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PERSISTENT CLUSTERING AND A THEOREM OF J. KLEINBERG

GUNNAR CARLSSON AND FACUNDO MÉMOLI

Abstract. We construct a framework for studying clustering algorithms, which includes two key ideas:
persistence and functoriality. The first encodes the idea that the output of a clustering scheme should carry
a multiresolution structure, the second the idea that one should be able to compare the results of clustering

algorithms as one varies the data set, for example by adding points or by applying functions to it. We show
that within this framework, one can prove a theorem analogous to one of J. Kleinberg [Kle02], in which one
obtains an existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme, stability and convergence are established.

1. Introduction

Clustering techniques play a very central role in various parts of data analysis. They can give important
clues to the structure of data sets, and therefore suggest results and hypotheses in the underlying science.
There are many interesting methods of clustering available, which have been applied to good effect in dealing
with many datasets of interest, and they are regarded as important methods in exploratory data analysis.

Despite being one of the most commonly used tools for unsupervised exploratory data analisys and despite
its and extensive literature very little is known about the theoretical foundations of clustering methods.

The general question of which methods are “best”, or most appropriate for a particular problem, or
how significant a particular clustering is has not been addressed as frequently. One problem is that many
methods involve particular choices to be made at the outset, for example how many clusters there should
be, or the value of a particular thresholding quantity. In addition, some methods depend on artifacts in the
data, such as the particular order in which the elements are listed. In [Kle02], J. Kleinberg proves a very
interesting impossibility result for the problem of even defining a clustering scheme with some rather mild
invariance properties. He also points out that his results shed light on the trade-offs one has to make in
choosing clustering algorithms. In this paper, we produce a variation on this theme, which we believe also
has implications for how one thinks about and applies clustering algorithms.

In addition, we study the precise quantitative (or metric) stability and convergence/consitency of one
particular clustering scheme which is characterized by one of our results.

We summarize the two main points in our approach.

Persistence: We believe that the output of clustering algorithms shouldn’t be a single set of clusters,
but rather a more structured object which encodes “multiscale” or “multiresolution” information about the
underlying dataset. The reason is that data can often intrinsically possess structure at various different
scales, as in Figure 1 below. Clustering techniques should reflect this structure, and provide methods for
representing and analyzing it.
Ideally, users should be presented with a readily computable and presentable object which will give him/her
the option of choosing the proper scale for the analysis, or perhaps interpreting the multiscale invariant
directly, rather than being asked to choose a scale or choosing it for him/her. It is widely accepted that
clustering is ultimately itself a tool for exploratory data analysis, [vLBD05]. In some sense, it is therefore
totally acceptable to provide this multiscale invariant, whenever available and let the user pick different
scale thresholds that will yield different partitions of the data. Once we accept this, we can concentrate on
answering theoretical questions regarding schemes that output this kind of information. Our analysis will
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Figure 1. Dataset with multiscale structure and its corresponding dendrogram.

not, however, rule out clustering methods that provide a one-scale view of the data, since, formally, one can
consider a such a scheme as one that at all scales gives the same information, cf. Example 2.2

We choose a particular way of representing this multiscale information, we use the formalism of persistent
sets, which is introduced in Section 2, Definition 2.1. The idea of showing the multiscale clustering view of
the dataset is widely used in Gene expression data analysis and it takes the form of dendrograms.

Functoriality: As our replacement for the constraints discussed in [Kle02], we will use instead the notion
of functoriality which has been a very useful framework for the discussion of a variety of problems within
mathematics over the last few decades. For a discussion of categories and functors, see [ML98]. Our idea is
that clusters should be viewed as the stochastic analogue of the mathematical concept of path components.
Recall (see, e.g. [Mun75]) that the path components of a topological space X are the equivalence classes of
points in the space under the equivalence relation �path, where, for x, y P X , we have x �path y if and only
if there is a continuous map ϕ : r0, 1s Ñ X so that ϕp0q � x and ϕp1q � y. In other words, two points in X

are in the same path component if they are connected by a continuous path in X . This set of components
is denoted by π0pXq. The assignment X Ñ π0pXq is said to be functorial, in that given a continuous map
f : X Ñ Y (morphism of topological spaces), there is a natural map of sets π0pfq : π0pXq Ñ π0pY q, which
is defined by requiring that π0pfq carries the path component of a point x P X to the path component of
fpxq P Y . This notion has been critical in many aspects of geometry; it provides the basis for the methods
of organizing geometric objects combinatorially which is referred to as combinatorial or simplicial topology.

