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l� -Approximation via Subdominants

Victor Chepoi and Bernard Fichet

Universite� d 'Aix Marseille II

Given a vector u and a certain subset K of a real vector space E, the
problem of l� -approximation involves determining an element û in K nearest
to u in the sense of the l� -error norm. The subdominant u

*
of u is the upper

bound (if it exists) of the set [x # K : xOu] (we let xOy if all coordinates
of x are smaller than or equal to the corresponding coordinates of y). We
present general conditions on K under which a simple relationship between
the subdominant of u and a best l� -approximation holds. We specify this
result by taking as K the cone of isotonic functions defined on a poset
(X, O ), the cone of convex functions defined on a subset of RN, the cone of
ultrametrics on a set X, and the cone of tree metrics on a set X with fixed dis-
tances to a given vertex. This leads to simple optimal algorithms for the
problem of best l� -fitting of distances by ultrametrics and by tree metrics
preserving the distances to a fixed vertex (the latter provides a 3-approxima-
tion algorithm for the problem of fitting a distance by a tree metric). This
simplifies the recent results of Farach, Kannan, and Warnow (1995) and of
Agarwala et al. (1996). � 2000 Academic Press

1. INTRODUCTION

The basic approximation problem can be formulated as follows: given a vector
u and a certain subset K of a linear space, fit to u a best vector û # K. The error
norms usually chosen are l1 , l2 , or l� . Usually K is a certain cone of functions (i.e.,
if f # K then :f # K for every : # R) of polynomials of given degree, of convex
functions, of dissimilarities, etc.

To give an instructive example, consider the isotonic regression problem. Given
experimental values u1 , ..., un of the dependent variable u, corresponding to values
x1 , ..., xn of the independent variable x, which constitute a set X with a partial order
O , fit to the ui a best function u=f(x) which is nondecreasing (alias isotonic) with
respect to O . Then K is the (convex) cone of all isotonic functions f defined on the
poset (X, O ) and u is the vector of numerical data on X; see Barlow, Bartholomew,
Bremner, and Brunk (1972) and Robertson, Wright, and Dykstra (1988). Algo-
rithms for this problem under the norm l2 have received a great deal of attention;
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however, polynomial time algorithms are known only when X is a linear order
(Barlow et al., 1972) or a rooted tree (Barlow et al., 1972, Chepoi, Cogneau, and
Fichet, 1997). The isotonic regression problem with the l� -norm has been con-
sidered in Chepoi et al. (1997) and Ubhaya (1974), and a strikingly simple optimal
estimate has been given.

In numerical taxonomy, u is a distance (more generally, a dissimilarity) on a
finite set X and K is the cone of all ultrametrics or tree metrics defined on X; see
Barthe� lemy and Gue� noche (1991) and Sneath and Sokal (1973). Fitting distances
by trees and ultrametrics is an important problem of data analysis, mathematical
psychology, and evolutionary biology. For example, one of the main purposes of
analyzing proximity data in psychology is to infer the mental organization of
objects. Both continuous spatial models and discrete models have been proposed.
An important discrete model is the additive tree model, which represents objects by
vertices of a tree and defines dissimilarities by path lengths in this tree (see the
papers by Carroll (1976), Carroll and Pruzansky (1980), Cunningham (1978), De
Soete (1983), and Sattath and Tversky (1977) for further information and some
algorithms for fitting additive trees to proximity data). The ultrametric fitting
problem is one of the basic problems of hierarchical clustering of data, while the
phylogeny reconstruction problem is closely related to the tree fitting problem
(Barthe� lemy and Gue� noche, 1991; Swofford and Olsen, 1990). The ultrametric and
the tree fitting problems under lp -norms first were formulated by Cavalli-Sforza and
Edwards (1967). Day (1987) and Kr� iva� nek and Mora� vek (1986) have shown that
for norms l1 and l2 both problems are NP-hard. Recently, Agarwala et al. (1996)
established that the tree fitting problem under the l� -norm is NP-hard, too.
Kr� iva� nek (1988) proposed a polynomial algorithm for the ultrametric l�-fitting
problem. An optimal algorithm for this problem has been developed by Farach,
Kannan, and Warnow (1995). Using this result, Agarwala et al. (1996) presented
a polynomial 3-approximation algorithm for the tree l� -fitting problem (i.e., in the
worst case the l�-error of a tree found by the algorithm is at most three times
larger than the l� -error of an optimal tree). Most recently, Cohen and Farach
(1997) showed that the algorithm from Agarwala et al. (1996) and its modification
outperform the neighbor joining heuristic of Saitou and Nei (1987).

In this paper we present some general conditions on the set K under which a
solution of the l� -approximation problem and its relatives is closely related to the
subdominant of a vector u in K. In particular, this significantly simplifies the algo-
rithms presented in Agarwala et al. (1996), Farach et al. (1995), and Kr� iva� nek
(1988). To illustrate the algorithms we consider the ultrametric and tree-
approximations of the distance matrix between 15 texts obtained by Bartlett (1932)
with the method of repeated reproduction.

