only pairs of trees T, T ′ such that D0(T, T ′) 6 4 and ϕT (i, j) = ϕT ′(i, j) + 1, when the
subtree of T ′ rooted at [i, j]T ′ is a quartet.
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Proof. Assume that the subtree of T ′ rooted at [i, j]T ′ has the form depicted in the right hand side of Fig.

9, and that ϕT (i, j) = ϕT ′(i, j) + 1.

If ϕT (i, k) > ϕT ′(i, k), then

ϕT (i, k) > ϕT ′(i, k) = ϕT ′(i, j) + 1 = ϕT (i, j)

which is impossible if i, j are sibling in T . Therefore, ϕT (i, k) < ϕT ′(i, k) and, by Lemma 7, ϕT (i, k) =

ϕT ′(i, k) − 1, and in particular ϕT (i, k) = ϕT (i, j) − 1. By symmetry, ϕT (j, l) = ϕT ′(j, l) − 1 and hence

ϕT (j, l) = ϕT (i, j)− 1, too. Therefore, both k and l are descendants of the parent of [i, j]T . But then,

ϕT ′(k, l) = ϕT ′(i, j) = ϕT (i, j)− 1 < ϕT (k, l)

and therefore, by Lemma 7, ϕT (k, l) = ϕT ′(k, l) + 1 = ϕT (i, j).

At this point, D0(T, T ′) 6 4 entails that ϕT (x, y) = ϕT ′(x, y) for every (x, y) other than

(i, j), (i, k), (j, l), (k, l). Moreover, i, k, j, l are the only descendant leaves of the parent of [i, j]T in T . Indeed,

if h is another descendant leaf of the parent of [i, j]T ′ , then

ϕT ′(i, h) = ϕT (i, h) = ϕT (i, j)− 1 = ϕT ′(i, j)

and therefore h would be another descendant of [i, j]T ′ . And, as we have seen, the subtree T0 of T rooted at

this node is obtained from the subtree T ′0 of T ′ rooted at [i, j]T ′ by interchanging j and k. Finally, arguing

as in the last part of the proof of the previous lemma, we deduce that T and T ′ are exactly the same except

for T0 and T ′0.

We have proved so far that the minimum value of D0 on BT n is 4, and we have characterized the pairs

of trees T, T ′ ∈ BT n such that D0(T, T ′) = 4. To extend this result to every Dp, p > 1, it is enough to check

that every pair of binary trees such that D0(T, T ′) = 4 also satisfies that Dp(T, T ′) = 4 for every p > 1,

which is straightforward. This completes the proof of Proposition 3.

Proof of Proposition 4

Let Xn denote any space UT n, Tn or BT n, and let ∆p(Xn), p ∈ {0}∪ [1,∞[, denote the diameter of dϕ,p on

Xn.

We consider first the case p = 1, which will be used later to prove the case p > 1. For every T ∈ UT n,

let

S(T ) =
n∑

i=1

δT (i), Φ(T ) =
∑

16i<j6n

ϕT (i, j).
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1 2 3 . . . n

(a)

1 2 3 4 5

(b)

1 2 3 . . . n

...

(c)

Figure 12: (a) The rooted star with n leaves. (b) The only maximally balanced tree with 5 leaves, up to
relabelings. (c) A rooted caterpillar with n leaves.

S and Φ are the extensions to UT n of the Sackin index [3] and the total cophenetic index [1] for phylogenetic

trees without nested taxa, respectively. Notice that ‖ϕ(T )‖1 = S(T ) + Φ(T ). We have the following results

on these indices:

• It is straightforward to check that the minimum values of S(T ) and Φ(T ) on Tn are both reached at

the rooted star tree with n leaves (the phylogenetic tree with all its leaves of depth 1; see Fig. 12.(a)),

and these minimum values are, respectively,

minS(Tn) = n, min Φ(Tn) = 0.

• It is also straightforward to check that the minimum values of S(T ) and Φ(T ) on UT n are both reached

at the rooted star tree with n− 1 leaves and with the root labeled with n, and these minimum values

are, respectively,

minS(UT n) = n− 1, min Φ(UT n) = 0.

• The minimum values of S(T ) and Φ(T ) on BT n are both reached at the maximally balanced trees with

n leaves (those binary trees such that, for every internal node, the numbers of descendant leaves of its

two children differ at most in 1; see, for instance, Fig. 12.(b)). And then, these minimum values are,

respectively,

minS(BT n) = nblog2(4n)c − 2blog2(2n)c

min Φ(BT n) =
n−1∑
k=0

a(k), where a(k) is the highest power of 2 that divides n!

