Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf (Supplementary Material)

Gabriel Cardona, Arnau Mir, Francesc Rosselló*, Lucía Rotger, and David Sánchez

Department of Mathematics and Computer Science, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain

Email: Gabriel Cardona - gabriel.cardona@uib.es; Arnau Mir - arnau.mir@uib.es; Francesc Rosselló - cesc.rossello@uib.es; Lucía Rotger - lucia.rotger@uib.es; David Sánchez - dscharles@gmail.com;
*Corresponding author

Proofs of Propositions 1-4

Proof of Proposition 1
By Lemma 1, it is enough to prove that the minimum non-zero value of D_{0} is 1 , and that all pairs $T, T^{\prime} \in \mathcal{U} \mathcal{T}_{n}$ such that $D_{0}\left(T, T^{\prime}\right)=1$ also satisfy that $D_{p}\left(T, T^{\prime}\right)=1$ for every $p \geqslant 1$.

As we have seen in Example 2, if we contract a pendant arc in a tree T, we obtain a new tree T^{\prime} such that $D_{p}\left(T, T^{\prime}\right)=1$, for every $p \in\{0\} \cup\left[1, \infty\left[\right.\right.$, and this is of course the smallest possible non-negative value of D_{p} on $\mathcal{U} \mathcal{T}_{n}$. It remains to prove that this is the only way we can obtain a pair of trees such that $D_{0}\left(T, T^{\prime}\right)=1$.

So, let $T, T^{\prime} \in \mathcal{U} \mathcal{T}_{n}$ be such that $\varphi(T)=\varphi\left(T^{\prime}\right)+m \cdot e_{i, j}$ for some $m \geqslant 1$ and $1 \leqslant i, j \leqslant n$ (where $e_{i, j}$ stands for the vector of length $n(n+1) / 2$ with all entries 0 except an 1 in the entry corresponding to the pair $(i, j))$; that is, T and T^{\prime} are such that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, for some $m \geqslant 1$, and $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j)$. Let us prove first of all that $m=1$. So, assume that $m \geqslant 2$ and let us reach a contradiction.

Since $\varphi_{T}(i, j)>0$, there exists some taxon $k \neq i, j$ that is a descendant in T of the parent of $[i, j]_{T}$. In other words, such that $[i, k]_{T}=[j, k]_{T}$ is the parent of $[i, j]_{T}$. But then

$$
\begin{aligned}
& \varphi_{T^{\prime}}(i, k)=\varphi_{T}(i, k)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)+(m-1)>\varphi_{T^{\prime}}(i, j) \\
& \varphi_{T^{\prime}}(j, k)=\varphi_{T}(j, k)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)+(m-1)>\varphi_{T^{\prime}}(i, j)
\end{aligned}
$$

which cannot hold simultaneously: if $\varphi_{T^{\prime}}(i, k)>\varphi_{T^{\prime}}(i, j)$, then $\varphi_{T^{\prime}}(j, k)=\varphi_{T^{\prime}}(i, j)$. This shows that $m=1$, and thus $\varphi(T)=\varphi\left(T^{\prime}\right)+e_{i, j}$.

Let us prove now that it cannot happen that $i \neq j$. Indeed, assume that $i \neq j$. If $\varphi_{T^{\prime}}(i, j)=\delta_{T^{\prime}}(i)$, then

$$
\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\delta_{T^{\prime}}(i)+1=\delta_{T}(i)+1
$$

which is impossible. This implies that $\varphi_{T^{\prime}}(i, j)<\delta_{T^{\prime}}(i), \delta_{T^{\prime}}(j)$. If, now, $\varphi_{T^{\prime}}(i, j)<\delta_{T^{\prime}}(i)-1$, then there will exist some leaf k such that $[i, k]_{T^{\prime}}$ is the child of $[i, j]_{T^{\prime}}$ in the path from $[i, j]_{T^{\prime}}$ to i. Then $\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1$ and $\varphi_{T^{\prime}}(j, k)=\varphi_{T^{\prime}}(i, j)$, which entail that

$$
\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)>\varphi_{T^{\prime}}(i, j)=\varphi_{T^{\prime}}(j, k)=\varphi_{T}(j, k),
$$

which is also impossible. So, if $i \neq j$, the only possibility is that $\varphi_{T^{\prime}}(i, j)=\delta_{T^{\prime}}(i)-1=\delta_{T^{\prime}}(j)-1$, but then it would imply that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\delta_{T}(i)=\delta_{T}(j)$ and hence that $[i, j]_{T}=i=j$, which is again impossible.

So, if $\varphi(T)=\varphi\left(T^{\prime}\right)+e_{i, j}$ then it must happen that $i=j$. In this case, moreover, i must be a leaf in T with unlabeled parent. Indeed, if i is not a leaf, then there is some leaf k such that $i=[i, k]_{T}$ and hence $\delta_{T}(i)=\varphi_{T}(i, k)$. Then, $\delta_{T^{\prime}}(i)=\delta_{T}(i)-1=\varphi_{T}(i, k)-1=\varphi_{T^{\prime}}(i, k)-1$, which is impossible. So, i is a leaf in T. And if its parent is labeled, say with l, then $\delta_{T}(i)=\delta_{T}(l)+1$ and $\delta_{T}(l)=\varphi_{T}(i, l)$. Thus, in T^{\prime}, $\delta_{T^{\prime}}(i)=\delta_{T}(i)-1=\delta_{T}(l)=\delta_{T^{\prime}}(l)$ and $\delta_{T^{\prime}}(i)=\delta_{T}(l)=\varphi_{T}(i, l)=\varphi_{T^{\prime}}(i, l)$, which is also impossible, since it would imply that $[i, l]_{T^{\prime}}=i=l$.

So, finally, it must happen that i is a leaf in T and its parent is not labeled. Let T_{0} be the phylogenetic tree obtained from T by contracting the pendant arc ending in i. Then $\varphi\left(T_{0}\right)=\varphi(T)-e_{i, i}=\varphi\left(T^{\prime}\right)$, and this implies, by Theorem 1 , that $T_{0}=T^{\prime}$.

This finishes the proof that the only pairs $T, T^{\prime} \in \mathcal{W} \mathcal{T}_{n}$ such that $D_{0}\left(T, T^{\prime}\right)=1$ are those where one of them is obtained from the other by the contraction of a pendant arc. Since these pairs of trees also satisfy that $D_{p}\left(T, T^{\prime}\right)=1$ for every $p \geqslant 1$, this completes the proof of the proposition.

Proof of Proposition 2

To ease the task of the reader, we split this proof into several lemmas. To begin with, notice that there are pairs of trees $T, T^{\prime} \in \mathcal{T}_{n}$ such that $D_{p}\left(T, T^{\prime}\right)=3$ for every $p \in\{0\} \cup[1, \infty[$: for instance, by Example 2, when T^{\prime} is obtained from T by contracting an arc ending in the root of a cherry. So, the minimum non-zero value of $D_{p}\left(T, T^{\prime}\right)$ on \mathcal{T}_{n} is at most 3 .

Lemma 1. If $T, T^{\prime} \in \mathcal{T}_{n}$ are such that $D_{0}\left(T, T^{\prime}\right)>0$, then there exists a pair of different taxa $i \neq j$ such that $\varphi_{T}(i, j) \neq \varphi_{T^{\prime}}(i, j)$.

Proof. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)$ for every $i \neq j$, then, by Corollary $1, T=T^{\prime}$ and therefore $D_{0}\left(T, T^{\prime}\right)=0$.
So, every pair of phylogenetic trees in \mathcal{T}_{n} at non-zero D_{0} distance must have a pair of different leaves with different cophenetic values.

Lemma 2. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, for some $1 \leqslant i<j \leqslant n$ and some $m \geqslant 1$.
Let $k \neq i, j$ be a leaf such that there exists a path from $[i, j]_{T^{\prime}}$ to $[i, k]_{T^{\prime}}$ of length l, for some $l \geqslant 1$. Then:
(a) If $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$, then $\varphi_{T}(j, k) \geqslant \varphi_{T^{\prime}}(j, k)+\min \{m, l\}$
(b) If $\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)$, then $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)-l$

Proof. From the assumptions we have that $\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+l=\varphi_{T^{\prime}}(j, k)+l$. Now:
(a) Assume that $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$. Then,

$$
\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+l=\varphi_{T}(i, j)-(m-l)
$$

and then

- If $m>l$, then $\varphi_{T}(i, k)<\varphi_{T}(i, j)$, that is, $[i, j]_{T} \prec[i, k]_{T}$, and thus

$$
\varphi_{T}(j, k)=\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(j, k)+l
$$

- If $m=l$, then $\varphi_{T}(i, k)=\varphi_{T}(i, j)$, that is, $[i, k]_{T}=[i, j]_{T}$, and thus

$$
\varphi_{T}(j, k) \geqslant \varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m=\varphi_{T^{\prime}}(j, k)+m
$$

- If $m<l$, then $\varphi_{T}(i, k)>\varphi_{T}(i, j)$, that is, $[i, k]_{T} \prec[i, j]_{T}$, and thus

$$
\varphi_{T}(j, k)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m=\varphi_{T^{\prime}}(j, k)+m
$$

(b) Assume that $\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)$. Then

$$
\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-m
$$

so that $[i, j]_{T} \prec[j, k]_{T}$, and thus

$$
\varphi_{T}(i, k)=\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)=\varphi_{T^{\prime}}(i, j)=\varphi_{T^{\prime}}(i, k)-l
$$

As a direct consequence of this lemma we obtain the following result.
Corollary 1. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, for some $1 \leqslant i<j \leqslant n$ and some $m \geqslant 1$. Let N be the number of leaves k such that $k \neq i, j$ and either $[i, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ or $[j, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$. Then,

$$
D_{0}\left(T, T^{\prime}\right) \geqslant N+1
$$

Lemma 3. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 3$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, for some $1 \leqslant i<j \leqslant n$ and some $m \geqslant 1$, then $m=1$.