2. GENERAL RESULTS

Let E be a finite-dimensional vector space with dimension p. According to a fixed
basis of E, a vector u in E has coordinates (u1 , ..., up). Let 1 be the vector with coor-
dinates (1, ..., 1). The set of all c1, c # R, is the diagonal L of the positive orthant
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of E. In the following, E is endowed with the l�-norm (i.e., the well-known uniform
or Chebychev norm), simply noted & }&: for a given vector u, &u&=maxi |ui |. For
two vectors u and v, &u&v& is the l� -distance between u and v. Given two subsets
A and B of E let

$(A, B)= inf
v # B

sup
u # A

&u&v&.

Note that, in general, $(A, B){$(B, A). For a vector x, $(x, B) is the l� -distance
from x to the set B.

According to the given basis, define a partial order O on E (called the pointwise
order) by letting xOy if and only if xi� yi for all i=1, ..., p. Then, every nonempty
bounded subset A of E has a least upper bound (join) and a greatest lower bound
(meet), with i-coordinates sup [ui : u # A] and inf[ui : u # A], respectively. In other
words, (E, O ) is a (conditionally) complete lattice.

Now, we formulate our basic l� -approximation problems. Let K be a nonempty
subset of E. It will be the approximating reference set. The main problem under
consideration in this paper is:

(P1) given u # E, find û # K, if one exists, such that

&u&û&=$(u, K).

We will also take an interest in approximating u by an element of K less than or
greater than u. To this end, we use the following notations:

K O(u)=[z # K : zOu], K o(u)=[z # K : zou].

Then the following problems are introduced, provided the reference sets are non-
empty.

(P$1) given u # E, find y # K O(u), if one exists, such that

&u&y&=$(u, K O(u))

and

(P"1) given u # E, find y # K o(u), if one exists, such that

&u&y&=$(u, K o(u)).

A solution of (P$1) can be obtained by solving another problem:

when K O(u) is nonempty, does this set admit a maximum element?

If the answer is yes, such an element u
*

is called the lower maximum approximation,
or the subdominant of the vector u, and u

*
yields a solution, actually the greatest

solution, of (P$1). A similar problem can be formulated for the minimum element of
the set K o(u). If it exists, it is denoted by u* and is called the upper minimum
approximation of u.
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We formulate the last basic problems, which extend (P1), (P$1), and (P"1): given
two vectors u, v, with uOv

(P2) find y # K, if one exists, such that

$([u, v], y)=$([u, v], K);

(P$2) find y # K O(u), if one exists, such that

&v&y&=$(v, K O(u));

(P"2) find y # K o(v), if one exists, such that

&u&y&=$(u, K o(v)).

Due to the specificity of the l� -norm, some further general problems can be
reduced to (P2). First, assume that A is a bounded subset of E and we wish to find
a vector y # K, if one exists, such that $(A, y)=$(A, K). Define two vectors u and
v with coordinates ui=inf[xi : x # A] and vi=sup [xi : x # A]. One can easily show
that a vector y is a solution of the problem (P2) if and only if $(A, y)=$(A, K). The
same reduction acts in the case when the vectors of the set A are defined only par-
tially, i.e., only a few coordinates of each vector are available. (This situation occurs
in the isotonic regression problem: the data are given by samples of nonequal size
from a set of distributions.) Then ui and vi are computed by taking the meet (alias
infimum) and the join (alias supremum) of well-defined i th coordinates of x # A. It
remains to replace K by its projection on the coordinate subspace generated by
coordinate directions where both u and v are defined.

Proposition 1. Let K be a subset of E invariant under translations along the line
L and let u, v be two vectors with uOv. Then

1
2$(v, K O(u))=$([u, v], K)= 1

2$(u, K o(v)) :==.

Moreover, in this case the following conditions are equivalent:

(i) y is a solution for problem (P2);

(ii) y&=1 is a solution of (P$2);

(iii) y+=1 is a solution of (P"2).

Proof. Take y # K. Define y$=y&$([u, v], y) 1. By hypothesis, y$ # K. Moreover,
y$Ou and &v&y$&�2$([u, v], y). Hence $(v, K O(u))�2$([u, v], y) for every y in
K, so that 1

2$(v, K O(u))�$([u, v], K). Conversely, let x$ # K O(u) and define x=
x$+ 1

2 &v&x$& 1. By hypothesis, x # K and it is easy to check that $([u, v], x)�
1
2 &v&x$&. Therefore, $([u, v], K)� 1

2 &v&x$&, for every x$ # K O(u), showing that
$([u, v], K)� 1

2$(v, K O(u)). Thus the equality 1
2$(v, KO(u))=$([u, v], K) :== holds.

