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Connectivity-based Localization of Large Scale

Sensor Networks with Complex Shape
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and

Yue Wang
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Jie Gao

We study the problem of localizing a large sensor network having a complex shape, possibly with
holes. A major challenge with respect to such networks is to figure out the correct network layout,
i.e., avoid global flips where a part of the network folds on top of another. Our algorithm first
selects landmarks on network boundaries with sufficient density, then constructs the landmark
Voronoi diagram and its dual combinatorial Delaunay complex on these landmarks. The key
insight is that the combinatorial Delaunay complex is provably globally rigid and has a unique
realization in the plane. Thus an embedding of the landmarks by simply gluing the Delaunay
triangles properly recovers the faithful network layout. With the landmarks nicely localized, the
rest of the nodes can easily localize themselves by trilateration to nearby landmark nodes. This
leads to a practical and accurate localization algorithm for large networks using only network
connectivity. Simulations on various network topologies show surprisingly good results. In com-
parison, previous connectivity-based localization algorithms such as multi-dimensional scaling and
rubberband representation generate globally flipped or distorted localization results.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Wireless com-

munication—C.2.2Computer Systems OrganizationComputer-Communication NetworksNetwork
Protocols; F.2.2 [Theory of Computation]: analysis of algorithms and problem complexity—
non-numerical algorithms and problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sensor Networks, Combinatorial Delaunay Complex, Em-
bedding, Localization, Graph Rigidity

1. INTRODUCTION

The physical location of sensor nodes is critical for both network operation and data
interpretation. In this paper we focus on anchor-free localization in which none
of the nodes know their location and the goal is to recover a relative coordinate
system up to global rotation and translation. This is motivated by sensor network
applications in remote areas or indoor/underwater environments in which GPS
or explicitly placed anchor nodes are not available or too costly. Philosophically,
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anchor-free localization addresses a very fundamental problem: can we recover the
network geometry, simply from the network connectivity information? That is,
with local knowledge (knowing which nodes are nearby), can we reconstruct the
global picture?

As sensor networks scale in size, retrieving the locations of the nodes becomes
even more challenging. The difficulty comes from the network scale, error accumula-
tion, and the increase to both the communication and computation load. Moreover,
large deployments of sensor nodes are more likely to have irregular shapes as ob-
stacles and terrain variations inevitably come in to the picture. Our emphasis in
this paper is to localize a large sensor network with a complex shape, by using only
the network connectivity.

Incorrect flips vs. graph rigidity. A major challenge in network localization
is to figure out the correct global layout and resolve flip ambiguities. To give
some intuition, Figure 1 illustrates that with only network connectivity information
(or even with measurements of the edge lengths), one is unable to tell the “flip”
of triangle △bcd relative to a neighboring triangle △abc locally. Both are valid
embeddings.

b

a c

d c
a

b
d

Fig. 1. A connectivity graph with two distinct embedding having the same set of edge lengths.

Figure 2 shows a more severe error, a global flip, that may result from some
local flips. The right figure has almost all the nodes correctly localized but has
one corner folded over on itself. This is particularly devastating because a node
communicating with only its neighbors cannot realize this global error. Indeed, it
has been observed that localization algorithms by local optimization may get stuck
at one configuration far from the ground truth (see Figure 2 in [Moore et al. 2004]).

Fig. 2. Left to right: the ground truth; one possible embedding; a more devastating embedding
with a global flip.

It thus represents a major difficulty to resolve flip ambiguities in anchor-free
localization. When we know the edge lengths, localization is closely related with
graph rigidity [Graver et al. 1993] in 2D. A graph is rigid if one cannot continuously
deform the graph embedding in the plane without changing the edge lengths. A
graph is globally rigid if there is a unique realization in the plane. Rigidity with-
out global rigidity may yield flip ambiguities. For example, Figure 1 is rigid but
not globally rigid. Thus in anchor-free localization, global rigidity is the desirable
property.

A number of localization algorithms deal with the problem of rigidity by explor-
ing the graph structure [Eren et al. 2004; Goldenberg et al. 2005; Goldenberg et al.
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(i) (ii) (iii)

(iv) (v) (vi)

Fig. 3. Anchor-free localization from network connectivity, on a double star shape. The number
of nodes is 2171. The connectivity follows a unit disk graph model with average node degree
10. (i) The Voronoi cells of the landmarks (black nodes are on the Voronoi edges); (ii) The
Delaunay edges extracted from the Voronoi cells of the landmarks; (iii) Our embedding result of
the extracted Delaunay complex; (iv) Our localization result of the entire network. (v) Embedding
result by multi-dimensional scaling. (vi) Embedding result by the rubberband representation with
the outer boundary fixed along a square.

2006; Moore et al. 2004]. These algorithms either require that the network is dense
enough to guarantee the network is a tri-lateration graph1 (such that iterative tri-
lateration method resolves the ambiguity of flips—an even stronger notion than
global rigidity) [Eren et al. 2004; Goldenberg et al. 2005; Moore et al. 2004]; or,
when the network is sparse, record all possible configurations and prune incompat-
ible ones whenever possible, which, in the worst case, can result in an exponential
space requirement [Goldenberg et al. 2006]. All these algorithms require that neigh-
bors are able to estimate their inter-distances, and they do not work with network
connectivity alone. Estimating the inter-distances from received signal strength can
be quite noisy in a complex environment, and accurate distance estimation requires
special ranging hardware.

An approach on anchor-free localization with only network connectivity is to use
global optimization such as multi-dimensional scaling (MDS) [Shang et al. 2003].
MDS takes an inter-distance matrix on n nodes and extracts the node location in

1A tri-lateration graph G in dimension d is one with an ordering of the vertices 1, . . . , d + 1, d +
2, . . . , n such that the complete graph on the initial d + 1 vertices is in G and from every vertex
j > d + 1, there are at least d + 1 edges to vertices earlier in the sequence. Tri-lateration graph is
globally rigid.



4

R
n. For 2D embedding, the locations are taken as the largest 2D linear projection.

Figure 3 (v) shows the result of (MDS) on figure 3 (vi). Intuitively, MDS tries to
stretch the network out in every direction. For a well-connected dense network it
gives an effective localization result. But it does not have any notion of rigidity
and may produce results with global flips. See more examples in Figure 10.

Discovery of global topology. Aside from localization algorithms, recently there
is a growing interest in the study of global topology of a sensor field, and its applica-
tions in point-to-point routing and information discovery. The focus is to identify
high-order topological features (such as holes) from network connectivity [Funke
2005; Funke and Klein 2006; Fekete et al. 2004; Fekete et al. 2005; Kröller et al.
2006; Wang et al. 2006] and construct virtual coordinate systems with which one
can route around holes [Fang et al. 2005; Bruck et al. 2005; Fang et al. 2006; Funke
and Milosavljević 2007b; 2007a]. These virtual coordinates are by no means close
to the real node coordinates — they are not meant to be close. But one may ask
the following question: can the identification of the network geometric features
(network boundaries, holes, etc.) help in recovering the true node locations? In
other words, with the understanding of the network global topology such as where
the holes are, does it allow us to infer some information on graph rigidity that can
be used to prevent global flips?

One piece of work that uses network boundaries to generate topologically faithful
(i.e., no global folding) embeddings is to use the rubberband embedding, by Rao
et al. in [Rao et al. 2003] and by Funke and Milosavljevic in [Funke and Milosavl-
jević 2007b]. The idea is to fix the network outer boundary on a rectangle and then
each internal node iteratively takes the center of gravity of its neighbors’ locations
as its own location. The rubberband relaxation converges to what is called the rub-
berband representation [Tutte 1963]. With the identification of the network outer
boundary, this method does give a layout without incorrect folds, but unfortunately
induces large distortion as holes are typically embedded much larger than they are.
An example is shown in Figure 3 (vi). In the literature [Rao et al. 2003; Funke
and Milosavljević 2007b] the rubberband representation is mainly used in assigning
virtual coordinates to the nodes for geographical routing purposes and is not used
to recover the true node location.

Our contribution. The key idea in this paper is to derive a globally rigid substruc-
ture from the extraction of high-order topological features of a sensor field, that
recovers the global network layout and provide a basis for a localization algorithm.

We assume the sensor nodes are embedded in a geometric region or on a terrain,
possibly with holes. The nodes nearby can directly communicate with each other
but far away nodes cannot2. We do not use anything beyond the network connec-
tivity information and do not assume neighbors can measure their inter-distances,
although such information can be easily incorporated to further improve the local-
ization accuracy.