Proof. If $\delta_{T^{\prime}}(i)=\delta_{T}(i)$, then $\delta_{T^{\prime}}(i)=\delta_{T}(i)>\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$ which implies that there are at least m leaves k such that $[i, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$. Then, by the last corollary, $D_{0}\left(T, T^{\prime}\right) \geqslant m+1$. Now, if $\delta_{T^{\prime}}(j)=\delta_{T}(j)$, then for the same reason there are at least m leaves k such that $[j, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ and they increase $D_{0}\left(T, T^{\prime}\right)$ to at least $2 m+1$, while if $\delta_{T^{\prime}}(j) \neq \delta_{T}(j)$, then $D_{0}\left(T, T^{\prime}\right) \geqslant m+2$. We conclude then that if $\delta_{T^{\prime}}(i)=\delta_{T}(i)$, then $m=1$. By symmetry, if $\delta_{T^{\prime}}(j)=\delta_{T}(j)$, then $m=1$, either.

Finally, if $\delta_{T^{\prime}}(i) \neq \delta_{T}(i)$ and $\delta_{T^{\prime}}(j) \neq \delta_{T}(j)$, and since $\varphi_{T}(i, j) \neq \varphi_{T^{\prime}}(i, j)$, we have that $\varphi_{T}(x, y)=$ $\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, i),(j, j),(i, j)$. Let now $k \neq i, j$ be a taxon such that $[i, k]_{T}=[j, k]_{T}$ is the parent of $[i, j]_{T}$ in T. Then

$$
\varphi_{T^{\prime}}(i, k)=\varphi_{T}(i, k)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)+(m-1)
$$

and therefore, if $m \geqslant 2, \varphi_{T^{\prime}}(i, k)>\varphi_{T^{\prime}}(i, j)$ and then, by Lemma 2 , either $\varphi_{T}(i, k) \neq \varphi_{T^{\prime}}(i, k)$ or $\varphi_{T}(j, k) \neq$ $\varphi_{T^{\prime}}(j, k)$, which, as we have seen, is impossible. Thus, $m=1$ in all cases.

Lemma 4. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 3$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, then $\left(\delta_{T^{\prime}}(i)-\varphi_{T^{\prime}}(i, j)\right)+\left(\delta_{T^{\prime}}(j)-\varphi_{T^{\prime}}(i, j)\right) \leqslant 3$.

Proof. Let us assume that $\left(\delta_{T^{\prime}}(i)-\varphi_{T^{\prime}}(i, j)\right)+\left(\delta_{T^{\prime}}(j)-\varphi_{T^{\prime}}(i, j)\right) \geqslant 4$ and let us reach a contradiction.
Assume first that $\delta_{T^{\prime}}(i) \geqslant \varphi_{T^{\prime}}(i, j)+3$. Then, there are at least two leaves k_{1}, k_{2} such that $\left[i, k_{1}\right]_{T^{\prime}},\left[i, k_{2}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$. Since each such leaf contributes at least 1 to $D_{0}\left(T, T^{\prime}\right) \leqslant 3$, we conclude that there must be exactly two such leaves and, moreover, $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq$ $(i, j),\left(i, k_{1}\right),\left(j, k_{1}\right),\left(i, k_{2}\right),\left(j, k_{2}\right)$. But then, on the one hand, $\delta_{T}(j)=\delta_{T^{\prime}}(j)$ and, on the other hand, $\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1$ (otherwise, there would be some other leaf k such that $[j, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$, which, by Lemma 2 would satisfy that $\varphi_{T}(i, k) \neq \varphi_{T^{\prime}}(i, k)$ or $\left.\varphi_{T}(j, k) \neq \varphi_{T^{\prime}}(j, k)\right)$. Combining these two equalities we obtain $\delta_{T}(j)=\varphi_{T}(i, j)$, which is impossible in a tree without nested taxa. This proves that $\delta_{T^{\prime}}(i) \leqslant \varphi_{T^{\prime}}(i, j)+2$ and, by symmetry, that $\delta_{T^{\prime}}(j) \leqslant \varphi_{T^{\prime}}(i, j)+2$, as we claimed.

Thus, it remains to prove that the case $\delta_{T^{\prime}}(i)=\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+2$ is impossible. So, assume this case holds, and let's reach a contradiction. By Corollary 1, if $D_{0}\left(T, T^{\prime}\right) \leqslant 3$ and $\delta_{T^{\prime}}(i)=\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+2$, then there can exist only one extra leaf k pending from the parent of i and one extra leaf l pending from the parent of j : see Fig. 1, where the grey triangle stands for the (possibly empty) subtree consisting of all other descendants of $[i, j]_{T^{\prime}}$. Moreover, since $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$ and since both k and l contribute at least 1
to $D_{0}\left(T, T^{\prime}\right) \leqslant 3$, we conclude that $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),(i, k),(j, k),(i, l),(j, l)$. In particular

$$
\begin{aligned}
& \varphi_{T}(k, l)=\varphi_{T^{\prime}}(k, l)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1 \\
& \delta_{T}(i)=\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1 \\
& \delta_{T}(j)=\delta_{T}(k)=\delta_{T}(l)=\varphi_{T}(i, j)+1 \text { for the same reason }
\end{aligned}
$$

Figure 1: The subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ in the proof of Lemma 4.

Now we shall prove that, in this situation, each one of k, l contributes actually at least 2 to $D_{0}\left(T, T^{\prime}\right)$, and therefore $D_{0}\left(T, T^{\prime}\right) \geqslant 5$, which contradicts the assumption that $D_{0}\left(T, T^{\prime}\right) \leqslant 3$.
(1) Assume that $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$. Then, by Lemmas 2.(a) and 3, $\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)+1$, and hence

$$
\begin{aligned}
& \varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(j, k)+1=\varphi_{T}(j, k) \\
& \varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j) \\
& \delta_{T}(i)=\delta_{T}(j)=\delta_{T}(k)=\delta_{T}(l)=\varphi_{T}(i, j)+1 \\
& \varphi_{T}(k, l)=\varphi_{T}(i, j)-1
\end{aligned}
$$

Thus, the subtree of T rooted at $[k, l]_{T}$ contains a subtree of the form described in Fig. 2, for at least one leaf h. But then

$$
\varphi_{T^{\prime}}(l, h)=\varphi_{T}(l, h)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T^{\prime}}(l, j)
$$

which is impossible, since it would imply that h is another descendant of $[l, j]_{T^{\prime}}$. Therefore, $\varphi_{T}(i, k) \neq$ $\varphi_{T^{\prime}}(i, k)$ and, by symmetry, $\varphi_{T}(j, l) \neq \varphi_{T^{\prime}}(j, l)$.

Figure 2: A subtree of the subtree of T rooted at $[k, l]_{T}$ in case (1) in the proof of Lemma 4.
(2) Assume now that $\varphi_{T}(i, l)=\varphi_{T^{\prime}}(i, l)$. Then, by Lemma 2.(b), $\varphi_{T}(j, l)=\varphi_{T^{\prime}}(j, l)-1$, and then

$$
\begin{aligned}
& \varphi_{T}(i, l)=\varphi_{T^{\prime}}(i, l)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1 \\
& \varphi_{T}(j, l)=\varphi_{T^{\prime}}(j, l)-1=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1 \\
& \varphi_{T}(k, l)=\varphi_{T}(i, j)-1 \\
& \delta_{T}(i)=\delta_{T}(j)=\delta_{T}(k)=\delta_{T}(l)=\varphi_{T}(i, j)+1
\end{aligned}
$$

Therefore, the subtree of T rooted at $[k, l]_{T}$ contains a subtree of the form described in Fig. 3, for at least one leaf h. Moreover, $h \neq k$ because $\varphi_{T}(h, l)>\varphi_{T}(j, l)=\varphi_{T}(k, l)$. But then, again,

$$
\varphi_{T^{\prime}}(l, h)=\varphi_{T}(l, h)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T^{\prime}}(l, j)
$$

which is again impossible by the same reason as in (1). Therefore, $\varphi_{T}(i, l) \neq \varphi_{T^{\prime}}(i, l)$ and, by symmetry, $\varphi_{T}(j, k) \neq \varphi_{T^{\prime}}(j, k)$.

Figure 3: A subtree of the subtree of T rooted at $[k, l]_{T}$ in case (2) in the proof of Lemma 4.

So,

$$
\varphi_{T}(i, k) \neq \varphi_{T^{\prime}}(i, k), \varphi_{T}(i, l) \neq \varphi_{T^{\prime}}(i, l), \varphi_{T}(j, k) \neq \varphi_{T^{\prime}}(j, k), \varphi_{T}(j, l) \neq \varphi_{T^{\prime}}(j, l)
$$

and thus $D_{0}\left(T, T^{\prime}\right) \geqslant 5$.

Summarizing the last lemmas, we have proved so far that if $D_{0}\left(T, T^{\prime}\right) \leqslant 3$ and $\varphi_{T}(i, j) \neq \varphi_{T^{\prime}}(i, j)$, then, up to interchanging T and $T^{\prime}, \varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$ and either i and j are sibling in T^{\prime} or one of these leaves is a sibling of the parent of the other one in T^{\prime}. Next two lemmas cover these two remaining cases.

Lemma 5. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 3$, and assume that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$. If i and j are sibling in T^{\prime}, then they are also sibling in T, they have no other sibling in T, and T^{\prime} is obtained from T by contracting the arc ending in $[i, j]_{T}$. And then, $D_{0}\left(T, T^{\prime}\right)=3$.