Moreover, the previous results show that if y is a solution of (P2), then &v&y$&�
2=, whence y$=y&=1 is a solution of (P$2). Conversely, if x$ is a solution of (P$2),
then $([u, v], x)�=; hence x=x$+=1 is a solution of (P2). The other statements
follow by duality. K
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Following the terminology of Rockafellar (1970), the lineality space L of a set K
is the set of all vectors y such that K+y=K. Then K can be represented as the
direct sum K=L+(K & L=), where L= is the orthogonal complement of L (with
respect to the usual scalar product in the selected basis of E). Therefore, each set
K satisfying the condition of Proposition 1 can be written as the direct sum of the
diagonal L and the intersection of K with the orthogonal complement of L.
Geometrically, the sets K occurring in Proposition 1 have a cylindrical shape, and
the basis K & L= of such a cylinder can be an arbitrary subset of the orthogonal
complement of L.

Proposition 1 establishes a relationship between the optimal errors of the
problems (P2), (P$2), and (P"2), but does not tell whether optimal solutions exist and
how to find them. It does not seem possible to achieve much more in the conditions
of Proposition 1. Thus, we descend to a smaller, but quite natural class of sets.
Obviously, the optimality sets are nonempty if the reference set K is closed (in the
topology of E). Additionally, if y1 and y2 are two solutions of (P2), with y1 Oy2 ,
then one can easily show that every y # K obeying y1 OyOy2 is a solution. If K is
convex, then the optimality sets are convex, too. A subset K of E is called join-
closed (respectively, meet-closed ) if for any bounded subset A�K the join (i.e., the
least upper bound) of A (respectively, the meet of A) belongs to the set K; see
Birkhoff (1967). In other words, K is join-closed if K is a complete join subsemilat-
tice of E and K is meet-closed if K is a complete meet subsemilattice of E. One can
easily show that a subset K of E is join-closed if and only if for any vector u with
KO(u){< there exists the lower maximum approximation u

*
in K. Indeed, u

*
will

coincide with the join of the nonempty bounded set K O(u). Conversely, consider a
bounded set A�K and take its join u. The set K O(u) is nonempty, because it con-
tains A. Therefore, u has the lower maximum approximation u

*
# K. Since xOu

*
for any x # A and u

*
Ou, we conclude that u=u

*
. Dually, one can show that a

subset K of E is meet-closed if and only if for any vector u with K o(u){<, there
exists the upper minimum approximation u* in K. Notice that if K is join-closed,
then the set S of optimal solutions of (P2) is a complete join subsemilattice of K.

Since the lower maximum approximation is a solution of problem (P$2), from
Proposition 1 we immediately obtain the following property.

Corollary 1. Let K be a join-closed subset of E invariant under translations
along the diagonal line L. If u, v are two vectors with uOv and u

*
is the lower maxi-

mum approximation of u in K, then u
*

+ 1
2 &v&u

*
& 1 is the greatest solution of (P2).

In particular, u
*

+ 1
2 &u&u

*
& 1 is a best l� -approximation of u in K. Additionally,

u
*

+&v&u
*

& 1 is a solution of (P"2).

By duality, we can formulate a similar property if K is meet-closed. Then
v*& 1

2 &u&v*& 1 will be a solution of (P2), while v*& 1
2 &v&v*& 1 is a best

l� -approximation of v in K.

Corollary 2. Let K be a convex subset of E invariant under translations along
L and let u, v be two vectors with uOv. If x is a solution of (P$2) and y is a solution
of (P"2), then 1

2(x+y) is a solution of the problem (P2). If additionally, K is meet-
closed and join-closed, then 1

2(u
*

+v*) is a solution of (P2).
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Proof. Let = be as in Proposition 1. By this proposition the vectors x+=1 and y&
=1 are solutions of (P2). Since K is convex and 1

2(x+y)= 1
2[(x+=1)+(y&=1)], we

deduce that 1
2(x+y) is a solution of (P2). K

The following sandwich problem is a generalization of a similar problem for-
mulated in Farach et al. (1995) for ultrametrics. Given u, v with uOv find a vector
y # K (if possible) such that uOyOv.

Corollary 3. Let K be a join-closed subset of E. Then the sandwich problem has
a solution if and only if uOv

*
.

Proof. If uOv
*

, then v
*

is a solution of the sandwich problem. Conversely,
suppose that the sandwich problem has a solution y. Then uOyOv

*
and we are

done. K

All these rather simple properties can be of use only in the case where meets and
joins can be computed efficiently. As we will show below, so it is in many important
cases. Before presenting them, we formulate a consensus problem, whose solution
can be found without such computations. Given a set A of vectors w1 , ..., wn # K we
wish to find a vector y # K (if it exists) such that $(A, y)=$(A, K). As we already
noticed, a more general form of this problem can be reduced to (P2). However, if
K is join-closed and invariant under translations along L, then the consensus
problem can be solved more easily. Namely, find the meet u and the join v of the
set A. Then v # K and by the previous results we deduce that the vector
v& 1

2&v&u& 1 provides a solution to the consensus problem.

Corollary 4. Let K be a join-closed subset of E invariant under translations
along L. Then the vector v&=1 with == 1

2&v&u& is a solution of the consensus
problem.