For the proofs, see [4] combined with [2] for S, and [1] for Φ. From the first formula it is clear that

minS(BT n) is in Θ(n log(n)). As far as min Φ(BT n) goes, it is shown in [1] that it satisfies the

recurrence

min Φ(BT n) = min Φ(BT dn/2e) + min Φ(BT bn/2c) +

Ç
dn/2e

2

å
+

Ç
bn/2c

2

å
, for n > 3
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from where it is obvious that its order is in Θ(n2).

• The maximum values of S(T ) and Φ(T ) on both Tn and BT n are reached at the rooted caterpillar trees

with n leaves (binary phylogenetic trees such that all their internal nodes have a leaf child; see Fig.

12.(c)). And then, these maximum values are, respectively,

maxS(Tn) = maxS(BT n) =

Ç
n+ 1

2

å
− 1, max Φ(Tn) = max Φ(BT n) =

Ç
n

3

å
,

which are thus in Θ(n2) and Θ(n3), respectively. For the proofs, see again [4] for S and [1] for Φ.

• Given any tree in UT n with a nested taxon, if we replace this nested taxon by a new leaf labeled

with it pending from the node previously labeled with it (cf. Fig. 13), we obtain a new tree in UT n

with strictly larger value of S and the same value of Φ. This shows that the maximum values of S(T )

and Φ(T ) on UT n are reached at trees in Tn, and hence at the rooted caterpillar trees with n leaves.

Therefore, they are also in Θ(n2) and Θ(n3), respectively.

i =⇒

i

Figure 13: This operation increases the value of S and does not modify the value of Φ.

From these properties we deduce the following result.

Lemma 13. The minimum value of ‖ϕ(T )‖1 on UT n and Tn is in Θ(n). The minimum value of ‖ϕ(T )‖1

on BT n is at most in Θ(n2). The maximum value of ‖ϕ(T )‖1 on UT n, Tn and BT n is in Θ(n3).

Now, we can apply this lemma to find the order of the diameter of dϕ,1 on the spaces Xn of unweighted

phylogenetic trees.

Lemma 14. The diameter of dϕ,1 on UT n, Tn and BT n is in Θ(n3).

Proof. Let T1, T2 ∈ Xn. Then, on the one hand,

dϕ,1(T1, T2) = ‖ϕ(T1)− ϕ(T2)‖1 6 ‖ϕ(T1)‖1 + ‖ϕ(T2)‖1 6 2 ·max ‖ϕ(Xn)‖1 = Θ(n3)

which shows that ∆1(Xn) 6 O(n3). On the other hand, if ‖ϕ(T1)‖1 > ‖ϕ(T2)‖1, then

dϕ,1(T1, T2) = ‖ϕ(T1)− ϕ(T2)‖1 > ‖ϕ(T1)‖1 − ‖ϕ(T2)‖1

19



and therefore ∆1(Xn) > max ‖ϕ(Xn)‖1 −min ‖ϕ(Xn)‖1, which is again in O(n3). This shows that ∆1(Xn)

is in Θ(n3), as we claimed.

Let us consider now the case p > 1. Since, for every x ∈ Rm, ‖x‖1 6 m1− 1
p ‖x‖p, we have that, for every

pair of trees T1, T2 ∈ Xn,

dϕ,1(T1, T2) 6

Ç
n+ 1

2

å1− 1
p

dϕ,p(T1, T2).

and therefore

∆1(Xn) 6

Ç
n+ 1

2

å1− 1
p

∆p(Xn),

from where we deduce that

∆p(Xn) > ∆1(Xn) ·
Ç
n+ 1

2

å−1+ 1
p

= O(n(p+2)/p).

To prove the converse inequality, let

ϕ(p)(T ) =
∑

16i6j6n

ϕT (i, j)p.

We have that, for every T1, T2 ∈ Xn,

dϕ,p(T1, T2) = ‖ϕ(T1)− ϕ(T2)‖p 6 ‖ϕ(T1)‖p + ‖ϕ(T2)‖p = p
√
ϕ(p)(T1) + p

√
ϕ(p)(T2)

6 2 p
√

maxϕ(p)(Xn),

which implies that ∆p(Xn) 6 2 p
√

maxϕ(p)(Xn). Therefore, to prove that the diameter of dϕ,p on each Xn

is bounded from above by O(n(p+2)/p), it is enough to prove that maxϕ(p)(Xn) 6 O(np+2). We do it in the

next lemma.

Lemma 15. The maximum value of ϕ(p)(T ) on UT n, Tn or BT n is reached at the rooted caterpillars, and

its value is in Θ(np+2).