The input to clustering algorithms is not, of course, a topological space. Rather, it is typically point cloud
data, finite sets of points lying in a Euclidean space of some dimension, or perhaps in some other metric
space, such as a tree or a collection of words in some alphabet equipped with a metric. We will therefore
think of it as a finite metric space (see [Mun75] for a discussion of metric spaces). There is a natural notion
of what is meant by a map of metric spaces, which one can think of as loosely analogous to continuity. This
notion has been used in other contexts in the past, see for example [Isb64]. Similarly, we define a natural
notion of what is meant by a morphism of the persistent sets defined above, and require functoriality for
the clustering algorithms we consider in terms of these notions of morphisms. For the time being the reader
not familiar with the concept, can think of functoriality as a notion of coarse stability/consistency. By
varying the richness of the class of morphisms between metric spaces one can control how stringent are the
conditions imposed on the clustering algorithms. Functoriality can therefore be interpreted as a notion of
coarse stability of these clustering algorithms.

In [McC02], the idea of using categorical and functorial ideas in statistics has been proposed as a formalism
for defining what is meant by statistical models. One aspect of our work is to show that the same ideas, which
are so powerful in many other aspects of mathematics, can be used to understand the nature of algorithms
for accomplishing statistical tasks.

We summarize the main features of our point of view.
(a) It makes explicit the notion of multiscale representation of the set of clusters.
(b) By varying the degree of functoriality (i.e. by considering different notions of morphism on the domain

of point cloud data) one can reason about the existence and properties of various schemes. We illustrate this
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possibility in Section 4. In particular, are able to prove a uniqueness theorem for clustering algorithms with
one natural notion of functoriality.

(c) Beyond the conceptual advantages cited above, functoriality can be directly useful in analyzing
datasets. The property can be used to study qualitative geometric properties of point cloud data, in-
cluding more subtle geometric information than clustering, such as presence of “loopy” behavior or higher
dimensional analogues. See e.g. [CIdSZ08] for an example of this point of view. We will also present an
example in Subsection 3.2. In addition, the functoriality property can be used to analyze functions on the
datasets, by studying the behavior of sublevel sets of the function under clustering. One version of this idea
builds probabilistic versions of the Reeb graph. See [SMC07] for a number of examples of how this can work.

Other, different, notions of stability of clustering schemes have appeared in the literature, see [Rag82,
BDvLP06] and references therein. We touch upon similar concepts in Section 5.

The organization of the paper is as follows. In Section 2 we introduce the main objects that model the
output of clustering algorithms together with some important examples. Section 3 introduces the concepts
of categories and functors, and the idea of functoriality is discussed. We present our main characterization
results in Section 4. The quantitative study of stability and consistency is presented in Section 5. Further
applications of the concept of functoriality are discussed in Section 6 and concluding remarks are presented
in Section 7.

2. Persistence

In this section we define the objects which are the output of the clustering algorithms we will be work-
ing with. These objects will encode the notion of “multiscale” or “multiresolution” sets discussed in the
introduction.

Let PpXq denote the set of partitions of the (finite) set X .

Definition 2.1. A persistent set is a pair pX, θq, where X is a finite set, and θ is a function from the
non-negative real line r0,�8q to PpXq so that the following properties hold.

(1) If r ¤ s, then θprq refines θpsq.
(2) For any r, there is a number ǫ ¡ 0 so that θpr1q � θprq for all r1 P rr, r � ǫs.

If in addition there exists t ¡ 0 s.t. θptq consists of the single block partition for all r ¥ t, then we say that
pX, θq is a dendrogram.1

The intuition is that the set of blocks of the partition θprq should be regarded as X viewed at scale r.