We conclude this section with two concrete applications of our remarks.

Example 1 (isotonic l� -regression problem). Let X=[x1 , ..., xn] be a set of
observation points endowed with a partial order O , and assume that with each ele-
ment xi is associated a set of numbers y i1 , ..., yiri , corresponding, for example, to a
sample from the i th distribution. We are looking for an isotonic function f on X
(i.e., xi Oxj implies f(xi)�f(xj)) that minimizes the l� -error

D�(f)=max
xi # X

max
l=1, ..., ri

| yil&f(x i)|.

Let M(X) be the convex cone of isotonic functions on X. It is easy to see that
M(X) is a complete sublattice of the n-dimensional vector space RX and is invariant
under translations along the diagonal line. Therefore, we can apply the previous
results.

For each element xi define fi=min[ yi1 , ..., yiri] and gi=max[ yi1 , ..., yiri]. Let
f=( f1 , ..., fn) and g=(g1 , ..., gn). Obviously fOg. The isotonic regression problem
reduces to the problem (P2) with the vectors f, g and the set M(X). To solve it we
find the lower maximum approximation f

*
=( f

*
1 , ..., f

*
n ) of f and the upper mini-

mum approximation g*=(g1*, ..., gn*) of g in M(X). One can easily show that for
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each element xi we have f
*
i =min[ fj : xi Oxj] and gi*=max[gj : xj Oxi]. From

Corollaries 1 and 2 we obtain three solutions of (P2) and of the isotonic regression
problem: f

*
+ 1

2 &g&f
*

& 1, g*& 1
2 &g*&f& 1, and 1

2 (f
*

+g*) (see also Chepoi et al.
(1997) and Ubhaya (1974)). If (X, O ) is given by the covering graph, then the
complexity of this procedure is linear in the number of edges of this graph and the
size of the set of observations.

Example 2 (l� -approximation by convex functions). The cone C of convex
functions on R p is another example of a complete lattice. The meet of a family F
of convex functions is conv[f # F], while the join is sup [f # F]; see Rockafellar
(1970). In numerical applications, we have a finite subset X=[x1 , ..., xn] of R p and
the corresponding values y1 , ..., yn of the dependent variable y. We are searching a
convex function f (or, only the restriction of f to the set X) that minimizes the
l� -error

D�(f)=max
xi # X

| yi& f (xi)|.

If we will take the restriction of each convex function to the set X, then again we
will get a complete lattice C(X)/RX which is invariant under translations along
the diagonal line. Therefore, Proposition 1 and its corollaries apply in this case as
well. Let F=[(xi , yi): xi # X]. We compute the convex hull conv(F ) of the set F
(for algorithms and other details see Edelsbrunner (1987)) and take its lower part
conv

*
(F ). This is a part of the graph of a piecewise linear convex function f

*
,

whose restriction on the set X is nothing but the lower maximum approximation
of the vector y in the cone C(X). Let == 1

2 maxxi # X[ yi&f
*

(x i)]. Then the convex
function f

*
+=1 minimizes the l� -error D�(f) with f # C.

3. TREES AND ULTRAMETRICS

In this section we present the principal applications of the properties from the
previous section. Throughout the section, X will be a finite set with n elements. Let
D :=D(X) be the vector space of functions d: X2 � R satisfying the properties
d(x, x)=0 for all x # X and d(x, y)=d( y, x) for all x, y # X. The dimension of D

is n(n&1)�2. A dissimilarity is a function d # D taking nonnegative values. By a
slight abuse of terminology, a metric is a dissimilarity d satisfying the triangle condition:

d(x, y)�d(x, z)+d(z, y) for all x, y, z # X.

A dissimilarity d is said to be an ultrametric if it satisfies the ultrametric inequality:

d(x, y)�max[d(x, z), d( y, z)] for all x, y, z # X.

A metric d is a tree metric if it satisfies the following 4-point condition:

d(x, y)+d(z, w)�max[d(x, z)+d( y, w), d(x, w)+d( y, z)]

for all x, y, z, w # X.
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The 4-point condition is equivalent with the tree realizability of a given distance
matrix (see, for example, Buneman (1974) and Zaretskii (1965)). This constitutes a
well-known result used widely in numerical taxonomy. Every ultrametric is a tree
metric; see, for example, Critchley and Fichet (1994).

Denote by U :=U(X) all d # D obeying the ultrametric inequality for distinct
elements. It is easy to show (and well known) that any d # D admits the subdomi-
nant (alias the lower maximum approximation) d

*
in U. If d is a dissimilarity, then

d
*

is an ultrametric. The approximation d
*

can be computed via minimum span-
ning trees of d; see Gower and Ross (1969) (another way to compute d

*
is to use

the well-known single linkage algorithm). Let T be a minimum spanning tree of d.
For any x, y # X set d

*
(x, y) to be the length of a longest edge on the unique path

connecting x and y in T. The algorithm can be easily implemented in optimal O(n2)
time. Equivalently, d

*
(x, y) coincides with the so-called bottleneck distance

between x and y; see Hu (1960). Namely, in any path connecting x and y in the
complete graph, take the longest edge and among such edges take the shortest one.
Its length is d

*
(x, y).