Briefly, the algorithm can be explained as follows (see Figure 3): Suppose the
network boundaries (both the outer boundary and inner hole boundaries) have been

2Specifically, in our simulations we have adopted unit disk graph model, quasi-unit disk graph
model and probabilistic connectivity model.
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discovered (say with any of the algorithms in [Funke 2005; Funke and Klein 2006;
Fekete et al. 2004; Fekete et al. 2005; Kröller et al. 2006; Wang et al. 2006]). We
take samples on the network boundaries and call them landmarks. Each node in the
network records the closest landmark in terms of network hop distance. The net-
work is then partitioned into Voronoi cells, each of which consists of one landmark
and all the nodes closest to it (Figure 3(i)). The Delaunay graph (Figure 3(ii)) as
the dual of the Voronoi diagram, has two landmarks connected by a Delaunay edge
if their corresponding Voronoi cells are adjacent (or share some common nodes).

Now, here is the key insight: given two Delaunay triangles sharing a common
edge, there is only one way to embed them. Thus there is no flip ambiguity! This is
because the Delaunay triangles are induced from the underlying Voronoi partition-
ing so intuitively we can think them as ‘solid’ triangles, which, when embedded,
must keep their interiors disjoint (the case in Figure 1 left cannot happen). In this
paper we make this intuition rigorous. We prove in the case of a continuous geo-
metric domain that when the landmarks are sufficiently dense (with respect to the
local geometric complexity), the induced Delaunay graph is rigid. Moreover, the
Delaunay complex (with high-order simplices such as Delaunay triangles) is globally

rigid, i.e., there is a unique way to embed these ‘solid’ Delaunay triangles in the
plane.

The identification of the Delaunay triangles and, more importantly, how to embed
them relative to each other overcomes a major hurdle toward anchor-free localiza-
tion. We use an incremental algorithm to glue the triangles one by one. Each
Delaunay edge is given a length equal to the minimum hop count between the two
landmarks. Since the hop count is only a poor approximation of the Euclidean
distance, we use mass-spring relaxation to improve the quality of the embedding
and evenly distribute the error (Figure 3 (iii)).

Now with the landmarks localized and the network layout successfully recovered,
the landmarks serve as ‘anchor’ nodes such that each additional node localizes itself
by using trilateration with its hop count distances to 3 or more nearby landmarks
(in Figure 3 (iv)).

In our algorithm the discovery of the sensor layout, i.e., landmark selection and
discovery of the Delaunay edges is done in a distributed way. The discovered
Delaunay complex is delivered to the base station where the embedding of the
landmarks is produced. This network layout is then disseminated to the remaining
nodes to localize themselves.

The outline of the paper is as follows. In Section 2 we prove the rigidity of the
Delaunay complex and describe the criterion for landmark selection, in the case of
a continuous domain. Readers can also choose to read Section 3 first, in which we
explain the algorithm for the discrete network. Simulation results are presented in
Section 4.

2. THEORETICAL FOUNDATIONS

In this section we introduce notations and the theoretical foundation of our algo-
rithm ideas, in particular, the density requirement for landmarks to guarantee the
global rigidity of the combinatorial Delaunay complex. Some proofs are put in the
Appendix.
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2.1 Medial axis, local feature size and r-sample

We consider a geometric region R with obstacles inside. The boundary ∂R consists
of the outer boundary and boundaries of inner holes. For any two points p, q ∈ R,
we denote by |pq| their Euclidean distance and d(p, q) the geodesic distance between
them inside R, i.e., the length of the shortest path avoiding obstacles. In a discrete
network we can use the minimum hop length between two nodes as their distance,
whose analog in the continuous case is the geodesic distance. In this paper all
the distances are by default measured by the geodesic distances unless specified
otherwise. A ball centered at a point p of radius r, denoted by Br(p), contains all
the points within geodesic distance r from p.

Definition 2.1. The medial axis of R is the closure of the collection of points,
with at least two closest points on the boundary ∂R.

The medial axis of ∂R consists of two components, one part inside R, called the
inner medial axis, and the other part outside R, called the outer medial axis. See
Figure 4. In this paper we only care about the inner medial axis.

We remark that the standard definition of medial axis for curves in the plane
measures the Euclidean distance of two points. When we change from Euclidean
measure to geodesic measure one may wonder how that changes the inner medial
axis. Luckily this is not a big issue as it is not difficult to prove that the inner
medial axis under the two measures are the same.

Observation 2.2. The inner medial axis of R measured in terms of Euclidean
distance is the same as that measured in terms of geodesic distance.

Now we are ready to explain how to measure the local geometric complexity of
R, which determines the sampling density. An example is shown in Figure 4.

ILFS(p)

∂R

p

Fig. 4. The region R’s boundary is shown in dark curves. The medial axis and landmarks selected
on the boundaries. Point p ∈ ∂R has a landmark within distance ILFS(p).

Definition 2.3. The inner local feature size of a point p ∈ ∂R, denoted as ILFS(p),
is the distance from p to the closest point on the inner medial axis. The local fea-
ture size of a point p ∈ ∂R, denoted as LFS(p), is the distance from p to the closest
point on the medial axis (including both the inner and outer medial axis).
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Definition 2.4. An r-sample of the boundary ∂R is a subset of points S on ∂R
such that for any point p ∈ ∂R, the ball centered at p with radius r · ILFS(p) has
at least one sample point inside.

Landmark density criterion. Our algorithm selects the set of landmarks as an
r-sample, with r < 1 and selects at least 3 landmarks on each boundary cycle. We
will show that these landmarks capture important topological information about
the network layout and can be used to reconstruct the network layout.

2.2 Landmark Voronoi diagram and combinatorial Delaunay graph

We take some points in R and denote them as landmarks S. Construct the landmark

Voronoi diagram V (S) as in [Fang et al. 2005]. Essentially each point in R identifies
the closest landmark in terms of geodesic distance. The Voronoi cell of a landmark
u, denoted as V (u), includes all the points that have u as a closest landmark:

V (u) = {p ∈ R | d(p, u) ≤ d(p, v), ∀v ∈ S}.

Each Voronoi cell is a connected region in R. The union of Voronoi cells covers the
entire region R. A point is said to be on the Voronoi edge if it has equal distance
to its two closest landmarks. A point is called a Voronoi vertex if its distances to
three (or more) closest landmarks are the same. A Voronoi edge ends at either a
Voronoi vertex or a point on the region boundary ∂R. The Voronoi graph is the
collection of points on Voronoi edges. The combinatorial Delaunay graph D(S) is
defined as a graph on S such that two landmarks are connected by an edge if and
only if the corresponding Voronoi cells of these two landmarks share some common
points. See Figure 5 for some examples. We state some immediate observations

∂R ∂R

(i) (ii)

Fig. 5. (i) The Voronoi graph (shown in dashed lines) and the Delaunay graph/complex for a
set of landmarks that form an r-sample with r < 1. (iii) When the set of landmarks is not an
r-sample (with r < 1), the combinatorial Delaunay graph may be non-rigid.

about the Voronoi diagram and the corresponding combinatorial Delaunay graph
below.

Observation 2.5. A point on the Voronoi edge of two landmarks u, v certifies that
there is a Delaunay edge between u, v in D(S). A Voronoi vertex of three landmarks
u, v, w certifies that there is a triangle between u, v, w in D(S).
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In the case of a degeneracy, four landmarks or more may become cocircular
and thus share one Voronoi vertex. See the left top corner in Figure 5 (i). We will
capture these high-order features by defining the Delaunay complex in the notion of
abstract simplicial complex [Edelsbrunner 2001]. The notion of abstract simplicial
complex is defined in a completely combinatorial manner and is described in terms
of sets. Formally, a set α is an (abstract) simplex with dimension dimα = cardα−1,
i.e., the number of elements in α minus 1. A finite system A of finite sets is
an abstract simplicial complex if α ∈ A and β ⊆ α implies β ∈ A. That is,
each set α in A has all its subsets in A as well. In our setting, we construct an
abstract simplicial complex from the Voronoi diagram, named the abstract Delaunay

complex, by taking the Cěch complex of the Voronoi cells, defined below.

Definition 2.6. The (abstract) Delaunay complex is the collection of sets

DC(S) = {α ⊆ S |
⋂

u∈α

V (u) 6= ∅}.

In other words, a set α ⊆ S is a Delaunay simplex if the intersection of the Voronoi
cells of landmarks of α is non-empty. The dimension of the Delaunay simplex α is
the cardinality of α minus 1.