Example 2.1. Let pX, dq be a finite metric space. Then we can associate to pX, dq the persistent set
whose underlying set is X , and where blocks of the partition θprq consist of the equivalence classes under
the equivalence relation �r, where x �r x1 if and only if there is a sequence x0, x1, . . . , xt P X so that
x0 � x, xt � x1, and dpxi, xi�1q ¤ r for all i.

Example 2.2. A more trivial example is one in which θprq is constant, i.e. consists of a single partition.
This is the scale free notion of clustering. Examples are k-means clustering and spectral clustering.

Example 2.3. Here we consider the family of Agglomerative Hierarchical clustering techniques, [JD88].
We (re)define these by the recursive procedure described next. Let X � tx1, . . . , xnu and let L denote a
family of linkage functions, i.e. functions which one uses for defining the distance between two clusters. Fix
l P L. For each R ¡ 0 consider the equivalence relation �l,R on blocks of a partition Π P PpXq, given
by B �l,R B1 if and only if there is a sequence of blocks B � B1, . . . ,Bs � B1 in Π with lpBk,Bk�1q ¤ R

for k � 1, . . . , s � 1. Consider the sequences r1, r2, . . . P r0,8q and Θ1,Θ2, . . . P PpXq given by Θ1 :�
tx1, . . . , xnu and for i ¥ 1, Θi�1 � Θi{ �l,ri where ri :� mintlpB,B1

q, B,B1

P Θi, B � B1

u. Finally, we
define θl : r0,8q Ñ PpXq by r ÞÑ θlprq :� Θiprq where iprq :� maxti|ri ¤ ru. Standard choices for l are
single linkage: lpB,B1

q � minxPB minx1PB1 dpx, x1q; complete linkage lpB,B1

q � maxxPB maxx1PB1 dpx, x1q; and

average linkage: lpB,B1

q �

°

xPB

°

x1PB1 dpx,x
1

q

#B�#B1

. It is easily verified that the notion discussed in Example 2.1 is

equivalent to θl when l is the single linkage function. Note that, unlike the usual definition of agglomerative

1In the paper we will be using the word dendrogram to refer both to the object defined here and to the standard graphical
representation of them.
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hierarchical clustering, at each step of the inductive definition we allow for more than two clusters to be
merged.

We will be using the persistent sets which arise out of Example 2.1. It is of course the case that the
persistent set carries much more information than a single set of clusters. One can ask whether it carries too
much information, in the sense that either (a) one cannot obtain useful interpretations from it or (b) it is
computationally intractable. We claim that it can usually be usefully interpeted, and can be effectively and
efficiently computed. One can observe this as follows. Since there are only a finite number of partitions of
X , a persistent set Q gives a partition of R� into a finite collection I of intervals of the form rr, r1q, together
with one interval of the form rr,�8q. For each such interval, every number in the interval corresponds to
the same partition of X .

We claim that knowledge of these intervals is a key piece of information about the persistent sets arising
from Examples 2.1 and 2.3 above. The reason is that long intervals in I correspond to large ranges of
values of the scale parameter in which the associated cluster decomposition doesn’t change. One would then
regard the partition into clusters corresponding to that interval as likely to represent significant structure
present at the given range of scales. If there is only one long interval (aside from the infinite interval of
the form rr,�8q) in I, then one is led to believe that there is only one interesting range of scales, with a
unique decomposition into clusters. However, if there are more that one long interval, then it suggests that
the object has significant multiscale behavior, see Figure 1. Of course, the determination of what is “long”
and what is “short” will be problem dependent, but choosing thresholds for the length of the intervals will
give definite ranges of scales. As for the computability, the persistent sets associated to a finite metric space
can be readily computed using (conveniently modified) hierarchical clustering techniques, or the methods of
persistent homology (see [ZC04]).

3. Categories, functors and functoriality

3.1. Definitions and Examples. In this section, we will give a brief description of the theory of categories
and functors, which will be the framework in which we state the constraints we will require of our clustering
algorithms. An excellent reference for these ideas is [ML98].

Categories are useful mathematical constructs that encode the nature of certain objects of interest together
with a set of admissible/interesting/useful maps between them. This formalism is extremely useful for
studying classes of mathematical objects which share a common structure, such as sets, groups, vector
spaces, or topological spaces. The definition is as follows.