Proof. If $\delta_{T^{\prime}}(i)=\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1$, then it must happen that $\delta_{T}(i)=\delta_{T^{\prime}}(i)+1$ and $\delta_{T}(j)=\delta_{T^{\prime}}(j)+1$. Indeed, if $\delta_{T}(i) \leqslant \delta_{T^{\prime}}(i)$, then $\delta_{T}(i) \leqslant \varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)$, which is impossible. Therefore, $\delta_{T}(i)>\delta_{T^{\prime}}(i)$
and by symmetry $\delta_{T}(j)>\delta_{T^{\prime}}(j)$. Since $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1, D_{0}\left(T, T^{\prime}\right) \leqslant 3$ implies that $\varphi_{T}(x, y)=$ $\varphi_{T^{\prime}}(x, y)$, for every $(x, y) \neq(i, j),(i, i),(j, j)$. Now, if, say $\delta_{T}(i) \geqslant \delta_{T^{\prime}}(i)+2$, then

$$
\delta_{T}(i) \geqslant \delta_{T^{\prime}}(i)+2=\varphi_{T^{\prime}}(i, j)+3=\varphi_{T}(i, j)+2
$$

and there would exist some leaf k such that $[i, k]_{T}$ is a child of $[i, j]_{T}$. But then

$$
\varphi_{T^{\prime}}(i, k)=\varphi_{T}(i, k)=\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(i, j)+2=\delta_{T^{\prime}}(i)+1,
$$

which is impossible. This proves that $\delta_{T}(i)=\delta_{T^{\prime}}(i)+1$ and, by symmetry, $\delta_{T}(j)=\delta_{T^{\prime}}(j)+1$.
So, in summary, $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1, \delta_{T}(i)=\delta_{T^{\prime}}(i)+1, \delta_{T}(j)=\delta_{T^{\prime}}(j)+1$ and $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$, for every $(x, y) \neq(i, j),(i, i),(j, j)$, and in particular $d_{\varphi, p}\left(T, T^{\prime}\right)=3$.

Now, $\delta_{T}(i)=\delta_{T^{\prime}}(i)+1=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1$, and by symmetry, $\delta_{T}(j)=\varphi_{T}(i, j)+1$, either. Therefore, i and j are sibling in T. Let us see that they have no other sibling in this tree. Indeed, if k is a sibling of i and j in T, then

$$
\varphi_{T^{\prime}}(i, k)=\varphi_{T}(i, k)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\delta_{T^{\prime}}(i)
$$

which is impossible.
Let x be the parent of $[i, j]_{T}$, and assume that the subtree T_{0} of T rooted at x is as described in Fig. 4.(a), for some (possibly empty) subtree \widehat{T}. Moreover, let T_{0}^{\prime} be the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$, which is as described in Fig. 4.(b) for some subtree $\widehat{T^{\prime}}$. We shall prove that $\widehat{T}=\widehat{T^{\prime}}$.

(a) T_{0}
(b) T_{0}^{\prime}

Figure 4: (a) The subtree T_{0} of T rooted at the parent of $[i, j]_{T}$ in the proof of Lemma 5. (b) The subtree T_{0}^{\prime} of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ in the proof of the same Lemma.

For every $k \in L(\widehat{T})$,

$$
\varphi_{T^{\prime}}(i, k)=\varphi_{T}(i, k)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j),
$$

which entails that $k \in L\left(\widehat{T^{\prime}}\right)$. Conversely, if $k \in L\left(\widehat{T^{\prime}}\right)$, then

$$
\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1,
$$

which entails that $k \in L(\widehat{T})$. Thus, $L(\widehat{T})=L\left(\widehat{T^{\prime}}\right)$. And finally, for every (not necessarily different) $k, l \in L(\widehat{T})$,

$$
\varphi_{\widehat{T}}(k, l)=\varphi_{T}(k, l)-\delta_{T}(x)=\varphi_{T}(k, l)-\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(k, l)-\varphi_{T^{\prime}}(i, j)=\varphi_{\widehat{T^{\prime}}}(k, l)
$$

which implies by Theorem 1 that $\widehat{T}=\widehat{T^{\prime}}$ (notice that \widehat{T} and $\widehat{T^{\prime}}$ can have elementary roots).
Finally, let us prove now that T and T^{\prime} are exactly the same except for T_{0} and T_{0}^{\prime}. More specifically, let T_{1} and T_{1}^{\prime} be obtained by replacing in T and T^{\prime} the subtrees T_{0} and T_{0}^{\prime} by a single leaf x. Since for every $p, q \notin L\left(T_{0}\right)=L\left(T_{0}^{\prime}\right)$,

$$
\begin{aligned}
& \varphi_{T_{1}^{\prime}}(p, q)=\varphi_{T^{\prime}}(p, q)=\varphi_{T}(p, q)=\varphi_{T_{1}}(p, q) \\
& \varphi_{T_{1}^{\prime}}(x, p)=\varphi_{T^{\prime}}(i, p)=\varphi_{T}(i, p)=\varphi_{T_{1}}(p, x)
\end{aligned}
$$

we deduce, again by Theorem 1 , that $T_{1}=T_{1}^{\prime}$.
This completes the proof that T^{\prime} is obtained from T by replacing in it the subtree T_{0} rooted at the parent x of $[i, j]_{T}$ by the subtree T_{0}^{\prime} obtained from T_{0} by contracting the $\operatorname{arc}\left(x,[i, j]_{T}\right)$.

Lemma 6. Let $T, T^{\prime} \in \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 3$. Assume that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, and that j is a sibling of the parent of i in T^{\prime}. Then, the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is the tree T_{0}^{\prime} depicted in Fig. 5.(a), for some taxon $k \neq i, j$ and some (possibly empty) subtree $\widehat{T^{\prime}}$, and T is obtained from T^{\prime} by replacing T_{0}^{\prime} by the tree T_{0} depicted in Fig. 5.(b). And then, $D_{0}\left(T, T^{\prime}\right)=3$.

(a) T_{0}^{\prime}

(b) T_{0}

Figure 5: (a) The subtree T_{0}^{\prime} of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ in the statement of Lemma 6. (b) The subtree T_{0} which replaces T_{0}^{\prime} in T in the same statement.

Proof. We assume that $\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+2$ and $\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1$. This implies that there exists at least one leaf k such that $[i, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$. Since $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1,\left|\varphi_{T}(i, k)-\varphi_{T^{\prime}}(i, k)\right|+\mid \varphi_{T}(j, k)-$ $\varphi_{T^{\prime}}(j, k) \mid \geqslant 1$ and $\delta_{T}(j)>\delta_{T^{\prime}}(j)$ (because, otherwise, $\delta_{T}(j) \leqslant \delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)$, which is impossible), $D_{0}\left(T, T^{\prime}\right) \leqslant 3$ entails that $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$ or $\varphi_{T}(j, k)=\varphi_{T}(j, k)$, and that $\varphi_{T}(x, y)=$ $\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),(i, k),(j, k),(j, j)$ (and, in particular, k is the only leaf different from i such that $\left.[i, k]_{T^{\prime}} \prec[i, j]_{T^{\prime}}\right)$. Moreover, we have that $D_{0}\left(T, T^{\prime}\right)=3$.

Let us see now that $\delta_{T}(j)=\delta_{T^{\prime}}(j)+1$. Indeed, if $\delta_{T}(j) \geqslant \delta_{T^{\prime}}(j)+2$, then

$$
\delta_{T}(j) \geqslant \delta_{T^{\prime}}(j)+2=\varphi_{T^{\prime}}(i, j)+3=\varphi_{T}(i, j)+2
$$

and there would exist some leaf l such that $[j, l]_{T}$ is a child of $[i, j]_{T}$. But then

$$
\varphi_{T^{\prime}}(j, l)=\varphi_{T}(j, l)=\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(i, j)+2=\delta_{T^{\prime}}(j)+1
$$

and we reach a contradiction.
So, in summary, the subtree T_{0}^{\prime} of T^{\prime} rooted a $[i, j]_{T^{\prime}}$ is as described in Fig. 5.(a), and $\varphi_{T}(i, j)=$ $\varphi_{T^{\prime}}(i, j)+1, \delta_{T}(j)=\delta_{T^{\prime}}(j)+1, \varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),(i, k),(j, k),(j, j)$, and either $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$ or $\varphi_{T}(j, k)=\varphi_{T}(j, k)$. Now, we discuss these two possibilities.
(a) If $\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)$, then $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)-1$ by Lemma 2.(b). In this case

$$
\begin{aligned}
& \varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)-1=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1 \\
& \varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1 \\
& \delta_{T}(i)=\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1 \\
& \delta_{T}(j)=\delta_{T^{\prime}}(j)+1=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1 \\
& \delta_{T}(k)=\delta_{T^{\prime}}(k)=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1
\end{aligned}
$$

This means that the subtree of T rooted at $[i, k]_{T}=[j, k]_{T}$ contains a subtree of the form described in Fig. 6, for at least some new leaf h. But then

$$
\varphi_{T^{\prime}}(k, h)=\varphi_{T}(k, h)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T^{\prime}}(i, k)
$$

which is impossible in T^{\prime}, because i and k are the only descendants of $[i, k]_{T^{\prime}}$ in T^{\prime}. So, this case is impossible.

Figure 6: A subtree contained in the subtree of T rooted at $[i, j]_{T}$ in case (a) in the proof of Lemma 6.
(b) If $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)$, then $\varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)+1$ Lemmas 2.(a) and 3. In this case

$$
\begin{aligned}
& \varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j) \\
& \varphi_{T}(j, k)=\varphi_{T^{\prime}}(j, k)+1=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j) \\
& \delta_{T}(i)=\delta_{T}(j)=\delta_{T}(k)=\varphi_{T}(i, j)+1 \text { as in }(\mathrm{a})
\end{aligned}
$$

This implies that i, j, k are sibling in T. If l is any other sibling of them in T, then

$$
\varphi_{T^{\prime}}(i, l)=\varphi_{T}(i, l)=\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)
$$

which entails that l is another descendant of $[i, k]_{T^{\prime}}$ in T^{\prime}, which is impossible. Therefore, the subtree T_{0} of T rooted at the parent of $[i, j]_{T}$ has the form depicted in Fig. 7 , for some subtree \widehat{T}.

Finally, the same argument as in the last part of the proof of the last lemma shows that $\widehat{T}=\widehat{T^{\prime}}$, and that if T_{1} and T_{1}^{\prime} are obtained by replacing in T and T^{\prime} the subtrees T_{0} and T_{0}^{\prime} by a single leaf x, then $T_{1}=T_{1}^{\prime}$. We leave the details to the reader.

Figure 7: The subtree T_{0} rooted at the parent of $[i, j]_{T}$ in case (b) in the proof of Lemma 6.

This completes the proof that T and T^{\prime} are as described in the statement.