Thus a landmark vertex is a Delaunay simplex of dimension 0. A Delaunay
edge is a simplex of dimension 1. A Delaunay triangle is a simplex of dimension 2
(intuitively, think of the triangle as a ‘solid’ triangle with its interior filled up). In
case of a degeneracy, k landmarks are co-circular and their Voronoi cells have non-
empty intersection. This corresponds to a simplex of dimension k−1. The rightmost
4 landmarks in Figure 5 (iii) form a dimension-3 simplex (again, intuitively think
the simplex as a solid object). We drew the Delaunay complex as shaded regions.

The definition of an abstract simplicial complex is purely combinatorial, i.e., no
geometry involved, thus the name of ‘abstract’ complex. We can talk about an
embedding or realization of an abstract simplicial complex (without geometry) in
a geometric space as a simplicial complex (with geometry). A simplicial complex is
geometric and is embedded in a Euclidean space. We give the definitions below. In
this paper, we take the abstracted Delaunay complex from the network connectivity
graph, and find the geometric realization of the abstract Delaunay complex as a
simplicial complex in the plane, thus recovering the global shape of the sensor
network.

A finite set of points is affinely independent if no affine space of dimension i
contains more than i + 1 of the points, for any i. A k-simplex is the convex hull
of a collection of k + 1 affinely independent points S, denoted as σ = conv S. The
dimension of σ is dim σ = k. Figure 6 shows 0, 1, 2, 3-simplex in R

3. The convex

Fig. 6. 0, 1, 2, 3-simplex in R
3.

hull of any subset T ⊆ S is also a simplex. It is a subset of conv S and called
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a face of σ. For example, take the convex hull of three points in a 3-simplex,
it is a 2-simplex (a triangle). A simplicial complex is the collection of faces of a
finite number of simplices such that any two of them are either disjoint or meet
in a common face. A geometric realization of an abstract simplicial complex A is
a simplicial complex K together with a bijection ϕ of the vertex set of A to the
vertex set of K, such that α ∈ A if and only if conv ϕ(α) ∈ K [Edelsbrunner 2001].
Of course the ambient space in which the simplicial complex is embedded has to
have dimension at least equivalent to the highest dimension of the simplex in A. In
our case, when there is degeneracy theoretically we will have to embed in a space
with dimension higher than 2. We will discuss how to get around this problem in
the next section after the discussion of rigidity. In the rest of the paper, when we
say the Delaunay graph, we refer to the Delaunay edges and vertices. When we say
the Delaunay complex, we also include the higher order simplices such as Delaunay
triangles and tetrahedrons.

2.3 Global rigidity of combinatorial Delaunay complex

The property of the combinatorial Delaunay graph clearly depends on the selection
of landmarks. The goal of this section is to show that the Delaunay graph is rigid
when there are at least 3 landmarks on each boundary cycle and they form an
r-sample of ∂R with r < 1. In addition, and the Delaunay complex is globally
rigid (i.e., it admits a unique 2D realization). An example when the combinatorial
Delaunay graph is not rigid due to insufficient sampling is shown in Figure 5 (ii).
Now we prepare to prove the rigidity results by first showing that the Voronoi graph
(collection of points on Voronoi edges) is connected within R. In this subsection
we assume that the landmarks are selected according to the landmark selection
criterion mentioned above. The proofs of some of the following Lemmas can be
found in the Appendix.

Observation 2.7. Two Voronoi vertices connected by a Voronoi edge correspond
to two Delaunay triangles sharing an edge.

Lemma 2.8. For any two adjacent landmarks u, v on the same boundary cycle,
there must be a Voronoi vertex inside R whose closest landmarks include u, v.

Lemma 2.8 implies that the Delaunay graph has no node with degree 1 – since
every node is involved in 2 triangles with its adjacent 2 nodes on the same boundary.

Lemma 2.9. If there is a continuous curve C that connects two points on the
boundary ∂R such that C does not contain any point on Voronoi edges, then C
cuts off a topological 1-disk3 of ∂R with at most one landmark inside.

Corollary 2.10. The Voronoi graph V (S) is connected.

Proof. This follows immediately from Lemma 2.8 and Lemma 2.9, although
Lemma 2.9 is stronger. Specifically if V (S) is not connected, we are able to find
a curve C that cuts R into two pieces each containing some landmarks and some
Voronoi edges, with C not intersecting with the Voronoi graph. �

3Intuitively, a topological 1-disk can be continuously deformed into a straight unit length line
segment, without any cutting or gluing operations.
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Now we are able to show that the combinatorial Delaunay graph is rigid. In
other words, given a realization of D(S) in the plane, one cannot deform its shape
in the plane without changing the lengths of the edges. To prove this, we use a
seminal result about graph rigidity [by G. Laman in 1970], known as the Laman

condition. It states that generically rigid graphs in 2D can be classified by a purely
combinatorial condition. A graph is called a Laman graph if it has n vertices, 2n−3
edges and any subset of k vertices spans at most 2k − 3 edges.

Theorem 2.11 (Laman condition [Laman 1970]). A graph G with n vertices
is generically rigid 4 in 2 dimensions if and only if it contains a Laman graph on n
vertices.

Theorem 2.12. The combinatorial Delaunay graph D(S) is rigid, under our sam-
pling condition.

Proof. In this proof we assume without loss of generality that there is no de-
generacy, i.e., four or more landmarks are not co-circular. Indeed degeneracy will
only put more edges to the combinatorial Delaunay graph, which only helps with
graph rigidity.

From the Voronoi graph V (S), we extract a subgraph V ′ that contains all Voronoi
vertices and the Voronoi edges that connect these Voronoi vertices. Some Voronoi
edges end at points on the boundary ∂R and we ignore those. By Corollary 2.10
this graph V ′ is connected. Now we find a spanning tree T in V ′ that connects
all Voronoi vertices. Take the corresponding subgraph D′ of the combinatorial
Delaunay graph D(S) such that an edge exists between two landmarks in D′ if and
only if there is a point in T that certifies it. D′ is a subgraph of D(S). Now we
argue that D′ is a Laman graph.

First the number of landmarks is n. We argue that the number of edges in D′

is 2n − 3. Assuming the number of Voronoi vertices is m, T has m − 1 Voronoi
edges. We start from a leaf node on T and sweep along the edges on T . Each
time we add one new vertex that is connected to the piece that we have explored
through an edge. During the sweep we count the number of landmarks and the
number of Delaunay edges that we introduce. To start, we have T ′ initialized with
one Voronoi vertex, thus we have three landmarks and three Delaunay edges. The
new Voronoi vertex x we introduce is adjacent to one and only one vertex in T ′—if
x is adjacent to two vertices in T ′, then there is a cycle since T ′ is connected. This
will contradict with the fact that T is a tree. Thus in each additional step we will
introduce one Voronoi vertex that is connected to T ′ through one Voronoi edge.
This will introduce one new landmark and two new Delaunay edges. When we
finish exploring all Voronoi vertices we have a total of 3 + (m − 1) = m + 2 = n
landmarks, and 3+ 2(m− 1) = 2n− 3 Delaunay edges between them. Thus D′ has
n landmarks and 2n − 3 edges.

With the same argument we can show that any subgraph of D′ with k landmarks,
denoted by S′, has at most 2k−3 edges. This is because a Delaunay edge is certified
by a Voronoi edge. Thus we take the Voronoi edges of T whose corresponding

4Intuitively, generic rigidity means that almost all (except some degenerate cases) realizations of
the graph in the plane are rigid. Generic rigidity is a graph property. However, a generically rigid
graph may have some degenerate assignment of edge lengths such that the realization is not rigid.
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landmarks all fall inside S′. These Voronoi edges span at most a tree between
Voronoi vertices involving only landmarks in S′, because they are a subset of a tree
T . By the same argument there are at most 2k− 3 edges between landmarks in S′.
Thus the graph D′ is a Laman graph. By the Laman condition the combinatorial
Delaunay graph D(S) is rigid. �

The above theorem shows the rigidity of the combinatorial Delaunay graph, but
not the global rigidity yet—there might be several different realizations of the graph
in the plane. Indeed for an arbitrary triangulation one may flip one triangle against
another adjacent triangle one way or the other to create different embedding. How-
ever, this is no longer possible if we embed the combinatorial Delaunay complex,
induced from the Voronoi diagram V (S). The intuition is that when the triangles
are ‘solid’ and two triangles cannot share interior points there is only one way to
embed the Delaunay complex. In the following theorem we show that there can
only be a unique way to embed the abstract Delaunay complex. Thus the recovered
Delaunay complex does reflect the true layout of the sensor field R.

