
Weak Witnesses for Delaunay Triangulations of Submanifolds ∗

Dominique Attali†, Herbert Edelsbrunner‡ and Yuriy Mileyko§

Abstract
The main result of this paper is an extension of de Silva’s
Weak Delaunay Theorem to smoothly embedded curves and
surfaces in Euclidean space. Assuming a sufficiently fine
sampling, we prove that i + 1 points in the sample span an
i-simplex in the restricted Delaunay triangulation iff every
subset of the i + 1 points has a weak witness.

Keywords. Computational geometry and topology, curves, sur-
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1 Introduction
This paper contributes to the growing literature on extracting
information from sampled point data. In particular, we are
interested in shape reconstruction for data distributed in low-
dimensional subspaces of ambient space.

Motivation. The broad availability of powerful hardware
drives the emergence of data analysis as new paradigm in
many areas of science and engineering. We now routinely
collect large amounts of data, challenging our ability to ex-
tract relevant information fast enough and in a meaningful
format. It is common to interpret the data items as points
in some Euclidean space. The data as a whole is referred to
as a point cloud, which emphasizes that we deal with large
numbers and require analysis methods that summarize and
simplify without losing sight of important details that may
be hidden within the wealth of measurements.

To bring order into the various types of data analysis ques-
tions, we lay them out on an axis from coarse to fine. An ex-
ample of a coarse analysis is the decomposition into clusters.
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In this paper we are interested in the fine end of the spec-
trum and in particular in the reconstruction of shapes from
point clouds. An example is the reconstruction of a geomet-
ric shape from 3D scan data consisting of points measured
on the surface of a physical object. We have the points dis-
tributed on a two-dimensional subspace of three-dimensional
Euclidean space. That the dimension of the ambient space
eclipses the intrinsic dimension of the data is typical [1, 3]
and poses challenges as well as opportunities in the analysis.
We need dimension reduction techniques but also methods
that adapt to the intrinsic rather than the ambient dimension
of the data.

Prior work and results. The problem of reconstructing
shapes from point clouds in three-dimensional Euclidean
space has been studied in computer graphics [4, 5, 15],
computational geometry [2, 6, 7], and other areas [18, 20].
The typical approach in computational geometry starts with
the (three-dimensional) Delaunay triangulation and aims at
extracting the (two-dimensional) restricted Delaunay trian-
gulation. Assuming we know the surface from which the
data points are sampled, the restricted Delaunay triangula-
tion consists of all simplices whose dual Voronoi cells have
non-empty intersections with the surface [12]. Since the sur-
face is generally unknown, the algorithms often substitute
constructs derived from the data or iterate until the recon-
structed surface is its own restricted Delaunay triangulation
[11, 13].

The desire to free oneself from the ambient dimension mo-
tivates the introduction of witness complexes by de Silva and
Carlsson [9]. Building on the work of Martinetz and Schul-
ten [16], they distinguish between two kinds of data points,
landmarks used in the construction of a complex and wit-
nesses used to guide the selection of simplices connecting
the landmarks. The method is based on the intuition that a
large cloud of witnesses gives a good representation of the
subspace occupied by the data and that relatively few land-
marks are needed to give a satisfactory reconstruction. A
crucial concept in this approach is the notion of a weak wit-
ness of i + 1 landmarks, which is a point for which these are
the i + 1 nearest landmarks. The link to the earlier work is



provided by de Silva who proves that the i + 1 landmarks
span an i-simplex in the Delaunay triangulation iff each of
its subsets has a weak witness [8]. This implies that the wit-
ness complex approximates the Delaunay triangulation and
reaches it in the limit, when every point of the ambient space
becomes a witness.

In this paper, we extend de Silva’s result to submanifolds
of Euclidean space. Assuming a sufficiently fine sampling
of landmarks on a smoothly embedded curve or surface, we
prove that the witness complex approximates the restricted
Delaunay triangulation which it reaches in the limit, when
every point of the submanifold becomes a witness. This re-
sult does not depend on the ambient dimension. We contrast
this structural theorem to a recent result by Guibas and Oudot
which requires that the landmark are placed according to a
particular strategy and that the dimensions of the submani-
fold and the ambient space differ by exactly by one [14].

Outline. Section 2 gives a detailed statement of our result.
Section 3 presents basic geometric and topological tools.
Sections 4 and 5 prove our result for curves and surfaces.
Section 6 concludes the paper. Appendix A reviews basic
differential geometry facts for smooth 2-manifolds.

2 Definitions and Result
In this section, we introduce the necessary definitions and
give a complete description of our results. We begin with a
review of the Weak Delaunay Theorem by de Silva to which
our results are related.

In Euclidean space. Consider a finite set of points in d-
dimensional Euclidean space, L ⊆ R

d. We call these points
landmarks because they are the vertices of a simplicial com-
plex we are going to build. For the moment, we ignore the
issue of geometric realizability and construct the complex
abstractly, calling every non-empty subset σ ⊆ L a sim-
plex. Its dimension is one less than its cardinality, dim σ =
cardσ − 1. A face of σ is a non-empty subset τ ⊆ σ. It is
improper if τ = σ and otherwise proper. A simplicial com-
plex is a collection of simplices that is closed under the face
relation.