We have proved so far that the minimum value of D_{0} on \mathcal{T}_{n} is 3 , and we have characterized those pairs of trees $T, T^{\prime} \in \mathcal{T}_{n}$ such that $D_{0}\left(T, T^{\prime}\right)=3$. To extend this result to every $D_{p}, p \geqslant 1$, it is enough to check that every pair of trees in \mathcal{T}_{n} such that $D_{0}\left(T, T^{\prime}\right)=3$ also satisfies that $D_{p}\left(T, T^{\prime}\right)=3$ for every $p \geqslant 1$, which is straightforward. This completes the proof of Proposition 2.

Proof of Proposition 3

As in Proposition 2, we also split this proof into several lemmas. First of all, notice that there are pairs of trees $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ such that $D_{p}\left(T, T^{\prime}\right)=4$ for every $p \in\{0\} \cup[1, \infty[:$ see, for instance, Fig. 8. Therefore, the minimum value of D_{p} on $\mathcal{B} \mathcal{T}_{n}$ is at most 4.

Figure 8: A pair of binary trees such that $D_{p}\left(T, T^{\prime}\right)=4$. The grey triangles represent the same tree.

Notice also that Lemma 1 also applies in $\mathcal{B} \mathcal{T}_{n}$, and therefore, if $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ are such that $D_{0}\left(T, T^{\prime}\right)>0$, then there exist two taxa $i \neq j$ such that $\varphi_{T}(i, j) \neq \varphi_{T^{\prime}}(i, j)$. And, of course, Lemma 2 also applies in $\mathcal{B} \mathcal{T}_{n}$.

Lemma 7. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, for some $1 \leqslant i<j \leqslant n$ and some $m \geqslant 1$, then $m=1$.

Proof. Assume that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$ with $m \geqslant 2$, and let us reach a contradiction.
If $\delta_{T^{\prime}}(i)=\delta_{T}(i)$, then $\delta_{T^{\prime}}(i)>\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m$, and therefore there exist leaves x_{1}, \ldots, x_{m} such that $\varphi_{T}\left(i, x_{l}\right)=\varphi_{T^{\prime}}(i, j)+l$, for $l=1, \ldots, m$. By Lemma 2, each such leaf x_{l} adds at least 1 to $D_{0}\left(T, T^{\prime}\right)$. Therefore $D_{0}\left(T, T^{\prime}\right) \geqslant 1+m$. Now, if moreover $\delta_{T^{\prime}}(j)=\delta_{T}(j)$, then there also exist leaves y_{1}, \ldots, y_{m} such that $\varphi_{T}\left(j, y_{l}\right)=\varphi_{T^{\prime}}(i, j)+l$, for $l=1, \ldots, m$, and each such leaf y_{l} also adds at least 1 to $D_{0}\left(T, T^{\prime}\right)$, which entails $D_{0}\left(T, T^{\prime}\right) \geqslant 1+2 m \geqslant 5$. So, if $D_{0}\left(T, T^{\prime}\right) \leqslant 4$, it must happen that $\delta_{T^{\prime}}(i) \neq \delta_{T}(i)$ or $\delta_{T^{\prime}}(j) \neq \delta_{T}(j)$ (or both). Let assume that $\delta_{T^{\prime}}(j) \neq \delta_{T}(j)$.

Now, $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+m \geqslant m$, and therefore there exist leaves z_{1}, \ldots, z_{m} such that $\varphi_{T}\left(i, z_{l}\right)=$ $\varphi_{T}\left(j, z_{l}\right)=\varphi_{T}(i, j)-l$, for $l=1, \ldots, m$. If $\varphi_{T}\left(i, k_{l}\right)=\varphi_{T^{\prime}}\left(i, k_{l}\right)$, then

$$
\varphi_{T^{\prime}}\left(i, k_{l}\right)=\varphi_{T}\left(i, k_{l}\right)=\varphi_{T}(i, j)-l=\varphi_{T^{\prime}}(i, j)+(m-l) \geqslant \varphi_{T^{\prime}}(i, j)
$$

and therefore, by Lemma $2, \varphi_{T^{\prime}}\left(j, k_{l}\right) \neq \varphi_{T}\left(j, k_{l}\right)$, and thus, each such leaf z_{l} adds at least 1 to $D_{0}\left(T, T^{\prime}\right)$, which entails $D_{0}\left(T, T^{\prime}\right) \geqslant 2+m$. Therefore, if $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ and $m \geqslant 2$, it must happen $m=2$ and, moreover, $\varphi_{T}(a, b)=\varphi_{T^{\prime}}(a, b)$ for every $(a, b) \neq(i, j),(j, j),\left(i, z_{1}\right),\left(i, z_{2}\right),\left(j, z_{1}\right),\left(j, z_{2}\right)$.

In particular, $\delta_{T}(i)=\delta_{T^{\prime}}(i)$, which as we have seen implies that there are at least two leaves x_{1}, x_{2} such that $i \prec\left[i, x_{2}\right]_{T^{\prime}} \prec\left[i, x_{1}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$. Since

$$
\varphi_{T^{\prime}}\left(z_{1}, z_{2}\right)=\varphi_{T}\left(z_{1}, z_{2}\right)=\varphi_{T}(i, j)-2=\varphi_{T^{\prime}}(i, j)
$$

implies that (up to interchanging z_{1} and z_{2}) $i \prec\left[i, z_{1}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ and $j \prec\left[j, z_{2}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$, we conclude that $\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$ are at least 3 different leaves and hence they contribute at least 3 to $D_{0}\left(T, T^{\prime}\right)$, making $D_{0}\left(T, T^{\prime}\right) \geqslant 5$.

Lemma 8. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, then $\delta_{T^{\prime}}(i), \delta_{T^{\prime}}(j) \leqslant \varphi_{T^{\prime}}(i, j)+2$.

Proof. Let us assume that $\delta_{T^{\prime}}(i) \geqslant \varphi_{T^{\prime}}(i, j)+3$, and let us reach a contradiction. The case when $\delta_{T^{\prime}}(j) \geqslant$ $\varphi_{T^{\prime}}(i, j)+3$ is symmetrical.

Since $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1>0$, there exists some taxon k_{0} such that $\left[i, k_{0}\right]_{T}$ is the parent of $[i, j]_{T}$. Let us distinguish several cases.
(a) Assume that $\varphi_{T}\left(i, k_{0}\right)=\varphi_{T^{\prime}}\left(i, k_{0}\right)$. Then, $\varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T}\left(i, k_{0}\right)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)$ implies that $\left[j, k_{0}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ and thus $\varphi_{T^{\prime}}\left(j, k_{0}\right)>\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1=\varphi_{T}\left(j, k_{0}\right)$ and in particular, by the previous lemma $\varphi_{T^{\prime}}\left(j, k_{0}\right)=\varphi_{T}\left(j, k_{0}\right)+1=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$. Now, since $D_{0}\left(T, T^{\prime}\right) \leqslant 4$, by Lemma 3 the number of leaves $a \neq i, j, k_{0}$ such that $a \prec[i, j]_{T^{\prime}}$ is at most 2 .

If $\delta_{T^{\prime}}(i) \geqslant \varphi_{T^{\prime}}(i, j)+3$, then there exist leaves k_{1}, k_{2} such that $\varphi_{T^{\prime}}\left(i, k_{1}\right)=\varphi_{T^{\prime}}(i, j)-$ 1 and $\varphi_{T^{\prime}}\left(i, k_{2}\right)=\varphi_{T^{\prime}}(i, j)-2$ and then $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \quad \neq$ $(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right),\left(k_{1}, i\right),\left(k_{1}, j\right),\left(k_{2}, i\right),\left(k_{2}, j\right)$. In particular, no leaf other than $i, j, k_{0}, k_{1}, k_{2}$ descends from $[i, j]_{T^{\prime}}$. But then

$$
\begin{aligned}
& \varphi_{T}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1, \quad \varphi_{T}\left(k_{2}, k_{0}\right)=\varphi_{T}(i, j)-1 \\
& \varphi_{T}\left(k_{1}, k_{2}\right)=\varphi_{T^{\prime}}\left(k_{1}, k_{2}\right)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)
\end{aligned}
$$

imply that, up to interchanging k_{1} and $k_{2}, i \prec\left[i, k_{1}\right]_{T} \prec[i, j]_{T}$ and $j \prec\left[j, k_{2}\right]_{T} \prec[i, j]_{T}$, and then

$$
\delta_{T^{\prime}}(j)=\delta_{T}(j)>\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(i, j)+2
$$

implies the existence of at least another leaf h such that $j \prec[j, h]_{T^{\prime}} \prec\left[j, k_{0}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$, which, as we have mentioned, is impossible. So, this case cannot happen.
(b) Assume now that $\varphi_{T}\left(j, k_{0}\right)=\varphi_{T^{\prime}}\left(j, k_{0}\right)$. By symmetry with the previous case, this implies that $\varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T^{\prime}}(i, j)+1, \varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T}\left(i, k_{0}\right)+1$ and that the number of leaves $a \neq i, j, k_{0}$ such that $a \prec[i, j]_{T^{\prime}}$ is at most 2 . Now we have three new subcases to discuss.
(b.1) If $\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+4$, so that there exist leaves $k_{1}, k_{2} \neq i$ such that $\varphi_{T^{\prime}}\left(i, k_{0}\right), \varphi_{T^{\prime}}\left(i, k_{1}\right), \varphi_{T^{\prime}}\left(i, k_{2}\right)>\varphi_{T^{\prime}}(i, j)$, and no leaf other that $i, j, k_{0}, k_{1}, k_{2}$ descends from $[i, j]_{T^{\prime}}$. Then $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right),\left(k_{1}, i\right),\left(k_{1}, j\right),\left(k_{2}, i\right),\left(k_{2}, j\right)$. But in this case it must happen that $\delta_{T}(j)=\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)$, which is impossible. So, this case cannot happen.
(b.2) If $\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+3$ and $\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+2$, so that there exist leaves k_{1}, k_{2} such that $\varphi_{T^{\prime}}\left(j, k_{1}\right)=\varphi_{T^{\prime}}(i, j)+1, \varphi_{T^{\prime}}\left(i, k_{2}\right)=\varphi_{T^{\prime}}(i, j)+2$ and, recall, $\varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T^{\prime}}(i, j)+1$, then $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right),\left(k_{1}, i\right),\left(k_{1}, j\right),\left(k_{2}, i\right),\left(k_{2}, j\right)$. But then

$$
\varphi_{T}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1
$$

implies that $k_{1} \prec[i, j]_{T}$, and then

$$
\begin{aligned}
& \delta_{T}(j)=\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1, \\
& \delta_{T}\left(k_{1}\right)=\delta_{T^{\prime}}\left(k_{1}\right)=\varphi_{T^{\prime}}(i, j)+2=\varphi_{T}(i, j)+1
\end{aligned}
$$

imply that j and k_{1} are the only children of $[i, j]_{T}$, which is, of course, impossible. So, this case cannot happen, either.
(b.3) If $\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+3$ and $\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1$, then on the one hand there exists a leaf k_{1} such that $\varphi_{T^{\prime}}\left(i, k_{1}\right)=\varphi_{T^{\prime}}\left(j, k_{0}\right)-1=\varphi_{T^{\prime}}(i, j)-2$ and, on the other hand, as we have seen in (b.1), $\delta_{T}(j)>$ $\delta_{T^{\prime}}(j)$. Then, $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),(j, j),\left(i, k_{0}\right),\left(j, k_{0}\right),\left(k_{1}, i\right),\left(k_{1}, j\right)$, and in particular no leaf other than i, j, k_{0}, k_{1} descends from $[i, j]_{T^{\prime}}$.