Recall that we want to find an embedding of the abstract Delaunay complex
in 2D. That is, we want to find a mapping ϕ of the vertices in the plane such
that any abstract simplex σ ∈ DC(S) is mapped as a simplex conv ϕ(σ) ∈ R

2.
Notice that in the case of degeneracy there are high-order k-simplices, k ≥ 3, for
which a geometric realization requires embedding into a space of dimension k or
higher. However, this is not really a problem if we force the dimension to be 2.
Indeed, look at all the edges of a k-simplex, k ≥ 3, they form a complete graph
of k + 1 ≥ 4 vertices. Thus it is a 3-connected graph and redundantly rigid (a
graph remains rigid upon removal of any single edge). Existing results in rigidity
theory [Hendrickson 1992; Berg and Jordán 2003] show that a graph is globally
rigid (uniquely realizable) in 2D under edge lengths constraints if and only if it is
tri-connected and is redundantly rigid. Thus all high-order simplices have unique
embedding in the plane (up to global translation and rotation). In this paper, we
find a geometric realization of the abstract Delaunay complex in the plane. For
all the simplices with dimension 2 or smaller, they are mapped to simplices in the
plane. For simplices of dimension 3 or higher, the induced graph is globally rigid
and subject to a unique embedding, as explained above.

Now the Delaunay complex is composed of a set of Delaunay triangles (2-simplices)
and high-order simplices (and their sub-simplices, of course). We already know that
the high-order simplices are embedded in the plane as globally rigid components.
The Delaunay 2-simplices/triangles are embedded as a geometric complex, i.e., the
geometric realization of the abstract Delaunay complex. What is left is to show
that given two Delaunay triangles △uvw and △uvp sharing an edge, there is only
one way to embed them in the plane as required by the definition of simplical
complex—that is w and p are on opposite sides of the shared edge uv, as in Fig-
ure 7(i). Otherwise, w and p are embedded on the same side of uv. Then either
w is inside △uvp (as in Figure 7 (iii)), or p is inside △uvw, or two edges intersect
at a non-vertex point (as in Figure 7 (ii)). This will violate the properties of a
simplicial complex that any two simplices are either disjoint or meet at a common
face. If w is inside △uvp, then the two simplices, a 0-simplex w and a 2-simplex
△uvp intersect at a vertex w which is not a face of △uvp. In the other case, if two
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Fig. 7. Two Delaunay triangles △uvw and △uvp sharing an edge. (i) is the only valid valid
embedding with the two triangles not sharing any interior points.

edges intersect at a non-vertex point, this intersection is not a face of either edge.
Now we can conclude with the main theoretical result:

Theorem 2.13. Under our landmark selection criterion, the combinatorial Delau-
nay complex DC(S) has a unique embedding in the plane up to a global translation
and rotation.

2.4 Topological equivalence

Our sampling condition aims to capture the geometric complexity of the region R.
A related question may ask whether the constructed geodesic Delaunay complex
is homotopy equivalent5 to the region R. Homotopy equivalence intuitively says
that the number of holes and how they are connected in the Delaunay complex
are the same as those in R. Our current sampling condition, unfortunately, can
not guarantee the homotopy equivalence. A bad example is shown in Figure 8. To
see why this is bad note that, the Voronoi edge of the two landmarks x, y is not
simply connected, with two components, one above the small hole in the middle
and one below the small hole. Thus the small Delaunay triangle △xyz sticks out
of the paper and can not be embedded in the plane. There is no valid geometric
realization in the plane without violating the properties of a simplicial complex. The
investigation of the sampling condition to guarantee the homotopy equivalence of
the geodesic Delaunay complex with the region R is the topic of a later paper [Gao
et al. 2008], in which homotopy feature size and sampling methods to guarantee
the topological equivalence are proposed.

With our sampling condition we can still deal with this problem in the following
way. As will be shown in the next section, we are able to detect that whether the
Voronoi edges adjacent to one Voronoi cell is connected or not. As the following
theorem shows, as long as the Voronoi edge/vertex set of any k landmarks is either
empty or contractible6, the homotopy equivalence is established. Thus we can check
locally whether the conditions are satisfied.

Theorem 2.14. If the Voronoi cell/edge/vertex set of any k landmarks is either
empty or contractible, the Delaunay complex has the same homotopy type as the
region R.

5Two maps f and g from X to Y are homotopic if there exists a continuous map H : X×[0, 1] 7→ Y

with H(x, 0) = f(x) and H(x, 1) = g(x). Two spaces X and Y have the same homotopy type if
there are continuous maps f : X 7→ Y and g : Y 7→ X such that g ◦ f is homotopic to the identity
map of X and f ◦ g is homotopic to the identity map of Y . In other words, the maps f and
g define a one-to-one correspondence of the topological features such as connected components,
cycles, holes, tunnels, etc., and how these features are related.
6A set in R

d which can be reduced to one of its points by a continuous deformation is contractible.
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Fig. 8. A nasty example with no valid embedding of the Delaunay complex.

Proof. As the combinatorial Delaunay complex is the Cěch complex of the
Voronoi cells, the theorem follows immediately from the Cěch Theorem [Bott and
Tu 1982]. Recall the definition of the Cěch complex. Given a collection of sets
U = {V (u) , ∀u ∈ S}, the Cěch complex is the abstract simplicial complex whose
k-simplices correspond to nonempty intersections of k + 1 distinct elements of U .
The Cěch Theorem says that if the sets and all non-empty finite intersections are
contractible, then the union ∪uV (u) has the same homotopy type as the Cěch
complex. In our case, the Cěch complex is the Delaunay complex DS(S), the
union of the Voronoi cells is R. Thus the claim is true. �

In case of a bad scenario, for our application we can still embed the Delaunay
complex in the following way. The embedding would theoretically violate the sim-
plicial complex definition but in practice would be perfectly fine. One thing we
notice is that we do know how to embed the triangle △xyz in Figure 8 because the
Voronoi vertex of △xyz is connected through a Voronoi edge to the Voronoi vertex
q below it. Thus we will embed △xyz so that it is disjoint from the dual simplex
of q. But △xyz can and does overlap with the dual simplex of p, since p is not
directly connected through a Voronoi edge to the Voronoi vertex of △xyz. In other
words, we embed the simplices with guidance from the connectivity of the Voronoi
vertices that certify them. This is also what we use in the algorithm below.

3. ALGORITHM DESCRIPTION

We assume a large number of sensor nodes scattered in a geometric region. In
general nearby nodes can directly talk to each other and far away nodes can not
but the algorithm does not strictly enforce a unit disk graph model. The algorithm
basically realizes the landmark selection and embedding described in the previous
section. Thus we will not re-iterate many things said already and instead focus on
the implementation and robustness issues, for the geodesic distance is only poorly
approximated by the minimum hop count between two nodes.

We first outline the algorithm and explain each step in detail.
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Select landmarks. Nodes on the network boundaries are identified and con-
nected into boundary cycles surrounding inner holes and the outer face by a bound-
ary detection algorithm [Wang et al. 2006]. The inner medial axis is also identified
during this process. Along the boundary, landmarks are selected with sufficient
density such that for any node p on the boundary, there is a landmark within the
inner local feature size ILFS(p) of p, that is, the distance from p to its closest node
on the inner medial axis.

Compute landmark Voronoi diagram. The landmarks flood the network
and each node records the closest landmark. This generates the Voronoi diagram
of the landmarks in a distributed fashion.

Extract the combinatorial Delaunay complex. Nodes on the Voronoi
edges/vertices report to their corresponding landmarks. Thus landmarks learn
their adjacent Delaunay simplices. Equivalently, this procedure identifies the com-
binatorial Delaunay complex G. A total of k landmarks are included in a Delaunay
simplex if their Voronoi cells share a common node; See Figure 3(i).

Embed the combinatorial Delaunay complex. We apply an incremental
algorithm to embed the combinatorial Delaunay complex by gluing these simplices
together. We also use mass spring relaxation to improve the embedding result by
smoothing out noise in the input.

Network localization. With the embedding of the landmarks we can easily
embed the rest of the nodes by trilateration with hop count distances to 3 embedded
landmarks.

3.1 Select landmarks

We use a distributed boundary detection algorithm that identifies nodes on both
outer and inner boundaries and connects them into boundary cycles [Wang et al.
2006]. With the boundary detected we can identify the medial axis of the sensor
field, defined as the set of nodes with at least two closest boundary nodes [Bruck
et al. 2005]. The boundary nodes flood inward at roughly the same time [Elson
2003; Ganeriwal et al. 2003]. The flooding messages are suppressed by the hop
count to the boundary nodes to reduce message complexity. Specifically, each node
records the minimum hop count from the boundary nodes. If a node receives a
message containing a hop count no smaller than what it has stored already, the
message will be discarded. Otherwise the minimum hop count to the network
boundary is updated and the message is further forwarded. Each node learns its
closest boundary node. The nodes at which the flooding frontiers collide are nodes
on the inner medial axis.