Farach et al. (1995) presented an algorithm with complexity O(n2) for the
sandwich problem and the l�-fitting problem for ultrametrics. The implementation
details and the correctness analysis of this algorithm are rather complicated. The
results of the previous section suggest an alternative approach to these problems.
Indeed, U is invariant under translations along the diagonal L of D (notice that
U is a join subsemilattice of D). By Proposition 1 and Corollary 1, d

*
+

1
2 &d&d

*
& 1 is a best l�-approximation of d in U. Again, if d is a dissimilarity, then

d
*

+ 1
2 &d&d

*
& 1 is an ultrametric. More generally, if d$, d" # D and d$Od", then

d$
*

+ 1
2 &d"&d$

*
& 1 is a solution of the problem (P2) related to U. Since U is join-

closed, the sandwich problem has a solution if and only if d$Od"
*

. The complexity
of these procedures is the complexity to find the lower maximum approximation,
i.e., O(n2). To solve the consensus problem for a subset A of U we find d$=
inf[ui # A] and d"=sup [ui # A]. Then d" # U and thus d"& 1

2 &d"&d$& 1 provides
a solution to the consensus problem. Its complexity is O(n2 |A| ).

Finally, suppose that d is a partial dissimilarity, that is d is defined on a certain
subset E of pairs. Denote by d$ the extension of d to the whole set X_X by setting
d$(u, v)=M on all missing pairs (u, v), where M>max[d(x, y): (x, y) # E]. Then
there is an ultrametric extension of d if and only if the subdominant of d$ coincides
with d on E. Otherwise, to find a best l� -ultrametric approximation of d one can
proceed as follows. Let DE denote the set of all partial dissimilarities on E and let
UE be those vectors of DE which have at least one ultrametric extension. Then UE

is join-closed and contains the diagonal line of DE . Therefore, for every d # UE we
have a subdominant and an l� -approximation in UE . We acknowledge
A. Gue� noche for drawing our attention to this question and suggesting that the
subdominant in this case is the ultrametric obtained from the minimum spanning
forest of d on E.

Let T :=T(X) be the set of d # D satisfying the 4-point condition for distinct
elements. From a result of Bandelt and Steel (1995), all d # T can be realized by
weighted trees with real edge weights. Choose a base-point a of X, and denote
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Xa :=X"[a], Ua :=U(Xa). There is a close relationship between the cones T and
Ua . Define da # D with zero diagonal by setting

da(x, y)=d(x, y)&d(x, a)&d( y, a) (1)

for x{ y in X. The quantity &1
2da(x, y) is known as the Gromov product of x,

y # Xa (see Ghys and de la Harpe (1990)), while da plus an additive constant is
called the Farris transform of d (see Bandelt (1990) and Leclerc (1995)). The follow-
ing result in the case of metrics has been suggested by Farris, Kluge, and Eckardt
(1970) and was rediscovered by Klotz and Blanken (1981) and Brossier (1985). In
the full generality, the result is due to Leclerc (1995).

Lemma 1. d # T if and only if da| Xa # Ua .

We continue with a characterization of tree metrics.

Lemma 2. For a function d # D the following conditions are equivalent:

(i) d is a tree metric;

(ii) d # T and for any x, y # X, |d(a, x)&d(a, y)|�d(x, y)�d(a, x)+d(a, y);

(iii) da # U and for any x, y # X, |d(a, x)&d(a, y)|�d(x, y).

Proof. (i) O (ii) is obvious.

(ii) O (iii). First, da|Xa # Ua . For any pair of distinct points x, y # Xa ,
da(x, y)�0 by (ii), so that da(x, y)�da(a, x)=da(a, y).

(iii) O (i). Clearly, da # U�T infers that d # T. Pick three distinct elements x,
y, z of X. In order to prove the metric inequality observe that d(x, y)�d(x, z)+
d( y, z) if and only if da(x, y)&2d(a, z)�da(x, z)+da( y, z). But, for every v # X,
v{z, we have da(z, v)+2d(a, z)�0. Indeed, da(z, v)+2d(a, z)=d(z, v)+d(a, z)&
d(a, v)�0. Thus, &2d(a, z)�min[da(x, z), da( y, z)] and da(x, y)�max[da(x, z),
da( y, z)], completing the proof. K

Remark. From Lemma 1 one can deduce the following strengthening of the
4-point condition for tree metrics: Let d # D and let a be fixed point of X. Then
d # T if and only if d satisfies the 4-point condition for a and any distinct points x,
y, z # Xa .

Given a base-point a # X and a function r: X � R with r(a)=0, we denote by Da, r

the collection of all the dissimilarities d such that d(a, x)=r(x) for all x # X. Da, r

is an affine vector space of dimension (n&1)(n&2)�2. Let Ta, r=T & Da, r . By Tm
a, r

we denote all tree metrics from Ta, r . One can easily show that Ta, r is invariant
under translations along the diagonal line of Da, r (this is no longer true for the
diagonal line of the space D).