Now,

$$
\varphi_{T}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}\left(k_{1}, k_{0}\right)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)
$$

implies that $k_{1} \nprec[i, j]_{T}$, and

$$
\delta_{T}(i)=\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+3=\varphi_{T}(i, j)+2
$$

implies that there exists a leaf $h \neq k_{0}, k_{1}$ such that $i \prec[i, h]_{T} \prec[i, j]_{T}$ and hence

$$
\varphi_{T^{\prime}}(i, h)=\varphi_{T}(i, h)>\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(i, j)
$$

would entail that $h \prec[i, j]_{T^{\prime}}$, which is impossible. Thus, this case cannot happen, either.
(c) Assume finally that $\varphi_{T}\left(i, k_{0}\right) \neq \varphi_{T^{\prime}}\left(i, k_{0}\right)$ and $\varphi_{T}\left(j, k_{0}\right) \neq \varphi_{T^{\prime}}\left(j, k_{0}\right)$. The contribution to D_{0} of the pairs $(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right)$ is at least 3 , and therefore there can only exist at most one other pair of leaves with different cophenetic value in T and in T^{\prime}. Since every $x \neq i, j$ such that $x \prec[i, j]_{T^{\prime}}$ defines at least one such pair, we conclude that if $\delta_{T^{\prime}}(i) \geqslant \varphi_{T^{\prime}}(i, j)+3$, then, it must happen that $\left[i, k_{0}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ and that there can only exist one leaf $k_{1} \neq k_{0}, i$ such that $\left[i, k_{1}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$, and then, moreover $\left[i, k_{0}\right]_{T^{\prime}} \neq\left[i, k_{1}\right]_{T^{\prime}}$. In this case, $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every $(x, y) \neq(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right),\left(k_{1}, i\right),\left(k_{1}, j\right)$. But then, in particular, $\delta_{T^{\prime}}(j)=\varphi_{T^{\prime}}(i, j)+1$ and $\delta_{T}(j)=\delta_{T^{\prime}}(j)$, which implies $\delta_{T}(i)=\varphi_{T}(i, j)$, which is impossible

This finishes the proof that, if $D_{0}\left(T, T^{\prime}\right) \leqslant 4$, then $\delta_{T^{\prime}}(i) \leqslant \varphi_{T^{\prime}}(i, j)+2$ and $\delta_{T^{\prime}}(j) \leqslant \varphi_{T^{\prime}}(i, j)+2$.
Lemma 9. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, then i, j are sibling in T.

Proof. Let k_{0} be any leaf such that $\left[i, k_{0}\right]_{T}=\left[j, k_{0}\right]_{T}$ is the parent of $[i, j]_{T}$ in T. If $\varphi_{T}\left(i, k_{0}\right)=\varphi_{T^{\prime}}\left(i, k_{0}\right)$, then $\varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T}\left(i, k_{0}\right)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)$ implies that $\left[j, k_{0}\right]_{T^{\prime}} \prec[i, j]_{T^{\prime}}$ and thus $\varphi_{T^{\prime}}\left(j, k_{0}\right)>$ $\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1=\varphi_{T}\left(j, k_{0}\right)$. Therefore, $\left|\varphi_{T}\left(i, k_{0}\right)-\varphi_{T^{\prime}}\left(i, k_{0}\right)\right|+\left|\varphi_{T}\left(j, k_{0}\right)-\varphi_{T^{\prime}}\left(j, k_{0}\right)\right| \geqslant 1$.

Assume now that i, j are not sibling in T, and let h be a leaf such that $[i, h]_{T}$ is a child of $[i, j]_{T}$. If $\varphi_{T}(i, h) \leqslant \varphi_{T^{\prime}}(i, h)$, then

$$
\delta_{T^{\prime}}(i) \geqslant \varphi_{T^{\prime}}(i, h)+1 \geqslant \varphi_{T}(i, h)+1=\varphi_{T}(i, j)+2=\varphi_{T^{\prime}}(i, j)+3
$$

which is impossible by the previous lemma. Therefore, $\varphi_{T}(i, h)>\varphi_{T^{\prime}}(i, h)$, and by Lemma $7, \varphi_{T}(i, h)=$ $\varphi_{T^{\prime}}(i, h)+1$.

In a similar way, if $\delta_{T}(i)=\delta_{T^{\prime}}(i)$, then

$$
\delta_{T^{\prime}}(i)=\delta_{T}(i) \geqslant \varphi_{T}(i, h)+1=\varphi_{T}(i, j)+2=\varphi_{T^{\prime}}(i, j)+3
$$

which is again impossible by the previous lemma. Therefore, $\delta_{T}(i) \neq \delta_{T^{\prime}}(i)$, too. So, $(i, j),\left(i, k_{0}\right),\left(j, k_{0}\right)$, (i, i), and (i, h) contribute at least 4 to $D_{0}\left(T, T^{\prime}\right) \leqslant 4$, which implies that $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every other pair of leaves (x, y). But then,

$$
\begin{aligned}
& \varphi_{T^{\prime}}(j, h)=\varphi_{T}(j, h)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1 \\
& \varphi_{T^{\prime}}(i, h)=\varphi_{T}(i, h)-1=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1
\end{aligned}
$$

which is impossible. Therefore, i and j are sibling in T.

Lemma 10. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, then i, j are not sibling in T^{\prime}.

Proof. Assume that i, j are sibling in T^{\prime}, and recall that we already know that they are sibling in T. Let k_{0} be any leaf such that $\left[i, k_{0}\right]_{T}=\left[j, k_{0}\right]_{T}$ is the parent of $[i, j]_{T}$ in T. If $\varphi_{T}\left(i, k_{0}\right)=\varphi_{T^{\prime}}\left(i, k_{0}\right)$, then

$$
\varphi_{T^{\prime}}\left(i, k_{0}\right)=\varphi_{T}\left(i, k_{0}\right)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)
$$

which is impossible if i, j are sibling in T^{\prime}. Thus, $\varphi_{T}\left(i, k_{0}\right) \neq \varphi_{T^{\prime}}\left(i, k_{0}\right)$ and, by symmetry, $\varphi_{T}\left(j, k_{0}\right) \neq$ $\varphi_{T^{\prime}}\left(j, k_{0}\right)$. On the other hand, if $\delta_{T}(i)=\delta_{T^{\prime}}(i)$, then

$$
\delta_{T}(i)=\delta_{T^{\prime}}(i)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)
$$

which is also impossible. Therefore, $\delta_{T}(i) \neq \delta_{T^{\prime}}(i)$ and, by symmetry, $\delta_{T}(j) \neq \delta_{T^{\prime}}(j)$. But, then, $D_{0}\left(T, T^{\prime}\right) \geqslant$ 5.

Summarizing what we know so far, we have proved that if $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ and $\varphi_{T}(i, j) \neq \varphi_{T^{\prime}}(i, j)$, then, up to interchanging T and $T^{\prime}, \varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1, i, j$ are sibling in T, and then the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is a triplet or a totally balanced quartet; cf. Fig. 9. Next two lemmas cover these two possibilities.

Figure 9: The only possibilities for the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ if $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ and $\varphi_{T}(i, j)=$ $\varphi_{T^{\prime}}(i, j)+1$.

Lemma 11. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, and the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is the triplet depicted in the left hand side of Fig. 9, then T is obtained from T^{\prime} by interchanging j and k : cf. Fig. 10. And, then $D_{0}\left(T, T^{\prime}\right)=4$.

Figure 10: The only pairs of trees T, T^{\prime} such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ and $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, when the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is a triplet.

Proof. Assume that the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ has the form depicted in the left hand side of Fig. 9, and that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$. Then, since i and j are sibling in T,

$$
\delta_{T}(j)=\varphi_{T}(i, j)+1=\varphi_{T^{\prime}}(i, j)+2=\delta_{T^{\prime}}(j)+1
$$

Now, if $\varphi_{T}(i, k) \geqslant \varphi_{T^{\prime}}(i, k)$, then

$$
\varphi_{T}(i, k) \geqslant \varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)
$$

which is impossible, because i and j are sibling in T. Therefore, $\varphi_{T}(i, k)<\varphi_{T^{\prime}}(i, k)$ and, by Lemma 7, $\varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)-1$, and in particular $\varphi_{T}(i, k)=\varphi_{T}(j, k)=\varphi_{T}(i, j)-1$. Therefore, $[i, k]_{T}$ is the parent of $[i, j]_{T}$ in T.