Definition 3.1. A category C consists of

 A collection of objects obpCq (e.g. sets, groups, vector spaces, etc.)
 For each pair of objects X,Y P obpCq, a set
MorCpX,Y q, the morphisms from X to Y (e.g. maps of sets from X to Y , homomorphisms of
groups from X to Y , linear transformations from X to Y , etc. respectively)

 Composition operations:
� : MorCpX,Y q �MorCpY, Zq Ñ MorCpX,Zq, corresponding to composition of set maps, group
homomorphisms, linear transformations, etc.

 For each object X P C, a distinguished element idX PMorCpX,Xq

The composition is assumed to be associative in the obvious sense, and for any f P MorCpX,Y q, it is
assumed that idY � f � f and f � idX � f .

Here are the relevant examples for this paper.

Example 3.1. We will construct three categories Miso, Mmon, and Mgen, whose collections of objects will
all consist of the collection of finite metric spaces. Let pX, dXq and pY, dY q denote finite metric spaces. A set
map f : X Ñ Y is said to be distance non increasing if for all x, x1 P X , we have dY pfpxq, fpx

1

qq ¤ dXpx, x
1

q.
It is easy to check that composition of distance non-increasing maps are also distance non-increasing, and
it is also clear that idX is always distance non-increasing. We therefore have the category Mgen, whose
objects are finite metric spaces, and so that for any objects X and Y , MorMgen

pX,Y q is the set of distance
non-increasing maps from X to Y , cf. [Isb64] for another use of this class of maps. We say that a distance
non-increasing map is monic if it is an inclusion as a set map. It is clear compositions of monic maps are
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monic, and that all identity maps are monic, so we have the new category Mmon, in which MorMmon
pX,Y q

consists of the monic distance non-increasing maps. Finally, if pX, dXq and pY, dY q are finite metric spaces,
f : X Ñ Y is an isometry if f is bijective and dY pfpxq, fpx

1

qq � dXpx, x
1

q for all x and x1. It is clear that as

above, one can form a category Miso whose objects are finite metric spaces and whose morphisms are the
isometries. It is clear that we have inclusions

(3–1) Miso
�Mmon

�Mgen

of subcategories (defined as in [ML98]). Note that although the inclusions are bijections on object sets, they
are proper inclusions on morphism sets, i.e. they are not in general surjective.

We will also construct a category of persistent sets.

Example 3.2. Let pX, θq, pY, ηq be persistent sets. For any partition Π of a set Y , and any set map
f : X Ñ Y , we define f�pΠq to be the partition of X whose blocks are the sets f�1

pBq, as B ranges over
the blocks of Π. A map of sets f : X Ñ Y is said to be persistence preserving if for each r P R, we have
that θprq is a refinement of f�pηprqq. It is easily verified that the composite of persistence preserving maps
is persistence preserving, and that any identity map is persistence preserving, and it is therefore clear that
we may define a category P whose objects are persistent sets, and where MorPppX, θq, pY, ηqq consists of the
set maps from X to Y which are persistence preserving. A simple example is shown in Figure 2.

A’

B’

C’

1

1

1

2

A

B

C
2

2

2

{{A},{B},{C}} {{A’,B’},{C’}}

f(A) = A’

f(B) = B’

f(C) = C’

Figure 2. Two persistent sets pX, θq and pY, ηq represented by their dendrograms. On
the left one defined in the set X � tA,B,Cu and on the right one defined on the set
Y � tA1, B1, C 1

u. Consider the given set map f : X Ñ Y . Then we see that f is persistence
preserving since for each r ¥ 0, the partition θprq is a refinement of f�pηprqq. Indeed, there
are three interesting ranges of values of r. Pick for example r like in the orange shaded area:
r P r1, 2q. Then ηprq � ttA1, B1

u, tC 1

uu and hence f�pηprqq � tf�1
ptA1, B1

uq, tf�1
pC 1

quu �

ttA,Bu, tCuu which is indeed refined by θprq � ttAu, tBu, tCuu. One proceeds similary for
the other two cases.

We next introduce the key concept in our discussion, that of a functor. We give the formal definition first.