In a discrete network, the medial axis may contain a lot of noises due to the
discrete hop count values. For example, a node that is a neighbor of adjacent two
boundary nodes is identified to be on the medial axis according to the definition,
and is clearly not what we want. There are a number of heuristic algorithms in the
past literature to ‘clean up’ the medial axis of a discrete network [Bruck et al. 2005;
Zhu et al. 2007]. The idea is to take the nodes with two or more closest intervals
on the network boundary [Zhu et al. 2007]. A node having its closest points on the
boundary in a consecutive interval is not identified as the medial axis node.

With the boundary and medial axis identified, we select landmarks from bound-
ary nodes such that for any node p on the boundary, there is a landmark within
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distance ILFS(p), where ILFS(p) is the inner local feature size of p defined as the
hop count distance from p to its closest node on the inner medial axis. In order to
find the local feature size of each node on the boundary, nodes on the medial axis
flood the network at roughly the same time with proper message suppression. Each
boundary node learns its local feature size as the hop count to its closest node on
the medial axis.

Now, landmark selection can be performed by a message traversing along the
boundary cycles and select landmarks along the way in a greedy fashion to guarantee
the sampling criterion. For each boundary cycle, a node (say the one with minimum
ID) marks itself as a landmark and sends a message along the boundary cycle. The
message goes as far as possible until for some boundary node p, the message has
walked ILFS(p) hops along the boundary from the previously selected landmark.
At that point p is marked as a landmark. Keep on going along the boundary cycle
until the message comes back to the start node. In this way, landmarks are selected
with the desired density. Alternatively, we can let each boundary node p wait for a
random period of time and select itself as a landmark. Then p sends a suppression
message with TTL as ILFS(p) to adjacent boundary nodes. A boundary node
receiving this suppression message will not further select itself as landmarks. Thus
landmarks are selected with the required density.

3.2 Compute Voronoi diagram and combinatorial Delaunay complex

The landmark Voronoi diagram is computed in a distributed way as in [Fang et al.
2005]. Essentially all the landmarks flood the network simultaneously and each
node records the closest landmark(s). Again a node p will not forward the message
if it carries a hop count larger than the closest hop count p has seen. Thus the
propagation of messages from a landmark ℓ is confined within ℓ’s Voronoi cell. All
the nodes with the same closest landmark are naturally classified to be in the same
cell of the Voronoi diagram. Nodes with more than one closest landmarks stay on
Voronoi edges or vertices.

Unlike the Euclidean case that there is always a point with equal distance to
any two or three landmarks, when we adopt the integer hop count measurement as
the distance metric, there may not be a point with equal distance to two or three
landmarks. Thus we re-define Voronoi vertices in the discrete setting.

Definition 3.1. An interior node is a node p with distance to its closest landmark
strictly smaller than its distances to all the other landmarks. A border node is a
node that is not an interior node.

Figure 3 (i) is an example of the landmark Voronoi diagram with different Voronoi
cells colored differently. Border nodes are colored black. We group these border
nodes into Voronoi edges and vertices, i.e., the k-witnesses of (k − 1)-simplices.

Definition 3.2. A k-witness is a border node which is within 1-hop from interior
nodes of k different Voronoi cells. The border nodes that witness the same set of
Voronoi cells are grouped into connected clusters.

One subtle robustness issue, due to the discreteness of sensor nodes, is that there
might not be a node that qualifies for the witness defined above (especially for high-
order simplices). Thus we propose a merge operation: For two clusters A and B
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that are both k-witnesses, if there exists a node p in cluster A, or there exists a node
q in cluster B, and all nodes in cluster B are neighbors of p or all nodes in cluster
A are neighbors of q, then we merge cluster A and B into one cluster that certifies
the union of their corresponding landmarks. The benefit of doing so is to generate
high order Delaunay simplices even when there are no corresponding witnesses due
to the discrete resolution. The above algorithm to identify the abstract Delaunay
complex is a heuristic algorithm that uses the intuition from the continuous case.
Alternatively we can use the notion of the witness complex [de Silva 2003; Carlsson
and de Silva 2004]. This is explored in a later paper [Gao et al. 2008].

The witnesses certify the existence of Delaunay simplices and by definition can
be identified locally. A k-witness node w, after it identifies itself, reports to the
corresponding landmarks. Such a report contains the IDs of the landmarks involved
in this dimension k − 1 Delaunay simplex, together with the distance vector from
the witness node w to each of the k landmarks. Remember that nodes in a Voronoi
cell store their minimum hop count distances to their home landmark. Thus, the
report just follows the natural shortest path pointer to the landmarks involved (so
routing is simple). It can happen that multiple witnesses certify the same Delaunay
simplex (say, in the case of a Delaunay edge) and they individually report to the
same landmark. These report messages are again suppressed during routing. If
a node sees a report about a previously received Delaunay simplex, it will not
forward it. Naturally the report from the witness with the smallest hop count to
its landmarks will arrive the earliest. With these reports, a landmark learns the
combinatorial Delaunay simplices it is involved in, and in addition, an approximate
hop count to the other landmarks in those simplices through the distance vectors
carried in the reports. In particular, a landmark p estimates the hop count distance
to landmark q as the minimum of the sum of distances from the witness node to
p and q, over all reports received with q involved. This distance estimation can
be directly used to embed the Delaunay simplices. Alternatively, if the minimum
hop count distances between neighboring landmarks are desired, one can let the
messages initiated by the landmarks travel to the adjacent Voronoi cells. Thus
each landmark learns the minimum hop count to all neighboring landmarks.

We remark that in the protocol we aggressively use message suppression to re-
duce the communication cost. With reasonable synchronization most of the flood
messages are pruned and the average number of messages transmitted by each node
is within a small constant. We also remark that local synchronization (with pos-
sible global clock drifts) is sufficient as message suppression occurs mostly among
neighboring landmarks.

3.3 Embed Delaunay complex

Now we are ready to glue the simplices together to embed the landmarks and gener-
ate the network layout. Since there is only one way to glue two adjacent simplices
(to keep their interiors disjoint, as shown by Theorem 2.13), the embedding is
unique. We first embed one simplex S1 arbitrarily. Then we can embed its neigh-
bor S2 as follows: Let ℓ1 and ℓ2 be the landmarks they share in common. Since
S1 and S2 are adjacent, such landmarks must exist. For each landmark ℓi in S2

not yet embedded, we compute the 2 points that are with distance d(ℓ1, ℓi) from
ℓ1 and d(ℓ2, ℓi) from ℓ2, where d(·, ·) is the hop-count distance between landmarks,
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estimated in the previous section. Among the two possible locations we take the
one such that the orientation of points {ℓ1, ℓ2, ℓi} is different from the orientation
of {ℓ1, ℓ2, ℓr}, where ℓr is any landmark of S1, other than ℓ1 and ℓ2. Thus ℓi and
ℓr lie on opposite sides of edge ℓ1ℓ2.

In some cases one landmark may have two or more neighboring simplices that
are already embedded and is thus given multiple coordinate assignments. A nat-
ural solution is to take ℓ at the centroid of the different positions. After we have
a rough embedding of the entire Delaunay complex, we apply a mass-spring algo-
rithm [Kobourov et al. 2006; Howard et al. ; Kamada and Kawai 1989; Fruchter-
man and Reingold 1991; Priyantha et al. 2003] to “smooth out” the disfigurements
caused by the conflicting node assignments. It is important to recognize how-
ever, that mass-spring plays a minor role in our algorithm and its utility is only
apparent here because we initially start with topologically correct landmarks po-
sitions, i.e., no global flips. Without this initial configuration with good layout a
naive mass-spring algorithm can easily gets stuck at local minima, as observed by
many [Kobourov et al. 2006; Priyantha et al. 2003].

Briefly, the idea of mass-spring embedding is to think of the landmarks as masses
and each edge as a spring, whose length is equal to the estimated hop count distance
between two landmark nodes. The springs apply forces on the nodes and make
them move until the system stabilizes. The objective is to have the measured
distances (based on their current locations) between landmarks match as closely
as possible the expected distances (indicated by hop count values). For landmark
ℓi we let pi designate its current position, and let d(i, j), r(i, j) be the estimated
and measured distance between ℓi and ℓj, respectively. Each edge creates a force
F = (d(i, j)−r(i, j))/d(i, j) along the direction pipj . So the total force on landmark
ℓi is Fi =

∑
Fij for all neighbors ℓj. And the total “energy” of the network is

E =
∑

(d(i, j) − r(i, j))2. We iteratively modify the node positions, based on the
forces acting upon them, until the energy of the system ceases to decrease.