Proposition 2. Any d # Da, r admits the lower maximum approximation in Ta, r .
A function d # Da, r admits the lower maximum approximation in Tm

a, r if and only if

|d(a, x)&d(a, y)|�d(x, y) (2)

for any x, y # X. If d is a metric, then the two approximations coincide.
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Proof. Let (da| Xa)*
be the subdominant of da|Xa in Ua . Extend (da|Xa)*

to X by
setting (da|Xa)*

(a, x)=0 for any x # X. Define d
*

# Da, r obtained from (da|Xa)*
via

the inverse of (1). By Lemma 1, we deduce that d
*

is the lower maximum
approximation of d in Ta, r .

Clearly, the triangle condition (2) is a necessary condition for the existence of a
metric less than d and preserving the values d(a, x), in particular of a tree metric
in Tm

a, r less than d. Now, suppose that d obeys (2). Let d
*
a be the subdominant of

da in U. Since d
*
a(a, x)�da(a, x)=0, for every x # X, we obtain that d

*
a(x, y)�0 for

arbitrary x, y # X. Consequently, we deduce d
*
a(a, x)=0 for every x # X. Thus, the

function d
*

obtained from d
*
a via the inverse of (1) belongs to the set Ta, r . If d is

a metric, then d a(x, y)�0 for any x, y # Xa . From this and previous arguments we
deduce that the restriction of d

*
a on Xa coincides with (da|Xa)*

, thus proving the
third assertion. It remains to prove that d

*
is a metric. By Lemma 2 it suffices to

show that d
*

(a, x)&d
*

(a, y)�d
*

(x, y) for any distinct x and y. But this condition
is equivalent to d

*
a(a, x)&2r( y)�d

*
a(a, y)+d

*
a(x, y), i.e.,

d
*
a(x, y)+2r( y)�0. (3)

To establish (3) for fixed x and y, set : :=minz{ y da( y, z). The function d$ defined
by d$( y, z)=: for every z{ y and d$(u, v)=;<: elsewhere is in U and less
than da, hence less than d

*
a , for ; sufficiently small. Therefore d

*
a(x, y)�da( y, z)

for some z{ y. Hence d
*
a(x, y)+2r( y)�d( y, z)+r( y)&r(z)�0 by (2). Thus

d
*

# Tm
a, r and by Lemma 2, d

*
is the lower maximum approximation of d in

Tm
a, r . K

From Proposition 2 we obtain a simple optimal algorithm for constructing the
subdominant d

*
of d in Ta, r and even in Tm

a, r when it exists. From d we find da

applying (1); then we compute the subdominants (da|Xa)*
and d

*
a . This can be done

in time O(n2) by using a minimum spanning tree T of da. Then find d
*

using the
inverse transform of (1). The whole computation requires O(n2) number of opera-
tions. This construction implicitly has been used by M. Gromov for finding
approximating trees in hyperbolic spaces; see Ghys and de la Harpe (1990).

Let d� and d� be best tree metric l�-approximations of the metric d in the sets Ta, r

and T, respectively. (We assume r(x)=d(a, x) for any x # X.) Agarwala et al.
(1996) established that

&d&d� &�3 } &d&d� &.

They showed that the problem of computing d� is NP-hard, while the problem of
finding d� can be solved by Farris transform and a modification of the algorithm
from Farach et al. (1995). Namely, expressed here with the equivalent transform
(1), their approach is as follows. Starting from d, we get da by (1). Then we may
compute an l� -ultrametric approximation d� a of da that yields by the converse
transform of (1) an element d� . In order to ensure d� # Da, r , the function d� a must
satisfy the constraint

d� a(a, x)=0 for any x # X. (4)
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Then, d� will be an l� -approximation of d in Tm
a, r provided d� is a metric. To

guarantee that, we have to impose an additive constraint on d� a, analogous to (3):

for any x, y # X, x{ y, d� a(x, y)+2r( y)�0. (5)

Agarwala et al. (1996) modify the algorithm from Farach et al. (1995) for comput-
ing d� a satisfying the constraints (4) and (5).

We can get the same performances by starting from the subdominant d
*

of d in
Ta, r and Tm

a, r . As before, let == 1
2 &d&d

*
& and 1 # Da, r . From Proposition 1 we

obtain the following result.

Corollary 5. Let d # Da, r and d
*

be the subdominant of d in Ta, r . Then
d� =d

*
+=1 is a best l�-approximation of d in Ta, r and

&d&d� &�3 } $(d, T).

The proof of the last inequality is identical to the proof of Lemma 3.3 of
Agarwala et al. (1996).