Definition 3.2. Let C and D be categories. Then a functor from C to D consists of

 A map of sets F : obpCq Ñ obpDq

 For every pair of objects X,Y P C a map of sets ΦpX,Y q : MorCpX,Y q ÑMorDpFX,FY q so that
(1) ΦpX,XqpidXq � idF pXq

for all X P obpCq

(2) ΦpX,Zqpg � fq � ΦpY, Zqpgq � ΦpX,Y qpfq for all f PMorCpX,Y q and g PMorCpY, Zq

Remark 3.1. In the interest of clarity, we often refer to the pair pF,Φq as a single letter F . See diagram
(3–2) in Example 3.5 below for an example.

A morphism f : X Ñ Y which has a two sided inverse g : Y Ñ X , so that f � g � idY and g � f � idX ,
is called an isomorphism. Two objects which are isomorphic are intuitively thought of as “structurally
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indistinguishable” in the sense that they are identical except for naming or choice of coordinates. For
example, in the category of sets, the sets t1, 2, 3u and tA,B,Cu are isomorphic, since they are identical
except for choice made in labelling the elements. We illustrate this definition with some examples.

Example 3.3. (Forgetful functors) When one has two categories C and D, where the objects in C are
objects in D equipped with some additional structure and the morphisms in C are simply the morphisms
in D which preserve that structure, then we obtain the “forgetful functor” from C to D, which carries the
object in C to the same object in C, but regarded without the additional structure. For example, a group
can be regarded as a set with the additional structure of multiplication and inverse maps, and the group
homomorphisms are simply the set maps which respect that structure. Accordingly, we have the functor
from the category of groups to the category of sets which “forgets the multiplication and inverse”. Similarly,
we have the forgetful functor from P to the category of sets, which forgets the presence of θ in the persistent
set pX, θq.

Example 3.4. The inclusions Miso
�Mmon

�Mgen are both functors.

Any given clustering scheme is a procedure F which takes as input a finite metric space pX, dXq, that
is, an object in obpMgen

q, and delivers as output a persistent set, that is, an object in obpPq. The concept
of functoriality refers to the additional condition that the clustering procedure maps a pair of input objects
into a pair of output objects in a manner which is consistent/stable with respect to the morphisms attached
to the input and output spaces. When this happens, we say that the clustering scheme is functorial. This
notion of consistency/stability is made precise in Definition 3.2 and described by diagram (3–2).

Now, the idea is to regard clustering algorithms (that output a persistent set) as functors. Assume for
instance we want to consider “stability” to all distance non-increasing maps. Then the correct category of
inputs (finite metric spaces) is Mgen and the category of outputs is P. According to Definition 3.2 in order
to view a clustering scheme as a functor we need to specify (1) how it maps objects of Mgen (finite metric
spaces) into objects of P (persistent sets), and (2) how a valid morphism/map f : pX, dXq Ñ pY, dY q between
two objects pX, dXq and pY, dY q in the input space/category Mgen induce a map in the output category P ,
see diagram (3–2) below.

We exemplify this through the construction of the key example for this paper.

Example 3.5. We define a functor
Rgen : Mgen

Ñ P

as follows. For a finite metric space pX, dXq, we define Rgen
pX, dXq to be the persistent set pX, θdX

q, where
θdX

prq is the partition associated to the equivalence relation �r defined in Example 2.1. This is clearly an
object in P . We also define how Rgen acts on maps f : pX, dXq Ñ pY, dY q: The value of Rgen

pfq is simply
the set map f regarded as a morphism from pX, θdX

q to pY, θdY
q in P. That it is a morphism in P is easy

to check. This functorial construction is represented through the diagram below:

(3–2) pX, dXq
R

gen

//

f

��

pX, θdX
q

R
gen

pfq

��

pY, dY q
R

gen

//
pY, θdY

q

where Rgen
pfq is persistence preserving.

Example 3.6. By restricting Rgen to the subcategories Miso and Mmon, we obtain functors
Riso : Miso

Ñ P and Rmon : Mmon
Ñ P.