Finally, if $\delta_{T}(k) \geqslant \varphi_{T}(i, j)+1$, then there exists at least some other leaf $l \prec[i, k]_{T}=[j, k]_{T}$. But then $\varphi_{T}(i, l) \neq \varphi_{T^{\prime}}(i, l)$, because otherwise

$$
\varphi_{T^{\prime}}(i, l)=\varphi_{T}(i, l)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)
$$

which is impossible because the only leaves descending from $[i, j]_{T^{\prime}}$ are i, j, k. And, by symmetry $\varphi_{T}(j, l) \neq$ $\varphi_{T^{\prime}}(j, l)$, and we reach $D_{0}\left(T, T^{\prime}\right) \geqslant 5$. Therefore,

$$
\delta_{T}(k)=\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1=\delta_{T^{\prime}}(k)-1
$$

So, in summary, $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1, \delta_{T}(j)=\delta_{T^{\prime}}(j)+1, \varphi_{T}(i, k)=\varphi_{T^{\prime}}(i, k)-1$, and $\delta_{T}(k)=\delta_{T^{\prime}}(k)-1$, and $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every (x, y) other than $(i, j),(j, j),(i, k),(k, k)$. Moreover, in T, k is the other child of the parent of $[i, j]_{T}$.

So, the subtree T_{0} of T rooted at the parent of $[i, j]_{T}$ is obtained by interchanging j and k in the subtree T_{0}^{\prime} of T^{\prime} rooted at $[i, j]_{T^{\prime}}$. Finally, let us prove now that T and T^{\prime} are exactly the same except for T_{0} and T_{0}^{\prime}. More specifically, let T_{1} and T_{1}^{\prime} be obtained by replacing in T and T^{\prime} the subtrees T_{0} and T_{0}^{\prime} by a single leaf x. Since for every $p, q \notin\{i, j, k\}$,

$$
\begin{aligned}
& \varphi_{T_{1}^{\prime}}(p, q)=\varphi_{T^{\prime}}(p, q)=\varphi_{T}(p, q)=\varphi_{T_{1}}(p, q) \\
& \varphi_{T_{1}^{\prime}}(x, p)=\varphi_{T^{\prime}}(i, p)=\varphi_{T}(i, p)=\varphi_{T_{1}}(x, p)
\end{aligned}
$$

we deduce, by Theorem 1, that $T_{1}=T_{1}^{\prime}$.
This completes the proof that T is obtained from T^{\prime} by interchanging the leaf j and its nephew k.

Lemma 12. Let $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ be such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$. If $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, for some $1 \leqslant i<j \leqslant n$, and the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is the quartet depicted in the right hand side of Fig. 9, then T is obtained from T^{\prime} by interchanging j and k : cf. Fig. 11. And, then $D_{0}\left(T, T^{\prime}\right)=4$.

T^{\prime}

T

Figure 11: The only pairs of trees T, T^{\prime} such that $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ and $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$, when the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ is a quartet.

Proof. Assume that the subtree of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ has the form depicted in the right hand side of Fig. 9 , and that $\varphi_{T}(i, j)=\varphi_{T^{\prime}}(i, j)+1$.

If $\varphi_{T}(i, k) \geqslant \varphi_{T^{\prime}}(i, k)$, then

$$
\varphi_{T}(i, k) \geqslant \varphi_{T^{\prime}}(i, k)=\varphi_{T^{\prime}}(i, j)+1=\varphi_{T}(i, j)
$$

which is impossible if i, j are sibling in T. Therefore, $\varphi_{T}(i, k)<\varphi_{T^{\prime}}(i, k)$ and, by Lemma $7, \varphi_{T}(i, k)=$ $\varphi_{T^{\prime}}(i, k)-1$, and in particular $\varphi_{T}(i, k)=\varphi_{T}(i, j)-1$. By symmetry, $\varphi_{T}(j, l)=\varphi_{T^{\prime}}(j, l)-1$ and hence $\varphi_{T}(j, l)=\varphi_{T}(i, j)-1$, too. Therefore, both k and l are descendants of the parent of $[i, j]_{T}$. But then,

$$
\varphi_{T^{\prime}}(k, l)=\varphi_{T^{\prime}}(i, j)=\varphi_{T}(i, j)-1<\varphi_{T}(k, l)
$$

and therefore, by Lemma $7, \varphi_{T}(k, l)=\varphi_{T^{\prime}}(k, l)+1=\varphi_{T}(i, j)$.
At this point, $D_{0}\left(T, T^{\prime}\right) \leqslant 4$ entails that $\varphi_{T}(x, y)=\varphi_{T^{\prime}}(x, y)$ for every (x, y) other than $(i, j),(i, k),(j, l),(k, l)$. Moreover, i, k, j, l are the only descendant leaves of the parent of $[i, j]_{T}$ in T. Indeed, if h is another descendant leaf of the parent of $[i, j]_{T^{\prime}}$, then

$$
\varphi_{T^{\prime}}(i, h)=\varphi_{T}(i, h)=\varphi_{T}(i, j)-1=\varphi_{T^{\prime}}(i, j)
$$

and therefore h would be another descendant of $[i, j]_{T^{\prime}}$. And, as we have seen, the subtree T_{0} of T rooted at this node is obtained from the subtree T_{0}^{\prime} of T^{\prime} rooted at $[i, j]_{T^{\prime}}$ by interchanging j and k. Finally, arguing as in the last part of the proof of the previous lemma, we deduce that T and T^{\prime} are exactly the same except for T_{0} and T_{0}^{\prime}.

We have proved so far that the minimum value of D_{0} on $\mathcal{B} \mathcal{T}_{n}$ is 4 , and we have characterized the pairs of trees $T, T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ such that $D_{0}\left(T, T^{\prime}\right)=4$. To extend this result to every $D_{p}, p \geqslant 1$, it is enough to check that every pair of binary trees such that $D_{0}\left(T, T^{\prime}\right)=4$ also satisfies that $D_{p}\left(T, T^{\prime}\right)=4$ for every $p \geqslant 1$, which is straightforward. This completes the proof of Proposition 3.

Proof of Proposition 4

Let X_{n} denote any space $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ or $\mathcal{B} \mathcal{T}_{n}$, and let $\Delta_{p}\left(X_{n}\right), p \in\{0\} \cup\left[1, \infty\left[\right.\right.$, denote the diameter of $d_{\varphi, p}$ on X_{n}.

We consider first the case $p=1$, which will be used later to prove the case $p>1$. For every $T \in \mathcal{U} \mathcal{T}_{n}$, let

$$
S(T)=\sum_{i=1}^{n} \delta_{T}(i), \quad \Phi(T)=\sum_{1 \leqslant i<j \leqslant n} \varphi_{T}(i, j)
$$

Figure 12: (a) The rooted star with n leaves. (b) The only maximally balanced tree with 5 leaves, up to relabelings. (c) A rooted caterpillar with n leaves.
S and Φ are the extensions to $\mathcal{U} \mathcal{T}_{n}$ of the Sackin index [3] and the total cophenetic index [1] for phylogenetic trees without nested taxa, respectively. Notice that $\|\varphi(T)\|_{1}=S(T)+\Phi(T)$. We have the following results on these indices:

- It is straightforward to check that the minimum values of $S(T)$ and $\Phi(T)$ on \mathcal{T}_{n} are both reached at the rooted star tree with n leaves (the phylogenetic tree with all its leaves of depth 1 ; see Fig. 12.(a)), and these minimum values are, respectively,

$$
\min S\left(\mathcal{T}_{n}\right)=n, \quad \min \Phi\left(\mathcal{T}_{n}\right)=0
$$

- It is also straightforward to check that the minimum values of $S(T)$ and $\Phi(T)$ on $\mathcal{U} \mathcal{T}_{n}$ are both reached at the rooted star tree with $n-1$ leaves and with the root labeled with n, and these minimum values are, respectively,

$$
\min S\left(\mathcal{U} \mathcal{T}_{n}\right)=n-1, \quad \min \Phi\left(\mathcal{U} \mathcal{T}_{n}\right)=0
$$

- The minimum values of $S(T)$ and $\Phi(T)$ on $\mathcal{B} \mathcal{T}_{n}$ are both reached at the maximally balanced trees with n leaves (those binary trees such that, for every internal node, the numbers of descendant leaves of its two children differ at most in 1; see, for instance, Fig. 12.(b)). And then, these minimum values are, respectively,

$$
\begin{aligned}
\min S\left(\mathcal{B} \mathcal{T}_{n}\right) & =n\left\lfloor\log _{2}(4 n)\right\rfloor-2^{\left\lfloor\log _{2}(2 n)\right\rfloor} \\
\min \Phi\left(\mathcal{B} \mathcal{T}_{n}\right) & =\sum_{k=0}^{n-1} a(k), \text { where } a(k) \text { is the highest power of } 2 \text { that divides } n!
\end{aligned}
$$

For the proofs, see [4] combined with [2] for S, and [1] for Φ. From the first formula it is clear that $\min S\left(\mathcal{B} \mathcal{T}_{n}\right)$ is in $\Theta(n \log (n))$. As far as $\min \Phi\left(\mathcal{B} \mathcal{T}_{n}\right)$ goes, it is shown in [1] that it satisfies the recurrence

$$
\min \Phi\left(\mathcal{B} \mathcal{T}_{n}\right)=\min \Phi\left(\mathcal{B} \mathcal{T}_{\lceil n / 2\rceil}\right)+\min \Phi\left(\mathcal{B} \mathcal{T}_{\lfloor n / 2\rfloor}\right)+\binom{\lceil n / 2\rceil}{ 2}+\binom{\lfloor n / 2\rfloor}{ 2}, \quad \text { for } n \geqslant 3
$$

from where it is obvious that its order is in $\Theta\left(n^{2}\right)$.

- The maximum values of $S(T)$ and $\Phi(T)$ on both \mathcal{T}_{n} and $\mathcal{B} \mathcal{T}_{n}$ are reached at the rooted caterpillar trees with n leaves (binary phylogenetic trees such that all their internal nodes have a leaf child; see Fig. 12.(c)). And then, these maximum values are, respectively,

$$
\max S\left(\mathcal{T}_{n}\right)=\max S\left(\mathcal{B} \mathcal{T}_{n}\right)=\binom{n+1}{2}-1, \quad \max \Phi\left(\mathcal{T}_{n}\right)=\max \Phi\left(\mathcal{B} \mathcal{T}_{n}\right)=\binom{n}{3}
$$

which are thus in $\Theta\left(n^{2}\right)$ and $\Theta\left(n^{3}\right)$, respectively. For the proofs, see again [4] for S and [1] for Φ.