Whether or not we add a simplex to our complex de-
pends on the position of its vertices among the other land-
marks. To make this precise, we call a point x ∈ R

d a
weak (Delaunay) witness of σ if ‖x − a‖ ≤ ‖x − b‖ for
all a ∈ σ and b ∈ L − σ. A strong (Delaunay) witness
of σ is a weak witness that is equidistant from all vertices,
‖x − a‖ = ‖x − a′‖ for all a, a′ ∈ σ. A crucial differ-
ence between the two notions is that the weak witnesses of
a simplex generally form a set with positive d-dimensional
measure while the strong witnesses form a set of measure
zero. It follows that the probability of finding a strong wit-
ness by sampling is zero. A fundamental result by de Silva

says that the existence of weak witnesses can be used to infer
the existence of strong witnesses.

WEAK DELAUNAY THEOREM [8]. Let L be a finite set
in R

d. If every face of a simplex σ ⊆ L has a weak witness
then σ has a strong witness.

We will give a proof of this result in Section 3. Similar to de
Silva’s our proof is constructive, giving a strong witness in
the convex hull of the weak witnesses of the simplex and its
faces.

On a submanifold. We are interested in the case in which
the witnesses form a subset of Euclidean space and the land-
marks are sampled from this subset. Specifically, we con-
sider a dimension k submanifold M of R

d which, by def-
inition, is a compact k-manifold without boundary that is
smoothly embedded in d-dimensional Euclidean space. It
is easy to see that de Silva’s theorem does not hold for sub-
manifolds. Specifically, we can have a simplex σ ⊆ L ⊆ M

that has no strong witness on M even though all its faces
have weak witnesses on M. As suggested by the example in
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Figure 1: A dimension 1 submanifold of R
2 with three landmarks,

a, b, c. The point x is a weak witness of the edge {a, b} but the only
points y and z of the submanifold equidistant to a and b are closer
to c and are therefore not strong witnesses of that edge.

Figure 1, the implication fails because the sampling of the
submanifold is not sufficiently fine.

Sampling condition. Since M is smooth and k-dimen-
sional, the tangent space TMx at a point x ∈ M is a k-
dimensional linear subspace of R

d. For a non-zero tangent
vector v ∈ TMx, the sectional curvature, κ(x, v), is the (ab-
solute) curvature of a geodesic that passes through x in the
direction v. We write κ(x) for the local maximum, over all
v ∈ TMx, and

κ = max
x∈M

max
v∈TMx

κ(x, v)

for the globally maximum (absolute) sectional curvature of
M. Since M is smoothly embedded in R

d, we can define the
normal space NMx = TM

⊥
x at a point x ∈ M consisting of

all vectors u ∈ R
d that are orthogonal to all tangent vectors
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v ∈ TMx. Since TMx has dimension k, NMx has dimen-
sion d − k. For each non-zero u ∈ NMx, we let %(x, u) be
the supremum of the radii r such that the open d-ball with
center x + r u

‖u‖ and radius r has an empty intersection with
M. We write %(x) for the local minimum, over all u ∈ NMx,
referred to as the local reach of M at x, and

% = min
x∈M

min
u∈NMx

%(x, u)

for the global minimum, referred to as the (global) reach of
M. We note that %(x) ≤ 1/κ(x) at every point x ∈ M and
therefore κ% ≤ 1; see also [18].

DEFINITION. Given ε > 0, we call a finite set L ⊆ M

an ε-sample of M if for every point x ∈ M there are at least
k + 1 landmarks a ∈ L whose Euclidean distance to x is
‖x − a‖ < ε%.

Note that ε-samples can be finer but not coarser than re-
quired. In other words, every ε′-sample with ε′ ≤ ε is also
an ε-sample of M.

Main result. We say that a subset L of a submanifold M of
R

d has the weak Delaunay property if every simplex σ ⊆ L
whose faces all have weak witnesses on M has a strong wit-
ness on M. To state our main result, we let εk,d be the supre-
mum of all values of ε such that every ε-sample of every di-
mension k submanifold of R

d has the weak Delaunay prop-
erty. Finally, we call εk = infd>k εk,d the weak Delaunay
constant of dimension k submanifolds.

WEAK RESTRICTED DELAUNAY THEOREM. For k =
1, 2 the weak Delaunay constant of dimension k submani-
folds is positive, that is, εk > 0.

Equivalently, every dimension 1 or 2 submanifold of Eu-
clidean space has a sufficiently fine but finite sample that has
the weak Delaunay property. For curves we establish tight
upper and lower bounds giving ε2

1 = 3. For surfaces we
show 1

5 ≤ ε2
2 ≤ 2, leaving a substantial gap between the two

bounds.