We remark that this heuristic embedding algorithm only guarantees that adjacent
Delaunay triangles are embedded ‘side-by-side’. It does not prevent two chains
of triangles from wrapping around and overlapping each other. In fact, given a
planar graph with specified edge lengths, it is a NP-hard problem to find a planar
embedding [Bateni et al. 2007; Cabello et al. 2007]. Our problem is more difficult
as we only have approximate edge lengths. It remains as future work to develop
efficient approximation algorithms to embed a planar graph with approximate edge
lengths.

In a distributed environment the embedding of the Delaunay simplices can be
done incrementally with message passing. Alternatively, the combinatorial Delau-
nay complex can be collected at a central station where the embedding is performed
and disseminated to the remaining nodes. As the number of landmarks is only de-
pendent on the geometric complexity of the sensor field, it is much smaller than
the total number of nodes. Thus a centralized collection and dissemination of the
landmark positions is manageable.

Recall that after the witnesses report to the relevant landmarks, the landmarks
have the information about the Delaunay simplices they are involved in. Thus
each landmark can embed its adjacent Delaunay simplices in a local coordinate
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Fig. 9. left: before the mass-spring relaxation algorithm is applied; Right: after mass-spring
relaxation.

frame. Then one landmark can initiate a message carrying the partially embedded
Delaunay complex to its neighboring landmark. As this message is passed around,
more simplices are glued together. Remember there is no ambiguity of how two
simplices should be assembled even when the assembly is performed separately at
different landmarks. At the end of the message passing mass spring relaxation can
be performed to improve the quality.

3.4 Network localization

With the global network layout faithfully recovered, embedding of the rest of non-
landmark nodes is easy. Since the locations of the landmarks are known, each
non-landmark node just runs a tri-lateration algorithm to find its location (e.g.,
the atomic trilateration in [Savvides et al. 2001]) by using the hop count estima-
tion to 3 or more landmarks. We also performs a couple rounds of rubberband
relaxation to further improve the localization quality for the remaining nodes. An
even simpler scheme is to align the boundary nodes along the boundaries of the
embedded combinatorial Delaunay complex and perform a rubberband relaxation
for the rest of the nodes.

4. SIMULATIONS

We conducted simulations on various network topologies and node densities to
evaluate our algorithm and compare with existing solutions.

4.1 Simulation setup and models

In the simulations we use three different models for the network connectivity.

(1) Unit disk graph model: two nodes are connected by an edge if and only if the
Euclidean distance between them is no greater than 1.

(2) Quasi-unit disk graph model: two nodes are connected by an edge if the Eu-
clidean distance between them is no greater than a parameter α, α < 1, and
are not connected by an edge if the Euclidean distance is larger than 1. If the
Euclidean distance d is in the range (α, 1], there may or may not be an edge
between them. We include this edge with probability (1 − d)/(1 − α).

(3) Probabilistic connectivity model: with unit disk graph model, we additionally
remove each edge with probability q.

The nodes are distributed according to a perturbed grid distribution. Each node
is perturbed from the grid point with a uniform distribution. That is, for any node
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p(x, y) on the grid, we created two random numbers rx and ry between 0 and the
grid width. Then we use (x + rx, y + ry) as the node position. We then control the
communication range to vary the average node degree.

To vary the network “shape”, We tried different network topologies by including
single or multiple holes, convex or concave holes, and some difficult cases such as
a U-shape or a Sprial-shape. The network setup and parameters are shown in the
caption for each topology.

4.2 Algorithms in comparison

Since most localization algorithms assume node inter-distance measurements and/or
anchor nodes, to make a fair comparison we only compare with two algorithms that
also use network connectivity information only:

Multi-dimensional scaling (MDS). Multidimensional scaling has been used by
Shang et al. [Shang et al. 2003] for sensor network localization with connectivity
information only. It is also the only anchor-free localization algorithm so far using
connectivity information. For n nodes, the input to MDS is the pairwise distance
estimation of size O(n2). If the inter-node Euclidean distances are known exactly,
then MDS would precisely determine the coordinates of the points (up to global
transformations). In this case, since only rough hop-count distances are known,
MDS has trouble capturing a twist within the graph, making a long narrow graph
not differentiable from a spiral-shaped graph. In addition, MDS is a centralized
algorithm and can not be executed in sensor nodes with limited resources. At the
heart of MDS is singular value decomposition (SVD) which has a time complexity
of O(n3). In our simulation we tested MDS in two cases, once on all the nodes and
once on the landmarks only. They produce similar layout results. MDS on all nodes
is very slow. For some experiments with 5000 nodes the matrix operation involved
in MDS requires more than 1GB memory. This computation is only feasible on
powerful nodes such as the base station.

Rubberband representation. In rubberband embedding [Funke and Milosavl-
jević 2007b; Rao et al. 2003], first the perimeter nodes are fixed to a square, for
instance. Then each non-perimeter node, v, repeatedly updates its coordinates
(xv, yv) as the average of the locations of its neighbors. The process stabilizes at
the rubberband representation. While the rubberband representation is able to
avoid global flips if the outer boundary is detected correctly, the shape of the sen-
sor field is wildly distorted. In our experiments the rubberband representation does
not give enlightening results on the network layout. Examples are given in Figure 3
(iv) and Figure 11.

4.3 Simulation results

The objective of the following simulations is to evaluate our algorithm and compare
with MDS or rubberband representations. In particular, we would like to investigate
how does the algorithm performance depend on different factors such as the network
shape, the node density, landmark density, and communication models.

4.3.1 Influence of network shapes. We applied our algorithm to a number of
networks with different layouts, or “shapes”. We observed that the performance
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(i) (ii) (iii) (iv)

Fig. 10. From left to right, we have: (i) the true sensor locations and extracted combinatorial
Delaunay complex; (ii) embedding of the combinatorial Delaunay complex; (iii) localization of
all nodes by our algorithm; (iv) the results produced by MDS on all nodes in the network. The
connectivity network is generated with unit disk graph model on nodes placed at perturbed grid
points. First row: Cactus, 1692 nodes with average degree of 6.9. Second row: Ginger man,
2807 nodes with average degree of 10. Third row: Pretzel, 2993 nodes with average degree of 9.1.
Fourth row: Smiley face, 2782 nodes with average degree of 9.5. Fifth row: Spiral in a box, 2910
nodes with average degree of 9.5. Sixth row: Square with a concave hole, 2161 nodes with average
degree of 10.4.
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(i) (ii) (iii) (iv)

Fig. 11. Rubberband algorithm results for (i) face (ii) spiral in a box (iii) square with a concave
hole (iv) U shape.

of our algorithm is fairly stable for all kinds of shapes, but the performance of
MDS depends a lot on the shape of the sensor field. We thus include here a few
representative pictures in Figure 10.

Figure 10 (ii), (iii) shows the results of our algorithm for both the embedding of
the combinatorial Delaunay complex and the localization result for all nodes. We
put on the side the embedding results by MDS in Figure 10 (iv). MDS gives rea-
sonable results for some cases (the 1st and 2nd example) but performs quite poorly
when the real network has curved pieces (like spirals), and may even introduce an
incorrect global flip, as in the 5nd and 6th examples. For a qualitative measure,
We have computed the average distance error between the true location and our
localization result and that of MDS, scaled by the communication range7. In all
cases we are consistently better. In some cases when MDS does not produce the
correct network layout, we are 4 ∼ 7 times better as shown in Table I.

Topology concave face man pretzel spiral cactus star

Our Alg 1.88 0.91 1.94 0.95 1.11 2.39 2.16

MDS 4.42 2.78 3.24 1.45 7.10 2.82 3.24

Table I. Average location error, scaled by communication range.