Example 3.7. Let λ be any positive real number. Then we define a functor σλ : Mgen
ÑMmon on objects

by
σλpX, dX q � pX,λdXq

and on morphisms by σλpfq � f . One easily verifies that if f satisfies the conditions for being a morphism
in Mgen from pX, dXq to pY, dY q, then it readily satisfies the conditions to be a morphism from pX,λdXq to
pY, λdY q. Similarly, we define a functor sλ : P Ñ P by setting sλpX, θq � pX, θλq, where θλprq � θp r

λ
q.

In Section 4 we will be showing our main results. We will now have a brief disgression to discuss other
situations in which, in our opinion, the concept of functoriality can be useful.
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3.2. Intrinsic Value of Functoriality. By studying functorial methods of clustering, it is possible to
recover qualitative aspects of the geometric structure of a dataset. We illustrate this idea with a “toy”
example. We suppose that we have a point cloud data which is concentrated around the unit circle. We
consider the projection of the data on to the x-axis, and cover the axis with two (overlapping) intervals
U and V , pictured on the left in Figure 3 below as being red and yellow, with orange intersection. By
considering those portions of the dataset whose x-coordinate lie in U and V respectively, we obtain the red
and yellow subsets of the dataset pictured on the right below. Their intersection is pictured as orange, and
the arrows indicate that we have inclusions of the intersection into each of the pieces. Next, we note that if

Figure 3. Left : Covering of a circle by two intervals. Center : Corresponding diagram of
components. Right : Homotopy colimit of diagram in center figure.

we are dealing with a functorial clustering scheme, and cluster each of these subsets, we obtain the diagram
of clusters in the center of Figure 3. This is now a very simple combinatorial object.
There is a topological construction known as the homotopy colimit, which given any diagram of sets of any
shape reconstructs a simplicial set (a slightly more flexible version of the notion of simplicial complex),
and in particular a space. To first approximation, one builds a vertex for every element in any set in the
diagram, and an edge between any two elements which are connected by a map in the diagram, and then
attaches higher order simplices according to a well defined procedure. In the case of the diagram above, this
constructs the space given in the rightmost part of Figure 3 .
The details of the theory of simplicial sets and homotopy colimits are beyond the scope of this paper. A
thorough exposition is given in [BK72].
Functoriality is also quite useful when one is interested in studying the qualitative behavior of a real-valued
function f on a dataset, for example the output of a density estimator. Then it is useful to study the set
of clusters in sublevel and superlevel sets of f , and understanding how the clusters behave under changes in
the thresholds can help one understand the presence of saddle points and higher index critical points of the
function.

One example of this is two-parameter persistence constructions, [CSZon]. In this case, there is more
structure than just persistent sets (trees/dendrograms) as defined in this paper.

We will elaborate on another application of functoriality in Section 6.

4. Results

We now study different clustering algorithms using the idea of functoriality. We have 3 possible “input”
categories ordered by inclusion (3–1). The idea is that studying functoriality over a larger category will
be more stringent/demanding than requiring functoriality over a smaller one. We now consider different
clustering algorithms and study whether they are functorial over our choice of the input category. We
start by analyzing functoriality over the least demanding one, Miso, then we prove a uniqueness result for
functoriality over Mgen and finally we study how relaxing the conditions imposed by the morphisms in
Mgen, namely, by restricting ourselves to the smaller but intermediate category Mmon, we permit more
functorial clustering algorithms.

4.1. Functorality over Miso. This is the smallest category we will deal with. The morphisms in Miso

are simply the bijective maps between datasets which preserve the distance function. As such, functoriality
of a clustering algorithms over Miso simply means that the output of the scheme doesn’t depend on any
artifacts in the dataset, such as the way the points are named or the way in which they are ordered. Here
are some examples which illustrate the idea.