3 Preliminaries
In this section, we prepare the proof of our main result.
Specifically, we give a new proof of de Silva’s original the-
orem and we introduce a basic topological lemma that will
allow us to adapt this proof for submanifolds.

Euclidean space. Here we give a proof of de Silva’s Weak
Delaunay Theorem stated in Section 2. We proceed by in-
duction over the dimension of the simplices. The vertices (0-
simplices) obviously satisfy the claim and form the induction
basis.

Let σ be a simplex of dimension i whose faces all have
weak witnesses. By induction hypothesis, every proper face

of σ has a strong witness. Let x0 be a weak witness of σ and
let τ ⊆ σ be the face spanned by the subset of landmarks in σ
that are furthest from x0. If τ = σ then x0 is equidistant from
all i + 1 vertices and therefore a strong witness of σ. Else
τ is a proper face with a strong witness x1. We interpolate
between the two witnesses by defining xs = (1 − s)x0 +
sx1. The vertices of τ lie on the (d − 2)-sphere common
to the two (d − 1)-spheres centered at x0 and x1 that both
contain τ . For each s ∈ [0, 1] consider the closed ball Bs

with center xs whose bounding sphere passes through the
landmarks in τ . The landmarks in σ − τ lie in the interior of
B0 and outside the interior of B1. For intermediate values of
s, they can lie in the interior, on the boundary, or outside Bs.
By construction, the sphere ∂Bs passes through ∂B0 ∩ ∂B1.
Since xs lies between x0 and x1, this implies Bs ⊆ B0 ∪ B1

for all s ∈ [0, 1], as illustrated in Figure 2. The ball can

x x x0 1s

Figure 2: The circle around xs passes through the intersection
points of the circles around x0 and x1. It also passes through the
landmark inside the circle around x0.

therefore not pick up any new landmarks as its center moves
from x0 to x1, only lose some. We stop the motion at the
smallest value t of s for which one of the landmarks in σ− τ
escapes from the interior to the boundary of Bs. This value
t exists because eventually, for s = 1, all landmarks will
have escaped from the interior. The new point xt is either
a strong witness or another weak witness of σ. In the latter
case, the number of furthest among the i + 1 vertices of σ
increased by at least one. We can therefore repeat the linear
interpolation, substituting xt for x0. After at most i steps, all
i + 1 vertices of σ are furthest from the stopping point of the
interpolation, implying we have arrived at the strong witness,
whose existence has thus been established. This completes
the proof of de Silva’s Weak Delaunay Theorem.

REMARK. The inductive step in the above proof works
equally well for simplices of dimension i ≤ d and i > d.
Since each inductive step increases the dimension of the
lowest-dimensional sphere that contains τ , we need at most d
steps to arrive at the strong witness, even if i > d. Also note
that the proof constructs a strong witness which is a convex
combination of the weak witnesses of σ and of its faces.
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A topological lemma. We now state and prove a refine-
ment of Lemma 7 in [2] that will allow us to turn the Eu-
clidean spheres in R

d into topological spheres in the sub-
manifold. With this key ingredient, we will be able to mimic
the Euclidean argument on the submanifold.

LOCAL REACH LEMMA. Let M be a dimension k sub-
manifold of R

d, B a closed ball, and %B the minimum %(x)
over all points x ∈ B ∩ M. If the center of B is at distance
δ < %B from M and the radius r satisfies δ < r < 2%B − δ
then B ∩ M is a topological k-ball.

PROOF. Let z be the center of B and let f : M → R be
defined by f(x) = ‖x − z‖2. The intersection of M with
the ball is the sublevel set defined by the radius, B ∩ M =
f−1[0, r2]. If this sublevel set contains only one critical point
then this is a minimum, with function value δ2 < r2, and the
sublevel set is a topological ball whose dimension is the same
as that of the submanifold [17]. Else there are at least two
critical points, including x 6= y with δ2 = f(x) ≤ f(y) ≤
r2. Since y is critical, u = z − y is a non-zero normal vector
of M at y. Consider the closed d-ball B′ with radius r′ =
1
2 (r+δ) and center y′ = y+r′ u

‖u‖ . As illustrated in Figure 3,

x

z

B

y

B’

Figure 3: The three balls are nested and all contain the point x

closest to the center of B.

B′ contains the ball with center z and radius δ and therefore
also the point x ∈ M. But since r′ < %B ≤ %(y), x belongs
to the interior of the d-ball with radius %(y) and center y +
%(y) u

‖u‖ . This contradicts that %(y) is the local reach of M

at y.

REMARK. We get the strictly weaker (global) Reach
Lemma by substituting % for %B in the Local Reach Lemma.
In many but not all cases, this weaker statement will suffice
for our purposes.

4 Curves
In this section, we prove the Weak Restricted Delaunay The-
orem for a closed curve M smoothly embedded in R

d. The

proof is relatively straightforward and we are able to give
matching upper and lower bounds for the required sampling
density. Specifically, we prove that for ε =

√
3 = 1.732 . . .

every edge of an ε-sample that has a weak witness on M

also has a strong witness on M and that no triangle has three
edges each of which has a weak witness on M.