Proof. Arguing as in the case p = 1, we have that the maximum value of ϕ(p)(T ) on UT n is reached on

trees in Tn, because if we replace each nested taxon in a tree by a new leaf labeled with the same taxon as

in Fig. 13, the value of ϕ(p) increases. On the other hand, if a tree T ∈ Tn contains a node with k > 3

children, as in the left hand side of Fig. 14, and we replace its subtree rooted at this node as described in

the right hand side of Fig. 14, we obtain a new tree T ′ ∈ Tn with larger ϕ(p) value: the values of ϕ(i, j)p for

i, j ∈ L(T1) ∪ · · · ∪ L(Tk−1) increase, and the other values of ϕ(i, j)p do not change. This implies that for

every non-binary phylogenetic tree T ∈ Tn, there always exists a binary phylogenetic tree T ′ ∈ BT n such

that ϕ(p)(T ′) > ϕ(p)(T ) and in particular that the maximum value of ϕ(p)(T ) on UT n is actually reached

on BT n.
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T1 T2 ... Tk−1 Tk

T

T1 T2 ... Tk−1 Tk

T ′

Figure 14: ϕ(p)(T ′) > ϕ(p)(T ).

k k−1

k−2

...
1

z

ll−1

l−2

...
k+1

T

l l−1 l−2

...

k+1 k

...
z

1

T ′

Figure 15: ϕ(p)(T ′) > ϕ(p)(T ).

Let now T ∈ BT n and assume that it is not a caterpillar. Therefore, it has an internal node z of largest

depth without any leaf child; in particular, all internal descendant nodes of z have some leaf child. Thus,

and up to a relabeling of its leaves, T has the form represented in the left hand side of Fig. 15, for some

k > 2 and some l > k + 2. Consider then the tree T ′ depicted in right hand side of Fig. 15, where the grey

triangle represents the same tree in both sides. It turns out that ϕ(p)(T ′)−ϕ(p)(T ) > 0. Indeed, if q denotes

the depth of the node z in both trees, then

ϕT ′(i, j)
p − ϕT (i, j)p =



(q + i)p − (q + i+ 1)p if 1 6 i = j 6 k − 1
0 if i = j = k
(q + i)p − (q + i− k + 1)p if k + 1 6 i = j 6 l − 1
(q + l − 1)p − (q + l − k)p if i = j = l
(q + i− 1)p − (q + i)p if 1 6 i < j 6 k
(q + i− 1)p − (q + i− k)p if k + 1 6 i < j 6 l
(q + i− 1)p − qp if 1 6 i 6 k < j 6 l
0 otherwise
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Therefore,

ϕ(p)(T ′)− ϕ(p)(T ) =
k−1∑
i=1

(
(q + i)p − (q + i+ 1)p

)
+

l−1∑
i=k+1

(
(q + i)p − (q + i− k + 1)p

)
+(q + l − 1)p − (q + l − k)p +

k−1∑
i=1

(k − i)
(
(q + i− 1)p − (q + i)p

)
+

l−1∑
i=k+1

(l − i)
(
(q + i− 1)p − (q + i− k)p

)
+

k∑
i=1

(l − k)
(
(q + i− 1)p − qp

)
= (q + 1)p − (q + k)p +

l−k−1∑
i=1

(
(q + k + i)p − (q + 1 + i)p

)
+(q + l − 1)p − (q + l − k)p +

k−1∑
i=1

(k − i)
(
(q + i− 1)p − (q + i)p

)
+

l−k−1∑
i=1

(l − k − i)
(
(q + k + i− 1)p − (q + i)p

)
+

k∑
i=1

(l − k)
(
(q + i− 1)p − qp

)
To prove that this sum is non-negative, let us write it as

ϕ(p)(T ′)− ϕ(p)(T ) = S1 + S2 + S3,

where

S1 =
k−1∑
i=1

(k − i)
(
(q + i− 1)p − (q + i)p

)
+

k∑
i=1

(l − k)
(
(q + i− 1)p − qp

)
S2 =

l−k−1∑
i=1

(
(q + k + i)p − (q + 1 + i)p

)
+

l−k−1∑
i=1

(l − k − i)
(
(q + k + i− 1)p − (q + i)p

)
S3 = (q + 1)p − (q + k)p + (q + l − 1)p − (q + l − k)p
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Then

S1 =
k−1∑
i=1

(k − i)
(
(q + i− 1)p − (q + i)p

)
+

k∑
i=1

(l − k)
(
(q + i− 1)p − qp

)
,

=
k−1∑
i=1

(k − i)(q + i− 1)p −
k−1∑
i=1

(k − i)(q + i)p +
k∑

i=1

(l − k)
(
(q + i− 1)p − qp

)
,

=
k−1∑
i=1

(k − i)(q + i− 1)p −
k∑

i=2

(k − i+ 1)(q + i− 1)p + (l − k)
k∑

i=1

(q + i− 1)p − k(l − k)qp,

=
k−1∑
i=1

(l − k − 1)(q + i− 1)p + kqp − (q + k − 1)p + (l − k)(q + k − 1)p − k(l − k)qp,

= (l − k − 1)
k∑

i=1

(
(q + i− 1)p − qp

)
> 0

S2 =
l−k−1∑
i=1

(
(q + k + i)p − (q + 1 + i)p

)
+

l−k−1∑
i=1

(l − k − i)
(
(q + k + i− 1)p − (q + i)p

)
=

l−k−1∑
i=1

(
(q + k + i)p − (q + 1 + i)p

)
+

l−k−1∑
i=0

(l − k − i− 1)
(
(q + k + i)p − (q + i+ 1)p

)
=

l−k−1∑
i=1

(l − k − i)
(
(q + k + i)p − (q + 1 + i)p

)
+ (l − k − 1)