 The k-means algorithm (see [JD88]) is in principle allowed by our framework since obpPq contains
all constant persistent sets. However it is not functorial on any of our input categories. It depends
both on a paramter k (number of clusters) and on an initial choices of means, and is not therefore
dependent on the metric structure alone.
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 Agglomerative hierarchical clustering, in standard form, as described for example in [JD88], begins
with point cloud data and constructs a binary tree (or dendrogram) which describes the merging
of clusters as a threshold is increased. The lack of functoriality comes from the fact that when a
single threshold value corresponds to more than one data point, one is forced to choose an ordering
in order to decide which points to “agglomerate” first. This can easily be modified by relaxing the
requirement that the tree be binary. This is what we did in Example 2.3 In this case, one can view
these methods as functorial on Miso, where the functor takes its values in arbitrary rooted trees. It
is understood that in this case, the notion of morphism for the output (P) is simply isomorphism of
rooted trees. In contrast, we see next that amongst these methods, when we impose that they be
functorial over the larger (more demanding) category Mgen then only one of them passes the test.2

 Spectral clustering. As described in [vL07], typically, spectral methods consist of two different layers.
They first define a laplacian matrix out of the dissimilarity matrix (given by dX in our case) and
then find eigenvalues and eigenvectors of this operator. The second layer is as follows: a natural
number k must be specified, a projection to R

k is performed using the eigenfunctions, and clusters
are found by an application of the k-means clustering algorithm. Clearly, operations in the second
layer will fail to be functorial as they do not depend on the metric alone. However, the procedure
underlying in the first layer is clearly functorial on Miso as eigenvalue computations are changed by
a permutation in a well defined, natural, way.

4.2. Functorality over Mgen: a uniqueness theorem. In this section, as an example application of the
conceptual framework of functoriality, we will prove a theorem of the same flavor as the main theorem of
[Kle02], except that we prove existence and uniqueness on Mgen instead of impossibility in our context.

Before stating and proving our theorem, it is interesting to point out why complete linkage and average
linkage (agglomerative) clustering, as defined in Example 2.3 are not functorial on Mgen. A simple example
explains this: consider the metric spaces X � tA,B,Cu with metric given by the edge lengths t4, 3, 5u and
Y � pA1, B1, C 1

q with metric given by the edge lengths t4, 3, 2u, as given in Figure 4. Obviously the map f

from X to Y with fpAq � A1, fpBq � B1 and fpCq � C 1 is a morphism in Mgen. Note that for example for
r � 3.5 (shaded regions of the dendrograms in Figure 4) we have that the partition of X is ΠX � ttA,Cu, Bu

whereas the partition of Y is ΠY � ttA1, B1

u, C 1

u and thus f�pΠY q � ttA,Bu, tCuu. Therefore ΠX does
not refine f�pΠY q as required by functoriality. The same construction yields a counter-example for average
linkage.

Theorem 4.1. Let Ψ : Mgen
Ñ P be a functor which satisfies the following conditions.

(I): Let α : Mgen
Ñ Sets and β : P Ñ Sets be the forgetful functorspX, dXq Ñ X and pX, θq Ñ X,

which forget the metric and partition respectively, and only “remember” the underlying sets X. Then
we assume that β � Ψ � α. This means that the underlying set of the persistent set associated to a
metric space is just the underlying set of the metric space.

(II): For δ ¥ 0 let Zpδq � ptp, qu,
�

0 δ
δ 0

�

q denote the two point metric space with underlying set tp, qu,

and where distpp, qq � δ. Then ΨpZpδqq is the persistent set ptp, qu, θZpδqq whose underlying set is

tp, qu and where θZpδqptq is the partition with one element blocks when t   δ and it is the partition
with a single two point block when t ¥ δ.

(III): Given a finite metric space pX, dXq, let

seppXq :� min
x�x1

dXpx, x
1

q.

Write ΨpX, dXq � pX, θΨq, then for any t   seppXq, the partition θΨptq is the discrete partition with
one element blocks.

Then Ψ is equal to the functor Rgen.

Proof. Let ΨpX, dXq � pX, θΨq. For each r ¥ 0 we will prove that (a) θdX
prq is a refinement of θΨprq and

(b) θΨprq is a refinement of θdX
prq.

2The result in Theorem 4.1 is actually more powerful in that it states that there is a unique functor from Mgen to P that
satisfies certain natural conditions.
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Figure 4. An example that shows why complete linkage fails to be functorial on Mgen.

Then it will follow that θdX
prq � θΨprq for all r ¥ 0, which shows that the objects are the same. Since

this is a situation where, given any pair of objects, there is at most one morphism between them, this also
determines the effect of the functor on morphisms.