Edges. The main technical ingredient is the 1-dimensional
version of the Local Reach Lemma. To use it, we write Bx

for the smallest closed d-ball with center x ∈ M that contains
at least two landmarks. By definition of ε-sample, the radius
of Bx is r <

√
3%(x). Since this is less than 2%(x), the Local

Reach Lemma implies that Bx intersects M in an interval (a
closed topological 1-ball). If x is a weak but not a strong
witness of the edge {a, b} then Bx contains one landmark
in the interior and the other on the boundary, as in Figure
4. Since Bx intersects M in a single interval it contains the
entire arc from a to b, implying that this arc does not contain
any other landmarks. We let y be a point on this arc that is

x y
a

b

x

By

B

Figure 4: The point x is a weak witness of {a, b} and the point y is
a strong witness of this edge.

equidistant from a and b. Because By ∩ M is an interval, a
and b are its endpoints and no other landmark lies inside By.
It follows that y is a strong witness of the edge {a, b}.

Triangles. To prove that no triangle has three edges each
with a weak witness, we show that the sampling condition
implies there are at least four landmarks on each component
of M. In this case, each triangle has at least one edge whose
landmarks are not contiguous along M. Since the ball de-
fined by a weak witness of this edge meets M in an interval,
it contains at least one additional landmark in its interior,
contradicting the definition of weak witness.

To show that there are at least four landmarks per compo-
nent, we assume that M is connected and contains only three
landmarks, a, b, c, decomposing M into three arcs, ab, bc, ca.
Assuming ab is the shortest, we concatenate the two other
arcs to get C = bc ∪ ca. Since 1/% is an upper bound on
the curvature of M at every point, the length of M is at least
2π%, the length of the circle with radius %. It follows that C
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has length at least 4
3π%. The midpoint, x, decomposes C into

two arcs of length at least 2
3π% each. Consider the closed d-

ball with center x and radius
√

3%. It contains precisely two
thirds of any circle with radius % that passes through its cen-
ter. The Reach Lemma implies that the d-ball intersects M

in a single arc A ⊆ M. The point x decomposes A into two
pieces, and because 1/% is an upper bound on the curvature,
each piece has length at most 2

3π%, the length of the two arcs
in which the circle of radius % intersects the d-ball. Hence
A ⊆ C, which implies that A contains at most one landmark
in its interior, namely c. This contradicts that a, b, c form an
ε-sample, for ε =

√
3, and thus implies that M contains at

least four landmarks, as required.

Upper bound. We note that ε =
√

3 is tight. Indeed, for
every ε >

√
3 we can construct a counterexample consist-

ing of a circle with three landmarks placed at the vertices
of an inscribed equilateral triangle. The landmarks form an
ε-sample of the circle, the triangle has a weak witness, all
three edges have strong witnesses, but the triangle itself does
not have a strong witness on the circle. This implies that
the weak Delaunay constant for dimension 1 submanifolds
is ε1 =

√
3.

5 Surfaces

In this section, we prove the Weak Restricted Delaunay The-
orem for surfaces. After setting the stage, we consider edges,
triangles, and higher-dimensional simplices, in this order.

Topological spheres. Let M be a dimension 2 submanifold
of R

d, that is, a compact closed surface smoothly embedded
in d-dimensional Euclidean space. According to the Reach
Lemma, a closed d-ball whose center lies on M and whose
radius is less than 2% intersects M in a topological disk. It
follows that the bounding (d − 1)-sphere intersects M in a
topological circle. In preparation of the proof of our main
result for surfaces, we now consider two d-balls but limit
their radii to less than ε%, for ε = 1/

√
5. Let Bx be a d-ball

with center x ∈ M and radius rx < ε%, and similarly let By

be a d-ball with center y ∈ M and radius ry < ε%. Excluding
Bx = By as a possibility, the two bounding (d − 1)-spheres
are disjoint, meet at a point, or intersect in a (d − 2)-sphere.
Assuming the last case, let Bxy be the (d − 1)-ball whose
boundary is that (d − 2)-sphere. The center of Bxy is not
necessarily on M and its radius is rxy ≤ min{rx, ry} < ε%.

INTERVAL LEMMA. The intersection of Bxy with M is
either empty, a point, or a closed topological interval.

PROOF. Let Pxy be the (d − 1)-plane that contains Bxy.
By construction, v = y − x is normal to Pxy. Assuming
Bxy ∩ M is non-empty, let z be a point in this intersection
and note that ‖z − x‖ < ε%. Recall that κ is the maximum

sectional curvature, over all points of M and all tangent di-
rections, and that κ% ≤ 1. By Property I in Appendix A,
the geodesic distance between the two points is therefore
d(z, x) < 2

κ arcsin ε
2 . Similarly, ‖x − y‖ < 2ε% and there-

fore d(x, y) < 2
κ arcsin ε. Recall that the angle between v

and the tangent plane at z is the minimum angle between v
and a vector u ∈ TMz . To bound this angle, we use the
triangle inequality followed by Properties III, II, I, in this se-
quence,

∠vTMz ≤ ∠vTMx + ∠TMxTMz

≤ κ

2
d(x, y) + κd(x, z)

< arcsin ε + 2 arcsin
ε

2
.