(
(q + k)p − (q + 1)p

)
> (l − k − 1)

(
(q + k)p − (q + 1)p

)
.

and therefore

ϕ(p)(T ′)− ϕ(p)(T ) = S1 + S2 + S3

> (l − k − 1)
(
(q + k)p − (q + 1)p

)
+ (q + 1)p − (q + k)p + (q + l − 1)p − (q + l − k)p

= (l − k − 2)
(
(q + k)p − (q + 1)p

)
+ (q + l − 1)p − (q + l − k)p > 0.

This implies that no tree other than a rooted caterpillar can have the largest ϕ(p) value in BT n, and

hence also in Tn and UT n.

Finally, if Kn denotes the rooted caterpillar with n leaves in Fig. 12.(c),

ϕKn
(i, j)p =

 (n− 1)p if i = j = 1
(n− i+ 1)p if 2 6 i = j 6 n
(n− j)p if 1 6 i < j 6 n

and thus

ϕ(p)(Kn) = (n− 2) · 1p + (n− 3) · 2p + · · ·+ 2 · (n− 3)p + 1 · (n− 2)p

+1p + 2p + · · ·+ (n− 2)p + (n− 1)p + (n− 1)p

= (n− 1) · 1p + (n− 2) · 2p + · · ·+ 3 · (n− 3)p + 2 · (n− 2)p + (n− 1)p + (n− 1)p

=
n−1∑
k=1

(n− k) · kp + (n− 1)p

Now, it turns out that
n−1∑
k=1

km =
1

m+ 1
nm+1 +O(nm). (1)
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This property is well known for natural numbers m ∈ N [5]. For arbitrary real numbers m > 0, it derives

from the fact that ∫ n−1

1

(x− 1)mdx 6
n−1∑
k=1

km 6

∫ n−1

1

xmdx,

and then ∫ n−1

1

(x− 1)mdx =
1

m+ 1
(n− 2)m+1 =

1

m+ 1
nm+1 +O(nm)∫ n−1

1

xmdx =
1

m+ 1
(n− 1)m+1 =

1

m+ 1
nm+1 +O(nm)

So, by identity (1), we have that

n−1∑
k=1

(n− k) · kp + (n− 1)p = n
n−1∑
k=1

kp −
n−1∑
k=1

kp+1 +O(np) =
( 1

p+ 1
− 1

p+ 2

)
np+2 +O(np+1)

and hence ϕ(p)(Kn) is in Θ(np+2).

Therefore, O(n(p+2)/p) 6 ∆p(Xn) 6 O(n(p+2)/p), which shows that the diameter of dϕ,p on UT n, Tn and

BT n is indeed in Θ(n(p+2)/p).

We finally prove the case p = 0, which needs a completely different argument.

1 2 3 . . . n

...

K

n n−1 n−2 . . . 1

...

K ′

Figure 16: The caterpillars used in the proof of Lemma 16.

Lemma 16. The diameter of dϕ,0 on UT n, Tn and BT n is in Θ(n2).

Proof. Since the cophenetic vector of a tree T ∈ UT n lies in Rn(n+1)/2, it is clear that dϕ,0(T1, T2) 6

n(n + 1)/2, for every T1, T2 ∈ UT n. Now, consider the pair of rooted caterpillars with n leaves depicted in

Fig. 16. We have that

ϕK(i, j) = n− j ϕK′(i, j) = i− 1 for every 1 6 i < j 6 n
ϕK(i, i) = n− i+ 1 ϕK′(i, i) = i for every 2 6 i 6 n− 1
ϕK(1, 1) = n− 1 ϕK′(1, 1) = 1
ϕK(n, n) = 1 ϕK′(n, n) = n− 1

This shows that the number of pairs (i, j), 1 6 i 6 j 6 n, such that ϕK(i, j) = ϕK′(i, j) is at most (n+1)/2,

and therefore that dϕ,0(K,K ′) is at least (n2−1)/2. So, the diameter of dϕ,0 on UT n is bounded from above
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by O(n2), and its diameter on BT n is bounded from below by O(n2), which implies that the diameter of

dϕ,0 on UT n, Tn and BT n is in Θ(n2).
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