- Given any tree in $\mathcal{U} \mathcal{T}_{n}$ with a nested taxon, if we replace this nested taxon by a new leaf labeled with it pending from the node previously labeled with it (cf. Fig. 13), we obtain a new tree in $\mathcal{U} \mathcal{T}_{n}$ with strictly larger value of S and the same value of Φ. This shows that the maximum values of $S(T)$ and $\Phi(T)$ on $\mathcal{U} \mathcal{T}_{n}$ are reached at trees in \mathcal{T}_{n}, and hence at the rooted caterpillar trees with n leaves. Therefore, they are also in $\Theta\left(n^{2}\right)$ and $\Theta\left(n^{3}\right)$, respectively.

Figure 13: This operation increases the value of S and does not modify the value of Φ.

From these properties we deduce the following result.

Lemma 13. The minimum value of $\|\varphi(T)\|_{1}$ on $\mathcal{U} \mathcal{T}_{n}$ and \mathcal{T}_{n} is in $\Theta(n)$. The minimum value of $\|\varphi(T)\|_{1}$ on $\mathcal{B} \mathcal{T}_{n}$ is at most in $\Theta\left(n^{2}\right)$. The maximum value of $\|\varphi(T)\|_{1}$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ and $\mathcal{B} \mathcal{T}_{n}$ is in $\Theta\left(n^{3}\right)$.

Now, we can apply this lemma to find the order of the diameter of $d_{\varphi, 1}$ on the spaces X_{n} of unweighted phylogenetic trees.

Lemma 14. The diameter of $d_{\varphi, 1}$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ and $\mathcal{B} \mathcal{T}_{n}$ is in $\Theta\left(n^{3}\right)$.

Proof. Let $T_{1}, T_{2} \in X_{n}$. Then, on the one hand,

$$
d_{\varphi, 1}\left(T_{1}, T_{2}\right)=\left\|\varphi\left(T_{1}\right)-\varphi\left(T_{2}\right)\right\|_{1} \leqslant\left\|\varphi\left(T_{1}\right)\right\|_{1}+\left\|\varphi\left(T_{2}\right)\right\|_{1} \leqslant 2 \cdot \max \left\|\varphi\left(X_{n}\right)\right\|_{1}=\Theta\left(n^{3}\right)
$$

which shows that $\Delta_{1}\left(X_{n}\right) \leqslant O\left(n^{3}\right)$. On the other hand, if $\left\|\varphi\left(T_{1}\right)\right\|_{1} \geqslant\left\|\varphi\left(T_{2}\right)\right\|_{1}$, then

$$
d_{\varphi, 1}\left(T_{1}, T_{2}\right)=\left\|\varphi\left(T_{1}\right)-\varphi\left(T_{2}\right)\right\|_{1} \geqslant\left\|\varphi\left(T_{1}\right)\right\|_{1}-\left\|\varphi\left(T_{2}\right)\right\|_{1}
$$

and therefore $\Delta_{1}\left(X_{n}\right) \geqslant \max \left\|\varphi\left(X_{n}\right)\right\|_{1}-\min \left\|\varphi\left(X_{n}\right)\right\|_{1}$, which is again in $O\left(n^{3}\right)$. This shows that $\Delta_{1}\left(X_{n}\right)$ is in $\Theta\left(n^{3}\right)$, as we claimed.

Let us consider now the case $p>1$. Since, for every $x \in \mathbb{R}^{m},\|x\|_{1} \leqslant m^{1-\frac{1}{p}}\|x\|_{p}$, we have that, for every pair of trees $T_{1}, T_{2} \in X_{n}$,

$$
d_{\varphi, 1}\left(T_{1}, T_{2}\right) \leqslant\binom{ n+1}{2}^{1-\frac{1}{p}} d_{\varphi, p}\left(T_{1}, T_{2}\right) .
$$

and therefore

$$
\Delta_{1}\left(X_{n}\right) \leqslant\binom{ n+1}{2}^{1-\frac{1}{p}} \Delta_{p}\left(X_{n}\right),
$$

from where we deduce that

$$
\Delta_{p}\left(X_{n}\right) \geqslant \Delta_{1}\left(X_{n}\right) \cdot\binom{n+1}{2}^{-1+\frac{1}{p}}=O\left(n^{(p+2) / p}\right)
$$

To prove the converse inequality, let

$$
\varphi^{(p)}(T)=\sum_{1 \leqslant i \leqslant j \leqslant n} \varphi_{T}(i, j)^{p} .
$$

We have that, for every $T_{1}, T_{2} \in X_{n}$,

$$
\begin{aligned}
d_{\varphi, p}\left(T_{1}, T_{2}\right) & =\left\|\varphi\left(T_{1}\right)-\varphi\left(T_{2}\right)\right\|_{p} \leqslant\left\|\varphi\left(T_{1}\right)\right\|_{p}+\left\|\varphi\left(T_{2}\right)\right\|_{p}=\sqrt[p]{\varphi^{(p)}\left(T_{1}\right)}+\sqrt[p]{\varphi^{(p)}\left(T_{2}\right)} \\
& \leqslant 2 \sqrt[p]{\max \varphi^{(p)}\left(X_{n}\right)},
\end{aligned}
$$

which implies that $\Delta_{p}\left(X_{n}\right) \leqslant 2 \sqrt[p]{\max \varphi^{(p)}\left(X_{n}\right)}$. Therefore, to prove that the diameter of $d_{\varphi, p}$ on each X_{n} is bounded from above by $O\left(n^{(p+2) / p}\right)$, it is enough to prove that $\max \varphi^{(p)}\left(X_{n}\right) \leqslant O\left(n^{p+2}\right)$. We do it in the next lemma.

Lemma 15. The maximum value of $\varphi^{(p)}(T)$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ or $\mathcal{B} \mathcal{T}_{n}$ is reached at the rooted caterpillars, and its value is in $\Theta\left(n^{p+2}\right)$.

Proof. Arguing as in the case $p=1$, we have that the maximum value of $\varphi^{(p)}(T)$ on $\mathcal{U} \mathcal{T}_{n}$ is reached on trees in \mathcal{T}_{n}, because if we replace each nested taxon in a tree by a new leaf labeled with the same taxon as in Fig. 13, the value of $\varphi^{(p)}$ increases. On the other hand, if a tree $T \in \mathcal{T}_{n}$ contains a node with $k \geqslant 3$ children, as in the left hand side of Fig. 14, and we replace its subtree rooted at this node as described in the right hand side of Fig. 14, we obtain a new tree $T^{\prime} \in \mathcal{T}_{n}$ with larger $\varphi^{(p)}$ value: the values of $\varphi(i, j)^{p}$ for $i, j \in L\left(T_{1}\right) \cup \cdots \cup L\left(T_{k-1}\right)$ increase, and the other values of $\varphi(i, j)^{p}$ do not change. This implies that for every non-binary phylogenetic tree $T \in \mathcal{T}_{n}$, there always exists a binary phylogenetic tree $T^{\prime} \in \mathcal{B} \mathcal{T}_{n}$ such that $\varphi^{(p)}\left(T^{\prime}\right)>\varphi^{(p)}(T)$ and in particular that the maximum value of $\varphi^{(p)}(T)$ on $\mathcal{U} \mathcal{T}_{n}$ is actually reached on $\mathcal{B} \mathcal{T}_{n}$.

Figure 14: $\varphi^{(p)}\left(T^{\prime}\right)>\varphi^{(p)}(T)$.

Figure 15: $\varphi^{(p)}\left(T^{\prime}\right)>\varphi^{(p)}(T)$.

Let now $T \in \mathcal{B} \mathcal{T}_{n}$ and assume that it is not a caterpillar. Therefore, it has an internal node z of largest depth without any leaf child; in particular, all internal descendant nodes of z have some leaf child. Thus, and up to a relabeling of its leaves, T has the form represented in the left hand side of Fig. 15, for some $k \geqslant 2$ and some $l \geqslant k+2$. Consider then the tree T^{\prime} depicted in right hand side of Fig. 15, where the grey triangle represents the same tree in both sides. It turns out that $\varphi^{(p)}\left(T^{\prime}\right)-\varphi^{(p)}(T)>0$. Indeed, if q denotes the depth of the node z in both trees, then

$$
\varphi_{T^{\prime}}(i, j)^{p}-\varphi_{T}(i, j)^{p}= \begin{cases}(q+i)^{p}-(q+i+1)^{p} & \text { if } 1 \leqslant i=j \leqslant k-1 \\ 0 & \text { if } i=j \\ (q+i)^{p}-(q+i-k+1)^{p} & \text { if } k+1 \leqslant i=j \leqslant l-1 \\ (q+l-1)^{p}-(q+l-k)^{p} & \text { if } i=j=l \\ (q+i-1)^{p}-(q+i)^{p} & \text { if } 1 \leqslant i<j \leqslant k \\ (q+i-1)^{p}-(q+i-k)^{p} & \text { if } k+1 \leqslant i<j \leqslant l \\ (q+i-1)^{p}-q^{p} & \text { if } 1 \leqslant i \leqslant k<j \leqslant l \\ 0 & \text { otherwise }\end{cases}
$$

Therefore,

$$
\begin{aligned}
\varphi^{(p)}\left(T^{\prime}\right)-\varphi^{(p)}(T)= & \sum_{i=1}^{k-1}\left((q+i)^{p}-(q+i+1)^{p}\right)+\sum_{i=k+1}^{l-1}\left((q+i)^{p}-(q+i-k+1)^{p}\right) \\
& +(q+l-1)^{p}-(q+l-k)^{p}+\sum_{i=1}^{k-1}(k-i)\left((q+i-1)^{p}-(q+i)^{p}\right) \\
& +\sum_{i=k+1}^{l-1}(l-i)\left((q+i-1)^{p}-(q+i-k)^{p}\right)+\sum_{i=1}^{k}(l-k)\left((q+i-1)^{p}-q^{p}\right) \\
= & (q+1)^{p}-(q+k)^{p}+\sum_{i=1}^{l-k-1}\left((q+k+i)^{p}-(q+1+i)^{p}\right) \\
& +(q+l-1)^{p}-(q+l-k)^{p}+\sum_{i=1}^{k-1}(k-i)\left((q+i-1)^{p}-(q+i)^{p}\right) \\
& +\sum_{i=1}^{l-k-1}(l-k-i)\left((q+k+i-1)^{p}-(q+i)^{p}\right)+\sum_{i=1}^{k}(l-k)\left((q+i-1)^{p}-q^{p}\right)
\end{aligned}
$$