Because the arcsin function is convex, the last line is
bounded from above by arcsin 2ε which for ε = 1/

√
5 is

less than π
2 . Generically, Pxy ∩ M is a collection of curves,

and since the angle between v and the tangent plane at a point
z is bounded away from π

2 , the intersection is a curve in a
neighborhood of z, even in the non-generic case. To get a
lower bound on the local reach of this curve at z ∈ Bxy, we
let the unit vector u ∈ TMz minimize the angle with v and
write ϕ = ∠vu = ∠vTMz . Decomposing v into its compo-
nents in TMz and NMz , we get v = u cosϕ + w sinϕ. The
two (d − 1)-spheres with centers z ± %w and radius % are
both tangent to M at z and sandwich the manifold between
them. Cutting them with the (d − 1)-plane Pxy we get two
(d−2)-spheres of radius % cosϕ each. They are both tangent
to Pxy ∩ M at z and sandwich the curve between them. This
implies that the local reach of the curve at z is

ρ(z) ≥ % cos∠vTMz

> % cos(arcsin 2ε)

= %
√

1 − 4ε2.

Since ε = 1/
√

5 we get ρ(z) ≥ ε%. But this exceeds the
radius of the (d − 1)-ball, rxy < ρ(z). Applying the Local
Reach Lemma to the cross-section within Pxy implies that
Bxy meets M either at a point, namely if its center is at dis-
tance rxy from M, or in a closed topological interval.

Edges. We now consider the first case in the inductive
proof of the Weak Restricted Delaunay Theorem. Specifi-
cally, we show that for ε = 1/

√
5 every edge that has a weak

witness on M also has a strong witness on M.
Let x0 ∈ M be a weak witness of the edge {a, b}, as-

sume ‖x0 − b‖ < ‖x0 − a‖, and let B0 be the d-ball with
center x0 and radius ‖x0 − a‖ < ε%, as shown in Figure 5.
To construct a strong witness, we move the center along a
particular path α : [0, 1] → M that connects x0 = α(0)
with a = α(1). To construct the path, we let D be the di-
ameter d-ball of x0 and a, with center 1

2 (x0 + a) and ra-
dius 1

2‖x0 − a‖, and we let P be the (d − 1)-plane passing
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through x0 and a that contains all normal directions of M at
a. The intersection, D ∩ P , is a (d− 1)-ball with radius less
than ε

2%. Using Properties I and II, we see that the angle be-
tween the tangent planes at a and at a point z ∈ D ∩ P ∩ M

is ∠TMaTMz ≤ κd(a, z) < 2 arcsin ε
2 . Since P contains

a + NMa, its normal vector, uP , is contained in the tan-
gent plane at a, ∠uP TMa = 0. By the triangle inequality,
the angle between uP and the tangent plane at z thus satis-
fies ∠uP TMz < 2 arcsin ε

2 ≤ arcsin ε. The local reach of
the curve P ∩ M at z is therefore ρ(z) > % cos(arcsin ε) =
%
√

1 − ε2. Since the radius of D ∩ P is less than that, the
Local Reach Lemma implies that D ∩ P ∩ M is an interval.
By construction, x0 and a are the endpoints of this interval,
and we let α : [0, 1] → M be a parametrization.

0 t

tU

0U

a

b
x 0

x t

BB

Figure 5: By choice of the path from x0 to a, the topological disks
are nested, with U0 containing all others.

To describe the motion of the center, we write xs = α(s),
for 0 ≤ s ≤ 1, and let Bs be the closed d-ball with cen-
ter xs and radius ‖xs − a‖ < ε%. Eventually, we run into
a = x1, which implies we must have passed a point xt that
is equidistant to a and b. To prove that xt is a strong witness
of the edge {a, b}, it suffices to show that Ut = Bt ∩ M

is contained in U0 = B0 ∩ M. By choice of ε, U0 and Ut

are both topological disks. The intersection of their bound-
aries is equal to the intersection of M with the (d−2)-sphere
∂B0 ∩ ∂Bt. By construction, this (d− 2)-sphere touches M

tangentially at a, and by the Interval Lemma, it has a unique
intersection point with M, namely a. This implies that the
boundaries of U0 and Ut also intersect in a unique point, a, at
which they touch each other tangentially, as in Figure 5. This
leaves only two possibilities, namely Ut ⊆ U0 or U0 ⊆ Ut.
To contradict the latter, we observe that Us ⊆ U0 for suffi-
ciently large s ≤ 1. Since Us changes continuously while
its boundary shares only the point a with ∂U0, this property
holds for all s and therefore also for s = t. It follows that xt

is a strong witness of the edge {a, b}, as desired.