Now, suppose that d # Da, r fulfills the triangle condition (2). Let d
*

be its sub-
dominant in Tm

a, r . Define d� 0=d
*

+=1. If d is a metric, then d� 0 is a best
l� -approximation in Ta, r (in fact, it coincides with the l�-approximation d� from
Corollary 5). However, as the following example shows, d� 0 is not necessarily a
metric. Let X=[a, b, x, y, z] and

d(a, x)=d(a, y)=d(a, z)=d(b, x)=d(b, y)=d(b, z)=16,

d(a, b)=2, d(x, y)=d(x, z)=10, d( y, z)=20.

Then

da(x, y)=da(x, z)=&22, da(b, x)=da(b, y)=da(b, z)=&2, da( y, z)=&12.

The subdominant d
*
a of da in U is given by d

*
a(x, y)=d

*
a(x, z)=d

*
a(z, y)=&22,

d
*
a(b, x)=d

*
a(b, y)=d

*
a(b, z)=&2. The tree metric d

*
is represented by a tree T; see

Fig. 1a. Note that ==5 and that d� 0=d
*

+=1 is not a metric. Still d� 0 can be
represented by a weighted tree obtained from T by increasing the lengths of its
stems by =�2 and decreasing by the same value the length of the stem incident to
a; see Fig. 1b.

To repair this, it suffices instead of d� 0 to consider d� 1 :=d
*

+=1, where = is defined
as before and where 1 is the diagonal line of D. In other words, for any distinct x,
y # X we set d� 1(x, y)=d

*
(x, y)+=. If d # Da, r obeys (2), by Proposition 2, d

*
is a

tree metric; thus d� 1 is a tree metric, too. The tree of d� 1 has the same topology as
the tree representing d

*
. It is obtained from T by increasing the lengths of all stems

by =�2.

Corollary 6. If d # Da, r fulfills the triangle condition (2), then d� 1 is a tree
metric and

&d&d� 1&=$(d, Tm
a, r).
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FIG. 1. (a) d
*

and (b) d� 0 .

We may also obtain a best l�-approximation in Tm
a, r , thus recovering the result

from Agarwala et al. (1996). Our result is more general and we avoid the solution
of a restricted l�-approximation problem as in the approach of Agarwala et al.
(1996). Here 1 stands for the diagonal line of D.

Corollary 7. Let d # Da, r fulfill the triangle condition (2) and suppose that da

is obtained from d using (1). Let d
*
a be the subdominant of da in U. Define d� to be

obtained from the meet of 0 and d
*
a+ 1

2 &da&d
*
a& 1 by the transformation inverse to

(1). Then d� is a best l�-approximation of d in Tm
a, r .

Indeed, by Proposition 1, d
*
a+ 1

2 &da&d
*
a& 1 is an l� -approximation of da in U,

and clearly the same remains true for the meet of 0 and d
*
a+ 1

2 &da&d
*
a& 1.

Moreover, the latter function fulfills (5), since d
*
a does (see (3)).

Note that if the initial d is a tree metric, then d� and d
*

coincide with d, giving
an optimal O(n2) algorithm for recognizing tree metrics; see Bandelt (1990),
Barthe� lemy and Gue� noche (1991), Batagelj, Pisanski, and Simoes-Pereira (1990),
and Leclerc (1995) for other recognition procedures.

Let Ua, r=U & Da, r . We conclude this section with a simple procedure for finding
a best l� -approximation d� in Ua, r of a function d # Da, r . Let r1< } } } <rk be the dis-
tinct values of r(x), x # Xa and put Bi=[x # Xa : d(a, x)=ri]. Then d� (a, x)=ri for
any x # Bi . By the ultrametric inequality, d� (x, y)=rj for any x # Bi and y # Bj with
i< j. To solve the initial problem, it suffices to find for each d|Bi a best
l�-approximation in U(Bi) all of whose values do not exceed ri . Let d� i be a best
l�-approximation in U(Bi) of d|Bi (for example, that computed by our algorithm).
Define a new d� $i # U(Bi) by letting d� $i (u, v)=min[ri , d� i (x, y)]. We assert that d� $i a
required l�-approximation of d|Bi . Indeed, if &d� $i&d|Bi &=&d� i&d|Bi &, there is nothing
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TABLE 1

Distance Matrix d of Bartlett

ORIG N1 N15 HP1 HP8 L1 L120 P1 P45 P105 P1145 R1 R15 R45 X180

ORIG 0
N1 81 0

N15 81 32 0

HP1 119 102 106 0

HP8 121 102 108 42 0

L1 78 85 89 107 113 0

L120 110 91 99 97 99 88 0

P1 118 83 101 91 97 102 92 0

P45 109 88 94 100 102 107 95 59 0

P105 113 92 104 94 100 105 97 49 52 0

P1145 115 80 84 76 80 107 87 71 80 76 0

R1 80 59 65 75 83 92 82 80 77 87 53 0

R15 91 62 68 76 84 93 79 75 78 86 46 23 0

R45 101 68 68 78 92 103 77 79 86 90 42 37 20 0

X180 113 78 90 84 94 111 87 83 92 90 58 65 58 56 0

to prove. So, assume that &d� $i&d|Bi &>&d� i&d| Bi & and that this error is realized
by a pair u, v # Bi . Then obviously d� $i (u, v)=ri and d(u, v)�ri . For any other d� i" #
U(Bi) whose values do not exceed ri , we have d(u, v)&d� i" (u, v)�d(u, v)&d� $i (u, v),
thus establishing the optimality of d� $i . If the initial d # Da, r is a dissimilarity, then all
d� $i , i=1, ..., k, are ultrametrics, and the global solution is an ultrametric, too.