To prove that this sum is non-negative, let us write it as

$$
\varphi^{(p)}\left(T^{\prime}\right)-\varphi^{(p)}(T)=S_{1}+S_{2}+S_{3}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{k-1}(k-i)\left((q+i-1)^{p}-(q+i)^{p}\right)+\sum_{i=1}^{k}(l-k)\left((q+i-1)^{p}-q^{p}\right) \\
& S_{2}=\sum_{i=1}^{l-k-1}\left((q+k+i)^{p}-(q+1+i)^{p}\right)+\sum_{i=1}^{l-k-1}(l-k-i)\left((q+k+i-1)^{p}-(q+i)^{p}\right) \\
& S_{3}=(q+1)^{p}-(q+k)^{p}+(q+l-1)^{p}-(q+l-k)^{p}
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{1} & =\sum_{i=1}^{k-1}(k-i)\left((q+i-1)^{p}-(q+i)^{p}\right)+\sum_{i=1}^{k}(l-k)\left((q+i-1)^{p}-q^{p}\right), \\
& =\sum_{i=1}^{k-1}(k-i)(q+i-1)^{p}-\sum_{i=1}^{k-1}(k-i)(q+i)^{p}+\sum_{i=1}^{k}(l-k)\left((q+i-1)^{p}-q^{p}\right), \\
& =\sum_{i=1}^{k-1}(k-i)(q+i-1)^{p}-\sum_{i=2}^{k}(k-i+1)(q+i-1)^{p}+(l-k) \sum_{i=1}^{k}(q+i-1)^{p}-k(l-k) q^{p}, \\
& =\sum_{i=1}^{k-1}(l-k-1)(q+i-1)^{p}+k q^{p}-(q+k-1)^{p}+(l-k)(q+k-1)^{p}-k(l-k) q^{p}, \\
& =(l-k-1) \sum_{i=1}^{k}\left((q+i-1)^{p}-q^{p}\right)>0 \\
S_{2} & =\sum_{i=1}^{l-k-1}\left((q+k+i)^{p}-(q+1+i)^{p}\right)+\sum_{i=1}^{l-k-1}(l-k-i)\left((q+k+i-1)^{p}-(q+i)^{p}\right) \\
& =\sum_{i=1}^{l-k-1}\left((q+k+i)^{p}-(q+1+i)^{p}\right)+\sum_{i=0}^{l-k-1}(l-k-i-1)\left((q+k+i)^{p}-(q+i+1)^{p}\right) \\
& =\sum_{i=1}^{l-k-1}(l-k-i)\left((q+k+i)^{p}-(q+1+i)^{p}\right)+(l-k-1)\left((q+k)^{p}-(q+1)^{p}\right) \\
& >(l-k-1)\left((q+k)^{p}-(q+1)^{p}\right) .
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \varphi^{(p)}\left(T^{\prime}\right)-\varphi^{(p)}(T)=S_{1}+S_{2}+S_{3} \\
& \quad>(l-k-1)\left((q+k)^{p}-(q+1)^{p}\right)+(q+1)^{p}-(q+k)^{p}+(q+l-1)^{p}-(q+l-k)^{p} \\
& \quad=(l-k-2)\left((q+k)^{p}-(q+1)^{p}\right)+(q+l-1)^{p}-(q+l-k)^{p}>0 .
\end{aligned}
$$

This implies that no tree other than a rooted caterpillar can have the largest $\varphi^{(p)}$ value in $\mathcal{B} \mathcal{T}_{n}$, and hence also in \mathcal{T}_{n} and $\mathcal{U} \mathcal{T}_{n}$.

Finally, if K_{n} denotes the rooted caterpillar with n leaves in Fig. 12.(c),

$$
\varphi_{K_{n}}(i, j)^{p}= \begin{cases}(n-1)^{p} & \text { if } i=j=1 \\ (n-i+1)^{p} & \text { if } 2 \leqslant i=j \leqslant n \\ (n-j)^{p} & \text { if } 1 \leqslant i<j \leqslant n\end{cases}
$$

and thus

$$
\begin{aligned}
\varphi^{(p)}\left(K_{n}\right)= & (n-2) \cdot 1^{p}+(n-3) \cdot 2^{p}+\cdots+2 \cdot(n-3)^{p}+1 \cdot(n-2)^{p} \\
& +1^{p}+2^{p}+\cdots+(n-2)^{p}+(n-1)^{p}+(n-1)^{p} \\
= & (n-1) \cdot 1^{p}+(n-2) \cdot 2^{p}+\cdots+3 \cdot(n-3)^{p}+2 \cdot(n-2)^{p}+(n-1)^{p}+(n-1)^{p} \\
= & \sum_{k=1}^{n-1}(n-k) \cdot k^{p}+(n-1)^{p}
\end{aligned}
$$

Now, it turns out that

$$
\begin{equation*}
\sum_{k=1}^{n-1} k^{m}=\frac{1}{m+1} n^{m+1}+O\left(n^{m}\right) \tag{1}
\end{equation*}
$$

This property is well known for natural numbers $m \in \mathbb{N}[5]$. For arbitrary real numbers $m>0$, it derives from the fact that

$$
\int_{1}^{n-1}(x-1)^{m} d x \leqslant \sum_{k=1}^{n-1} k^{m} \leqslant \int_{1}^{n-1} x^{m} d x
$$

and then

$$
\begin{aligned}
& \int_{1}^{n-1}(x-1)^{m} d x=\frac{1}{m+1}(n-2)^{m+1}=\frac{1}{m+1} n^{m+1}+O\left(n^{m}\right) \\
& \int_{1}^{n-1} x^{m} d x=\frac{1}{m+1}(n-1)^{m+1}=\frac{1}{m+1} n^{m+1}+O\left(n^{m}\right)
\end{aligned}
$$

So, by identity (1), we have that

$$
\sum_{k=1}^{n-1}(n-k) \cdot k^{p}+(n-1)^{p}=n \sum_{k=1}^{n-1} k^{p}-\sum_{k=1}^{n-1} k^{p+1}+O\left(n^{p}\right)=\left(\frac{1}{p+1}-\frac{1}{p+2}\right) n^{p+2}+O\left(n^{p+1}\right)
$$

and hence $\varphi^{(p)}\left(K_{n}\right)$ is in $\Theta\left(n^{p+2}\right)$.
Therefore, $O\left(n^{(p+2) / p}\right) \leqslant \Delta_{p}\left(X_{n}\right) \leqslant O\left(n^{(p+2) / p}\right)$, which shows that the diameter of $d_{\varphi, p}$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ and $\mathcal{B} \mathcal{T}_{n}$ is indeed in $\Theta\left(n^{(p+2) / p}\right)$.

We finally prove the case $p=0$, which needs a completely different argument.

Figure 16: The caterpillars used in the proof of Lemma 16.

Lemma 16. The diameter of $d_{\varphi, 0}$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ and $\mathcal{B} \mathcal{T}_{n}$ is in $\Theta\left(n^{2}\right)$.
Proof. Since the cophenetic vector of a tree $T \in \mathcal{U} \mathcal{T}_{n}$ lies in $\mathbb{R}^{n(n+1) / 2}$, it is clear that $d_{\varphi, 0}\left(T_{1}, T_{2}\right) \leqslant$ $n(n+1) / 2$, for every $T_{1}, T_{2} \in \mathcal{U} \mathcal{T}_{n}$. Now, consider the pair of rooted caterpillars with n leaves depicted in Fig. 16. We have that

$$
\begin{array}{lll}
\varphi_{K}(i, j)=n-j & \varphi_{K^{\prime}}(i, j)=i-1 & \text { for every } 1 \leqslant i<j \leqslant n \\
\varphi_{K}(i, i)=n-i+1 & \varphi_{K^{\prime}}(i, i)=i & \text { for every } 2 \leqslant i \leqslant n-1 \\
\varphi_{K}(1,1)=n-1 & \varphi_{K^{\prime}}(1,1)=1 & \\
\varphi_{K}(n, n)=1 & \varphi_{K^{\prime}}(n, n)=n-1 &
\end{array}
$$

This shows that the number of pairs $(i, j), 1 \leqslant i \leqslant j \leqslant n$, such that $\varphi_{K}(i, j)=\varphi_{K^{\prime}}(i, j)$ is at most $(n+1) / 2$, and therefore that $d_{\varphi, 0}\left(K, K^{\prime}\right)$ is at least $\left(n^{2}-1\right) / 2$. So, the diameter of $d_{\varphi, 0}$ on $\mathcal{U} \mathcal{T}_{n}$ is bounded from above
by $O\left(n^{2}\right)$, and its diameter on $\mathcal{B} \mathcal{T}_{n}$ is bounded from below by $O\left(n^{2}\right)$, which implies that the diameter of $d_{\varphi, 0}$ on $\mathcal{U} \mathcal{T}_{n}, \mathcal{T}_{n}$ and $\mathcal{B} \mathcal{T}_{n}$ is in $\Theta\left(n^{2}\right)$.

References

1. A. Mir, F. Rosselló, L. Rotger, A new balance index for phylogenetic trees. arXiv:1202.1223v1 [q-bio.PE] (2012), submitted to Mathematical Biosciences.
2. R. Morris, Some theorems on sorting. SIAM Journal of Applied Mathematics 17 (1969), 1-6.
3. M. J. Sackin, "Good" and "bad" phenograms. Systematic Zoology, 21 (1972), 225-226.
4. K.T. Shao, R. Sokal, Tree balance. Systematic Zoology, 39 (1990), 226-276.
5. E. W. Weisstein, Power Sum. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram. com/PowerSum.html