Triangles. Next we show that for ε = 1/
√

5 every triangle
whose faces all have weak witnesses on M also has a strong
witness on M.

Let x0 ∈ M be a weak witness of {a, b, c}, assume

‖x0 − c‖, ‖x0 − b‖ < ‖x0 − a‖, and let B0 be the closed
d-ball with center x0 and radius ‖x0 − a‖ < ε%. The first
step is the same as for an edge, namely moving the center
toward a until its distance to b or to c is the same as that
to a. The second step is similar to the first but different in
detail. To emphasize the similarities, we reuse notation writ-
ing x0 for the starting point of the second step which is the
point xt constructed in the first step. Without loss of gener-
ality, we assume ‖x0 − c‖ < ‖x0 − b‖ = ‖x0 − a‖, as in
Figure 6. To construct a strong witness for the triangle, we
move the center along a path α : [0, 1] → M connecting
x0 = α(0) with the strong witness x1 = α(1) of the edge
{a, b}, which exists inductively. To construct this path, let
r be the larger of the two distances ‖x0 − a‖ = ‖x0 − b‖
and ‖x1 − a‖ = ‖x1 − b‖. Let Bab be the (d − 1)-ball of
points whose distance from a and b is the same and at most
r. Note that x0 and x1 both belong to Bab. By the Interval
Lemma, Bab ∩ M is a closed, topological interval. We let
α : [0, 1] → M be a parametrization of the subinterval from
x0 to x1 and write xs = α(s).

B0

U

b

a

B1

U10

c

x1
x 0

x t
Ut

Figure 6: By choice of the path from x0 to x1 we get a pencil of
topological disks, all contained in U0 ∪ U1.

For the remainder of the analysis, let Bs be the smallest
closed d-ball with center xs that contains at least two land-
marks. For example, B0 contains c in its interior and a, b on
its boundary. By definition of ε-sample, the radius of Bs is
less than ε%, for every s. The Reach Lemma thus implies
that Us = Bs ∩ M is a topological disk, for every s. By the
Interval Lemma, the boundaries of any two such topological
disks intersect in a 0-sphere, that is, two points. For exam-
ple, ∂U0 and ∂U1 intersect in points a and b. The two points
decompose ∂Ui into two segments, and we call ∂Ui ∩ U1−i

the inner segment of ∂Ui, for i = 0, 1. For sufficiently small
s ≥ 0, ∂Us passes through a and b and Us contains the inner
segment of ∂U1. Symmetrically, for sufficiently large s ≤ 1,
∂Us passes through a and b and Us contains the inner seg-
ment of ∂U0. We use continuity to prove that

(i) ∂Us passes through a and b, and
(ii) Us ⊆ U0 ∪ U1,

for every s ∈ [0, 1]. By definition of Bs, Us cannot contain
a and b in its interior. Because ∂Us intersects ∂U0 and ∂U1
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in only two points each, Us cannot pick up a new landmark
point unless it first drops a and b from its boundary. But the
latter is impossible unless Us picks up a new landmark point
first. This creates a deadlock situation and thus proves (i).
We get (ii) because continuity now implies that all Us contain
the inner segments of ∂U0 and ∂U1. The only change during
the movement of the center along α thus concerns the third
landmark, c. It belongs to U0 but not to U1. Hence there is
a value t ∈ [0, 1] such that ∂Ut passes through c. It follows
that xt is equidistant to a, b, c or, equivalently, that all three
landmarks lie on ∂Ut, as in Figure 6. Since Ut ⊆ U0 ∪ U1, it
contains no other landmark, which implies that xt is a strong
witness of {a, b, c}, as desired.

Tetrahedra and beyond. Finally we show that for ε =
1/

√
5 every simplex of dimension three or higher whose

faces all have weak witnesses on M has a strong witness on
M. Incidentally, the strong witnesses of all faces of dimen-
sion two or higher are the same.

Let {a, b, c, d} be a tetrahedron whose faces all have weak
witnesses. By induction hypothesis, its four triangles have
strong witnesses, each defining a (d− 1)-sphere intersecting
M in a topological circle that passes through the three land-
marks defining the triangle. If different, two such topological
circles meet in at most two points, and because their triangles
share two vertices, they intersect in these two shared land-
marks. The landmarks decompose each topological circle
into three arcs. We thus get a graph of four nodes (the land-
marks) and twelve edges (the arcs). Since the circles meet
only at landmarks, the edges do not cross, and because the
circles are relatively small, the graph is drawn on a patch of
M that is homeomorphic to a disk. In other words, we have a
plane embedding of K4, the complete graph with four nodes,
in which every edge is doubled, as in Figure 7. But this im-

Figure 7: A crossing-free drawing of K4, with edges doubled up.

plies that the middle node lies inside the topological circle
passing through the outer three nodes, contradicting the con-
struction of that circle around a strong witness of the triangle.
The only resolution to this contradiction is that at least two
of the topological circles are the same. This circle passes
through all four nodes, forcing all four topological circles to

be the same. In other words, the four triangles have a com-
mon strong witness, which is therefore also a strong witness
of the tetrahedron. By the same argument, if an i-simplex
with i+1 > 4 vertices has a weak witness for each face then
all its faces have a common strong witness, which is also a
strong witness of the i-simplex.