4.3.2 Influence of network communication models. We tested our algorithm on
different communication models. The observation is that the embedding result
heavily depends on the performance of the boundary detection algorithm. If the
boundary detection algorithm faithfully detected the network boundary, the embed-
ding result is satisfactory as well. If the boundaries detected have local deficiencies,
then the embedding may have local errors or flips. We show some representative
cases in Figure 12. Figure 12 (i) and (ii) show what happens when a percentage
of the links are broken. In (i) a fraction q of the edges in the unit disk graph,
randomly selected, are deleted, for q = 0.1 and (ii) q = 0.2. In (iii) a quasi-UDG
model is used: for two nodes whose distance d is between α and 1, there is an edge
with probability (1-d)/(1-α). If d < α, there must be an edge between them. α

7For alignment, we take three arbitrary landmarks and compute a rotation matrix for both results.
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(i) (ii) (iii) (iv)

Fig. 12. Embedding the landmarks under challenging network conditions. The first row shows
the ground truth; the second row our embedding of the landmark nodes. From left to right the
models depicted are (i) 3443 nodes, avg. degree 10.66. only keep α edges and delete (1-α) edges
randomly. α= 0.9. (ii) 3443 nodes, avg. degree 11.95. α = 0.8 (iii) 3443 nodes, avg. degree 9.58.
quasi-UDG model: We assume that for two nodes whose distance d is between α and 1, there is
an edge with probability (1-d)/(1-α). If d < α, there must be an edge between them. α = 0.8 (iv)
3443 nodes, avg. degree 7.57. α = 0.6.

= 0.8 in this case. In (iv), we use a quasi-UDG model with α = 0.6. As you can
see (ii) and (iv) give poor results. The problem in these cases is that the network
boundary was not detected accurately. Whenever the boundary deviates from the
real network boundary, we discovered that the embedding of the Delaunay triangles
may incur local flips (such as the left top corner in (ii) and the right bottom corner
in (iv)), as the information carried by the landmarks and the Delaunay triangles
on these landmarks is now misleading.

4.3.3 Influence of node density. As node density goes higher, the performance
of our algorithm improves. There are two reasons for this. One is that the boundary
detection algorithm works better with higher node density. The second is that the
hop-count distance between nodes is a better approximation of the geodesic distance
between them.

The simulations in Figure 13 show the results of networks having increasingly
denser nodes from left to right with the same communication range. Networks with
higher density normally perform better than lower density networks. Specially, if
the average degree is below 7, the boundary detection step fails to faithfully recover
the boundary causing the rest of the algorithm performs not good as well.

4.3.4 Influence of landmark density. The theoretical results in the previous sec-
tion gives a lower bound on the landmark density to ensure the rigidity of the
Delaunay complex. One can certainly select much more landmarks than that. In
general, a higher density of landmarks may allow for a slightly better embedding
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(i) (ii) (iii) (iv)

Fig. 13. Effect of node density/average degree on the embedding, the node densities increase
from left to right and the communication ranges are the same for all networks. (i) 677 nodes, avg.
degree 5.59 (ii) 840 nodes, avg. degree 6.56 (iii) 1162 nodes, avg. degree 9.2 (iv) 1740 nodes, avg.
degree 14.57.

(i) (ii) (iii) (iv)

Fig. 14. Effect of landmark density. All figures with 3443 nodes and avg. degree 11.95. (i)
decrease the number of landmarks (ii) standard number of landmarks as we described in algorithm
section (iii) increase the number of landmarks (iv) increase the number of landmarks more

of the network since bends and corners of the network can be captured more ac-
curately. With a very sparse set of landmarks the distance between 2 neighboring
landmarks can be grossly exaggerated because the multi-hop path may need to get
around a corner. But a denser set of landmarks means that the mass spring em-
bedding of the Delaunay complex runs on a larger set, increasing the computation
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and communication cost of the algorithm. As shown in Figure 14, the result of the
algorithm is fairly stable with different landmark density. Thus the benefit of using
a denser set of landmarks may not outweigh the increased cost of doing so.

(i) (ii) (iii)

Fig. 15. Possible error accumulation in networks with an elongated shape. In column (i) 3297
nodes, avg. degree 3297. We show a U-shaped graph properly embedded with minor distortion
due to the use of hop-count distances. In (ii), 5028 nodes, avg. degree 14.9. The embedded
network with a ‘C’ shape endures higher distortion. In (iii), 3910 nodes, avg. degree 15. Error
accumulation causes the spiral to overlap on itself.

4.3.5 Error accumulation. Recall that the algorithm uses the hop count distance
between landmarks to approximate their geodesic distance. Thus we may observe
error accumulation in the embedding when the network has an elongated shape as
shown in Figure 15. In these examples, the embedded shape is distorted and may
have self-overlap (as in example (iii)), due to error accumulation.

4.4 Further discussion

MDS. Multidimensional scaling is a standard statistical approach that takes the
all pairs proximity and recovers a 2D embedding of the vertices with linear projec-
tion methods such as principle component analysis (PCA). To better understand
why MDS introduces incorrect flips, the intuition behind it is that the network
hole causes the hop count distances to be not necessarily a good estimation of the
Euclidean distance of the nodes. For example, the node at the tip of the spiral has
a fairly long network distance to the opposite node ‘across the lake’. MDS has no
way of distinguishing this imprecise and misleading measurements from other good
distance estimates. In fact, the misleading measurements seem to ‘outweigh’ the
good measurements and MDS eventually chooses to flip the spiral over. Our other
examples also show that the MDS tends to enlarge the hole in the middle. Another
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limitation is that MDS behaves more or less like a blackbox and it is not easy to
interpret the results and not to mention improving it.

On a different note, we remark that using multi-dimensional scaling on the short-
est path distance matrix in a unit-disk graph setting is essentially the same algo-
rithm as in Isomap [Tenenbaum et al. 2000], proposed by Tenenbaum, de Silva and
Langford, for non-linear dimension reduction for high-dimensional data embedded
in a low dimensional manifold. The famous result tested in Isomap is a 2D swiss
roll shape manifold in 3D. With shortest path distance metric instead of the Eu-
clidean metric in the ambient space, Isomap is able to ‘flatten up’ the swiss roll
and recover the non-linear manifold. If the points are embedded on a 2D manifold
but with possibly holes, i.e., a slice of Swiss cheese rolled up in 3D, our algorithm
will recover a much more faithful representation of the unfolded 2D manifold. The
fundamental idea here of using carefully selected short distances and patching up
the local simplices suggests a generic rule of recovering the inherent topology and
geometry of data points in an ambient space. This is one direction we will explore
further. In a general setting, it requires both the understanding of topological fea-
tures inherent in the geodesic distances and rigidity results in higher dimensions,
both of which are not trivial.

Graph rigidity. The theory of graph rigidity in 2D has been relatively well un-
derstood. For example, there is a combinatorial condition, the Laman condition,
to characterize graphs that are generically rigid. There is also an efficient algo-
rithm, the pebble game [Jacobs and Hendrickson 1997], to test whether a graph
is generically rigid in time O(n2). Similarly, both a combinatorial characteriza-
tion of globally rigid graphs and polynomial algorithms for testing such graphs are
known [Hendrickson 1992; Berg and Jordán 2003]. It is however not trivial to apply
these rigidity results in the development of efficient localization algorithms. Given
a graph with the edge lengths specified, finding a valid graph realization in R

d for
a fixed dimension d is a NP-complete problem [Aspnes et al. 2004; Badoiu et al.
2004; Saxe 1979]. Even if we know a graph is globally rigid in 2D, there is no
known efficient algorithm to find the realization of the graph in 2D with given edge
lengths.

The pioneer work of using rigidity theory in network localization [Eren et al.
2004; Goldenberg et al. 2005; Goldenberg et al. 2006; Moore et al. 2004; Anderson
et al. 2007; So and Ye 2005; Biswas and Ye 2004] focuses on identifying special
graphs that do admit efficient localization algorithms. We briefly explain these
ideas here and compare with our approach. The first idea is to use trilateration
graphs [Eren et al. 2004; Goldenberg et al. 2005; Goldenberg et al. 2006; Moore
et al. 2004]. A trilateration graph is defined recursively. It is either a triangle or a
trilateration graph with a trilateration extension, defined as adding an additional
vertex with three edges to existing vertices. If the network contains a trilateration
graph, one can exhaustively search for the ‘seed’ triangle in the graph and greedily
find the trilateration extensions. Thus an incremental algorithm can be adopted
to find the realization of the network. A trilateration graph is a stronger condition
than global rigidity (i.e., there are globally rigid graphs that are not trilateration
graphs). The second idea is to examine d-uniquely localizable graphs. A graph with
known edge lengths is called uniquely d-localizable if there is a unique realization
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of the graph in R
d and there is no non-trivial realizations in R

k with k > d.
For example, a generic simplex of d + 1 vertices is uniquely d-localizable. For
uniquely d-localizable graphs, So and Ye [So and Ye 2005; Biswas and Ye 2004] has
shown that a semi-definite program is able to find the realization. It is not known
whether d-localizability is a generic property and it is not clear whether there is
a combinatorial characterization of graphs that are d-localizable. Both approaches
require that network has sufficiently many edges to be globally rigid.