To illustrate the results of this section, we consider the distance matrix between
15 texts obtained by Bartlett (1932) (Table 1) with the method of repeated
reproduction of the legend ``The war of the ghosts'' (we acknowledge J.-P.
Barthe� lemy for suggesting this example). This distance matrix d has been

FIG. 2. A best l� -ultrametric approximation of d.
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FIG. 3. A best l�-approximation of d in Tm
a, r preserving the distances of ORIG.

approximated by a tree metric by Abdi, Barthe� lemy, and Luong (1984) using a dif-
ferent approach. Six different subjects are denoted by the letter(s) beginning the
labels. The number following the letter(s) indicates the number of days between the
first presentation and the recall. ORIG denotes the original text. Although slightly
different from the tree of Abdi et al. (1984), both the ultrametric and the tree
l�-approximations of d indicate a strong fidelity of most subjects to themselves (see
Figs. 2 and 3).

4. UNIVERSAL SOLUTIONS

In Section 2 we presented some simple properties of the set S of optimal solutions
of the problem (P2) under the l�-norm. In general S is sufficiently large, so that
it might be desirable to distinguish a unique element of S, sharing certain additional
properties. A major example is provided by the consensus problem. It is in the
nature of this problem to return a unique solution or to distinguish one among the
set of solutions. In this section we present a method to select a universal solution.

Let K be join-closed and invariant under translations along the diagonal line L.
By = denote the optimal error of (P2) for vectors u, v # E. Additionally we suppose
that Ko(v) has a minimum element v$. Then S has a minimum element u1 :=v$&=1
and a maximum element v1 :=u

*
+=1. This implies that S coincides with the order

interval [u1 , v1] :=[y # K: u1 OyOv1].
Define a decreasing chain of nonempty subsets [Si] of K. For this, set S1 :=S;

now, given Sn , let Sn+1=Sn & S$n , where S$n is the set of solutions for the
l�-consensus of Sn . The next result shows that this procedure stabilizes provided
we obtain a one-point set.
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Proposition 3. After at most p steps we will obtain a set with a single solution
w, called the universal solution. If, in addition, K is meet-closed then w= 1

2 (u
*

+v*).

Proof. First, by induction on n we will prove that every Sn is an order interval.
As we noticed before, this is true for n=1. Suppose, by the induction hypothesis,
that Sn=[un , vn]. Let =n be the optimal error for the l� -consensus of Sn . The set
S$n has a minimum element u$n :=vn&=n1 and a maximum element v$n :=un+=n1.
Let un+1 be the join of un and u$n . Since K is join-closed, the vector un+1 belongs
to K and lies between un and vn , whence un+1 # Sn+1 . Moreover, un+1 is the mini-
mum element of Sn+1 . Notice that a vector belongs to Sn+1 if and only if it lies
between un+1 and the meet of vn and v$n . Therefore, if vn+1 is the subdominant of
the latter vector, then Sn+1=[un+1 , vn+1]. Moreover, if =n {0, then for every
1�i�p such that (vn) i&(un) i=2=n , we infer that (vn+1) i=(un+1) i . Hence, after at
most p steps, we will arrive at a single solution w.

Now, suppose that K is meet-closed. Then v$=v*, and, consequently,
w := 1

2 (u
*

+v*) coincides with the vector 1
2 (u1+v1). By the induction on n and the

previous proof, one can easily check that w= 1
2 (un+vn), concluding the proof. K

We continue with an efficient procedure for finding the universal solution w. As
in some previous methods, we suppose that there is an algorithm for computing the
subdominants and, additionally, a method for finding the minimum element v$ of
Ko(v) (in the consensus problem, v$=v). The procedure consists of at most p itera-
tions, the complexity of each iteration being the complexity of computing the sub-
dominant of some vector. In the preprocessing step, we find v$, the subdominant u

*
of u, and the error == 1

2&v$&u&. Set u1=v$&=1 and v1=u
*

+=1.

(1) If =n= 1
2&vn&un&=0 then return w :=un .

(2) Compute the join un+1 of un and vn&=n 1.

(3) Find the subdominant vn+1 of the meet of vn and v$n :=un+=n1.

(4) Set n :=n+1 and go to step (1).

This algorithm yields a universal l� -consensus. It can be applied to convex
regressions, ultrametrics, or trees from Ta, r . For isotonic regressions, Proposition 3
provides a new characterization of the solution 1

2 (f
*

+g*).
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