Upper bound. Our lower bound for ε2 is certainly not
tight. Following a construction in [8], we get an upper bound
by letting M be the unit 2-sphere which we sample at the
north-pole and at six points forming a regular hexagon along
the equator. Note that any closed hemi-sphere contains at
least three landmarks. It follows that the seven landmarks
form an ε-sample of M for every ε >

√
2. Any tetrahedron

spanned by the north-pole and three of the landmarks on the
equator has a weak witness for each of its faces. Neverthe-
less, the tetrahedron does not have a strong witness on M,
which implies ε2 ≤

√
2 = 1.414 . . ..

6 Discussion

The main contribution of this paper is a proof that witness
complexes as introduced by de Silva and Carlsson [9] are vi-
able for reconstructing dimension 1 and 2 submanifolds of
Euclidean space. It is currently no clear whether or not the
same can be said about dimensions beyond 2. Specifically,
we ask for a proof that the weak Delaunay constant for di-
mension 3 submanifolds is positive, ε3 > 0, or for an exam-
ple that shows that ε3 vanishes. Our proof for dimension 2
submanifolds seems promising but will require new ideas.
For example, two topological 2-spheres in the 3-manifold
may intersect in a topological but generally not a geomet-
ric circle. As we move one to the other, we can therefore not
expect that the moving 2-sphere remains inside the union of
the balls bounded by the two topological 2-spheres. Another
difficulty is the instability of the normal direction of inter-
sections of spheres. For example, three geometric 3-spheres
centered at nearby points on a 3-manifold in R

4 may inter-
sect in a circle that is nowhere close to being normal to the
3-manifold.

Although the positivity of the weak Delaunay constant is
open for most dimensions, we have proved it for dimension 2
submanifolds, which is perhaps the most important case for
practical applications. Specifically, we proved 1

5 ≤ ε2
2 ≤ 2.

Can we narrow the gap or determine ε2, at least for surfaces
in R

3? It would also be interesting to shed light on the depen-
dence of the constant on the ambient dimension. Clearly the
constant cannot increase when the ambient dimension goes
up, that is, ε2,d ≥ ε2,d′ whenever d ≤ d′. It would be useful
to have an example that shows the inequality is strict, per-
haps already for d = 3 and d′ = 4.

Finally we mention the extension of our Weak Delaunay
Witness Theorem to embedded manifolds with boundary as
an open problem.
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Appendix A

In this appendix, we present basic inequalities relating dis-
tances between points on a 2-manifold and angles between
vectors the points define. Similar inequalities can be found in
[19]. We introduce some notation, referring to [10] for addi-
tional background. Let M be a smoothly embedded, compact
2-manifold in R

d. For x ∈ M, we write TMx for the tangent
space of M at x and NMx = TM

⊥
x for its normal space.

The tangent space has dimension 2 and the normal space has
dimension d − 2. If γ : R → M is a smooth, arc-length
parametrized curve, the unit tangent and normal vectors at
x = γ(0) are Tγ(x) = γ̇(0) and Nγ(x) = γ̈(0)/‖γ̈(0)‖.
The curvature of γ at x is κγ(x) = ‖γ̈(0)‖. If γ is a geodesic
then κγ(x) is as small as it can be for a curve that passes
through x in the direction u = Tγ(x) ∈ TMx. This is also
the curvature of the normal section obtained by intersecting
M with the (d − 1)-dimensional plane containing x, x + u,
and x + NMx. In this case, we call κu(x) = κγ(x) the sec-
tional curvature of M at x in the tangent direction u. We
write κ(x) = maxu κu(x) for the maximum (absolute) sec-
tional curvature at x, and κ = maxx κ(x) for the maximum
(absolute) sectional curvature anywhere on M.

Distance. Let d(x, y) be the length of the shortest path
connecting the points x and y on M. If l = d(x, y) then there
is an arc-length parametrization of a geodesic, γ : [0, l] →
M, with x = γ(0) and y = γ(l). Because γ is unit-speed, its
derivative is a map to the unit sphere, γ̇ : [0, l] → S

d−1. For
every 0 ≤ s ≤ l, the angle between the vectors γ̇(0) and γ̇(s)
is bounded from above by the length of the path connecting
them on the unit sphere: ∠γ̇(0)γ̇(s) ≤

∫ s

0
‖γ̈(t)‖dt ≤ κs.

The second inequality follows from ‖γ̈(t)‖ ≤ κ for all t
since γ is a geodesic parametrized by arc-length. We use
this fact to bound the Euclidean distance between x and y in
terms of the geodesic distance.