Comparatively, we focus on the global rigidity of the combinatorial Delaunay
complex, that has high-order topological structures than graphs. The combinato-
rial Delaunay complex is globally rigid but the combinatorial Delaunay graph is not
necessarily globally rigid. Different from the graph rigidity approach, this algorithm
does not require explicitly that the network to be embedded is globally rigid. This
sheds some light on solving the network localization problem when the network is
(uniformly) sparse but not rigid, such as a grid-like network with punched holes.
Our current algorithm does not work well in the case of extremely low density net-
works because the boundary detection algorithm fails to find the network boundary
effectively. In future work we plan to remove the dependency of boundary detec-
tion step in the algorithm and hope to apply it in localizing low-density non-rigid
networks.

5. CONCLUSION

In this paper we proposed an anchor-free localization algorithm for large-scale sensor
deployment with holes and complex shape. The novelty of our localization scheme
is to extract high-order topological information to solve the notoriously difficult
problem of resolving flip ambiguities. Geometric information of sensor nodes (e.g.
node locations) has been recognized as an important character in sensor networks.
The global topology of the sensor field is shown in this paper to be helpful in
recovering the network geometry.
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6. APPENDIX

6.1 Proofs in section 2.1

Observation 2.2. The inner medial axis of R measured in terms of Euclidean

distance is the same as that measured in terms of geodesic distance.

Proof. Take the maximum size ball centered at a point p on the medial axis
under Euclidean distance measure. This ball touches two or more points on the
boundary and has no boundary points in its interior. Thus the geodesic distances
from p to the tangent points are the same as the Euclidean distances. In other
words, a point p is on the medial axis under the Euclidean distance is also on the
medial axis under the geodesic measure.

On the other hand, take a maximum size ball centered at a point p on the
medial axis under the geodesic distance measure and its tangent points on ∂R.
We argue that the geodesic shortest path from p to its tangent point must be a
straight line. If otherwise it can only bend at a point q on the boundary ∂R. This
means q is a closer boundary point than the tangent point, which contradicts with
the assumption. Thus the point p is also on the medial axis under the geodesic
distance measure. �

Next we prove an important Lemma about the inner local feature size. This
Lemma and its proof are motivated by [Amenta et al. 1998] and will be useful for
the proofs in Subsection 2.3.

Lemma 6.1. Given a disk B containing at least two points on ∂R, for each con-
nected component of B ∩R, either it contains a point on the inner medial axis, or
its intersection with ∂R is connected.

Proof. We take one connected component C of B ∩R and assume that it does
not contain a point on the inner medial axis and intersects ∂R in two or more
connected pieces. Now we take a point u in C but u is not on ∂R. Now take
u’s closest point on C ∩ ∂R. If the closest point is not unique, then u is on the
inner medial axis and we have a contradiction. Now the closet point p stays on
one connected piece of C ∩ ∂R. We take u’s closest point on a different piece of
C ∩ ∂R, denoted as q. See Figure 16. Now as we move a point x from u to q along
the geodesic path between u and q, x’s closest point on C ∩ ∂R starts with p and
eventually becomes q. So at some point x the closest point changes. That point x
is on the inner medial axis. This leads to a contradiction, and hence the claim is
true. �

6.2 Proofs in section 2.3

Observation 2.7. Two Voronoi vertices connected by a Voronoi edge correspond

to two Delaunay triangles sharing an edge.

Proof. Recall that each Voronoi vertex x certifies a Delaunay triangle of three
landmarks u, v, w. First we argue that the points on the Voronoi edge connecting
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p
B

x q
u

Fig. 16. Each connected component of B ∩R either contains a point on the inner medial axis or
its intersection with ∂R is connected.

Voronoi vertices x and y must have their two closest landmarks among u, v, w.
Certainly if one point on the Voronoi edge has one of its closest landmark to be p and
p is not any of u, v, w, then this point is a Voronoi vertex. Without loss of generality,
we assume that y has three closest landmarks u, v, z. Thus the corresponding
Delaunay triangles of x, y are △uvw and △uvz sharing an edge uv. �

Observation 2.8. For any two adjacent landmarks u, v on the same boundary

cycle, there must be a Voronoi vertex inside R whose closest landmarks include

u, v.

Proof. We take two adjacent landmarks u, v and consider the set of points in
R with equal distance from u, v. The mid-point on the geodesic path connecting
u, v, denoted by x, is at an equal distance from u, v. We take a disk through u, v
centered at x and move the disk while keeping it through u, v. Its center will trace
a curve called C(u, v) with all the points on C(u, v) having equal distances from
u, v. C(u, v) has two endpoints p, q with q on the boundary segment in between
u, v and p also on the boundary. Take r = d(p, u) = d(p, v). See Figure 17.

We claim that there must be a Voronoi vertex on C(u, v) that involves u, v and
we prove this claim by contradiction. Otherwise, p’s two closest landmarks are u, v
— the ball Br(p) centered at p with radius r contains no other landmark inside.
We take r− = r − ε with ε → 0. Thus Br−(p) contains no landmark. Now we see
that this will violate the sampling condition if we can show that there is a point on
the inner medial axis inside Br−(p) (meaning that r− ≥ ILFS(p)).

We take the connected component of Br−(p)∩R that contains the curve C(u, v),
denoted by F . By Lemma 6.1, if F does not contain a point on the inner medial
axis, then its intersection with the boundary ∂R is connected. Now we do a case
analysis depending on how the boundary curve goes through u and v. In Figure 17
(i) & (ii), the ε-neighborhood of the boundary at u, v also intersects Br−(p) ∩ R.
In (i), F ∩ ∂R has two connected pieces, thus leading to a contradiction. In (ii),
the boundary between u, v through p is completely inside Br−(p), which has no
other landmark inside. In this case there are only 2 landmarks, namely u, v, on the
boundary cycle containing p. This contradicts our sampling condition.

If the boundary at v (or u, or both) is only tangent to Br−(p)∩R (meaning that
Br−(p) does not contain any ε-neighborhood of v, see Figure 17 (iii) & (iv)), we
argue that F contains a point on the inner medial axis. To see that, we take the
ball Br(p) tangent at v with v’s ε-neighborhood outside the ball. Now we shrink it
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C(u, v)
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Fig. 17. u, v are two adjacent landmarks. The point p on the boundary has its closest landmarks
as u, v. (i)-(iv) four possible cases.

while keeping it tangent to v until it is tangent to two points on the boundary of
F . Now the center of the small ball B′ is on the inner medial axis, which is inside
Br−(p). Thus we have the contradiction. The claim is true. �

Lemma 2.9. If there is a continuous curve C that connects two points on the

boundary ∂R such that C does not contain any point on Voronoi edges, then C
cuts off a topological 1-disk of ∂R with at most one landmark inside.

Proof. Without loss of generality we assume that C has no other boundary
points in its interior. Assume C connects two points p, q on the boundary. Since
C does not cut any Voronoi edges, C must stay completely inside the Voronoi cell
of one landmark say u. Without loss of generality assume that u is to the right
of boundary point q. See Figure 18(i). Now the boundary of Voronoi cell of u is

C

q

w p

uv

x

p′

q′

C

q

w p

uv

x

p′

q′

(i) (ii)

Fig. 18. (i) C is inside the Voronoi cell of landmark u to the right of C. (ii) the curve C cuts off
a segment of ∂R with no other landmark inside.
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partitioned by the curve C, with one part completely to the left of C. Consider
one of the intersections between the Voronoi cell boundary of u with the region
boundary ∂R, say p′. We consider the ball Br(p

′) with r = d(p′, u). The point
p′ has two closest landmark, with one of them as u and the other to the left of
C, denoted as w. Now, this ball cannot contain any other landmark besides u, w.
We argue by Lemma 6.1 that the component of Br(p

′)∩R containing p′ intersects
∂R in a connected piece. Otherwise Br(p

′) contains a point on the inner medial
axis, which means r > ILFS(p′). Thus by the sampling condition there must be a
landmark inside Br(p

′).
Now, since the component of Br(p

′)∩R containing p′ intersects ∂R in a connected
piece, this intersection is a continuous segment between u and w on ∂R, completely
inside Br(p

′), by using the same argument as in the previous lemma; see Figure 18
(ii). In this case, the curve C cuts off a segment of ∂R with at most one landmark
inside. The claim is true. �
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