PROPERTY I. ‖x − y‖ ≥ 2
κ sin(κ

2 d(x, y)), provided the
geodesic distance between x and y is d(x, y) ≤ π

κ .

PROOF. Let T = γ̇( l
2 ) be the unit tangent vector at the

halfway point. The length of γ in the direction T is

〈y − x, T 〉 =

∫ l

s=0

〈γ̇(s), T 〉 ds

≥ 2

∫ l/2

s=0

cos(κs) ds

because the angle between T and γ̇(s) is at most κ| l
2 − s|.

The right hand side of the inequality evaluates to 2
κ sin(κ

2 l).
The length of γ in the direction y − x can only be larger,
which implies the claimed inequality.

The bound in Property I is tight, with equality realized by
an arc of a circle with radius 1

κ .
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Angle between tangent spaces. Given two tangent spaces,
we define their angle as the max-min angle between any two
of their vectors,

∠TMxTMy = max
u∈TMx

min
v∈TMy

∠uv.

Note that it satisfies the triangle inequality, ∠TMxTMz ≤
∠TMxTMy + ∠TMyTMz , for all points x, y, z. We
bound the angle between two tangent spaces in terms of the
geodesic distance between their base points. Instrumental
to this proof is the notion of parallel transport from TMx

to TMy along a smooth curve γ : [0, 1] → M connecting
x = γ(0) with y = γ(1). To explain this concept, consider
a vector field u : [0, 1] → R

d that assigns to each s ∈ [0, 1]
a tangent vector u(s) ∈ TMγ(s). This vector field is paral-
lel if its covariant derivative vanishes, that is, the orthogonal
projection of du

ds (s) onto TMγ(s) is zero for every s ∈ [0, 1].
Given an initial tangent vector, u(0) ∈ TMx, the parallel
vector field exists and is unique [10, Chapter 4]. The vectors
u(t) are then called the parallel transport of u(0) along γ.
As it turns out, the implied map from TMx to TMy preserves
scalar products and is therefore an isometry. This map also
implies an upper bound on the angle between the two tangent
spaces.

PROPERTY II. ∠TMxTMy ≤ κd(x, y).

PROOF. As before, we set l = d(x, y) and let γ : [0, l] → M

be an arc-length parametrization of a geodesic with x = γ(0)
and y = γ(l). Given a unit vector u(0) ∈ TMx, we let u(t)
be its parallel transport along γ(t). Because the u(t) are unit
vectors, u is a map to the unit sphere, u : [0, l] → S

d−1,
whose derivative is bounded by the maximum sectional cur-
vature, ‖u̇(t)‖ ≤ κ. The angle between the unit vectors u(0)
and u(l) is the length of the great-circle arc connecting them
on S

d−1, which is bounded by the length of the path on the
sphere, ∠u(0)u(l) ≤

∫ l

0
‖u̇(t)‖ dt ≤ κl. The claim fol-

lows by choosing u(0) ∈ TMx and v ∈ TMy such that
∠TMxTMy = ∠u(0)v ≤ ∠u(0)u(l).

Similar to Property I, the bound in Property II is tight, with
equality realized by an arc of a circle with radius 1

κ . To make
this arc into a geodesic, we may place it on a sphere with the
same radius.

Angle to tangent space. Consistent with the notion of an-
gle between two tangent spaces, we define the angle be-
tween v = y − x and the tangent space at x equal to
∠vTMx = minu∈TMx

∠vu. Using a proof similar to that
of Property I, we bound this angle in terms of the maximum
sectional curvature and the geodesic distance between the
points.

PROPERTY III. ∠vTMx ≤ κ
2 d(x, y), provided the

geodesic distance between the two points is d(x, y) ≤ π
2κ .

PROOF. As before, we set l = d(x, y) and let γ : [0, l] → M

be an arc-length parametrization of a geodesic with γ(0) = x
and γ(l) = y. Let T0 = Tγ(0) and N0 = Nγ(0) be the
tangent and normal vectors at x. The orthogonal projection
of the vector v = y − x onto the line spanned by N0 and
passing through x has length

|〈v, N0〉| ≤
∫ l

s=0

|〈γ̇(s), N0〉| ds

≤
∫ l

s=0

sin(κs) ds,

with the right hand side evaluating to 1
κ (1 − cos(κl)). Simi-

larly, the orthogonal projection of v onto the line spanned by
T0 and passing through x is

〈v, T0〉 =

∫ l

s=0

〈γ̇(s), T0〉 ds

≥
∫ l

s=0

cos(κs) ds,

with the right hand side evaluating to 1
κ sin(κl). The two

inequalities are equalities if γ is an arc of a circle with cen-
ter x ± 1

κN0 and radius 1
κ contained in the 2-plane passing

through x, x + T0, and x + N0. In this special configuration,
∠vT0 = arctan 1−cos(κl)

sin(κl) = κl
2 . The claimed inequality fol-

lows.

Similar to Properties I and II, the bound in Property III is
tight, with equality realized by an arc of a circle whose radius
is 1

κ .
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