Fix r ¥ 0. In order to obtain (a) we need to prove that whenever x, x1 P X lie in the same block of the
partition θdX

prq, that is x �r x
1, then they both lie in the same block of θΨprq.

It is enough to prove the following Claim: whenever
dXpx, x

1

q ¤ r then x and x1 lie in the same block of θΨprq.

Indeed, if the claim is true, and x �r x1 then one can find x0, x1, . . . , xn with x0 � x, xn � x1 and
dXpxi, xi�1q ¤ r for i � 0, 1, 2, . . . , n � 1. Then, invoking the claim for all pairs pxi, xi�1q, i � 0, . . . , n� 1
one would find that: x � x0 and x1 lie in the same block of θΨprq, x1 and x2 lie in the same block of θΨprq,
. . ., xn�1 and xn � x1 lie in the same block of θΨprq. Hence, x and x1 lie in the same block of θΨprq.

So, let’s prove the claim. Assume dXpx, x
1

q ¤ r, then the function given by p Ñ x, q Ñ x1 is a morphism
g : Zprq Ñ pX, dXq in Mgen. This means that we obtain a morphism

Ψpgq : ΨpZprqq Ñ ΨpX, dXq

in P . But, p and q lie in the same block of the partition θZprq by definition of Zprq, and functoriality therefore
guarantees that Ψpgq is persistence preserving (recall Example 3.2) and hence the elements gppq � x and
gpqq � x1 lie in the same block of θdX

prq. This concludes the proof of (a).

For condition (b), assume that x and x1 belong to the same block of the partition θΨprq. We will prove
that necessarily x �r x1. This of course will imply that x and x1 belong to the same block of θdX

prq.

Consider the metric space pXrrs, d
rrsq whose points are the equivalence classes of X under the equivalence

relation �r, and where the metric d
rrs : Xrrs �Xrrs Ñ R

� is defined to be the maximal metric pointwisely
less than or equal to W , where for two points B and B1 in Xrrs (equivalence classes of X under �r),
W pB,B1

q � minxPB minx1PB1 dXpx, x
1

q.3 It follows from the definition of �r that if two equivalence classes
are distinct, then the distance between them is ¡ r. This means that seppXrrsq ¡ r.

3See Section 5 for a similar, explicit construction.
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Write ΨpXrrs, d
rrsq � pXrrs, θrrsq. Since seppXrrsq ¡ r, hypothesis (III) now directly shows that the

blocks of the partition θrrsprq are exactly the equivalence classes of X under the equivalence relation �r,
that is θrrsprq � θdX

prq. Finally, consider the morphism

πr : pX, dXq Ñ pXrrs, d
rrsq

in Mgen given on elements x P X by πrpxq � rxsr, where rxsr denotes the equivalence class of x under �r.
By functoriality, Ψpπrq : pX, θΨq Ñ pXrrs, θrrsq is persistence preserving, and therefore, θΨprq is a refinement
of θrrsprq � θdX

prq. This is depicted as follows:

pX, dX q
Ψ

//

πr

��

pX, θdX
q

Ψpπrq

��

pXrrs, d
rrsq

Ψ
//
pXrrs, θ

rrsq

This concludes the proof of (b). �

We should point out that another characterization of single linkage has been obtained in the book [JS71].

4.2.1. Comments on Kleinberg’s conditions. We conclude this section by observing that analogues of the
three (axiomatic) properties considered by Kleinberg in [Kle02] hold for Rgen.

Kleinberg’s first condition was scale-invariance, which asserted that if the distances in the underlying point
cloud data were multiplied by a constant positive multiple λ, then the resulting clustering decomposition
should be identical. In our case, this is replaced by the condition that Rgen

� σλpX, dX q � sλ � Rgen
pX, dX q,

which is trivially satisfied.
Kleinberg’s second condition, richness, asserts that any partition of a dataset can be obtained as the

result of the given clustering scheme for some metric on the dataset. In our context, partitions are replaced
by persistent sets. Assume that there exist t P R s.t. θptq is the single block partition, i.e., impose that the
persistent set is a dendrogram (cf. Definition 2.1). In this case, it is easy to check that any such persistent set
can be obtained as Rgen evaluated for some (pseudo)metric on some dataset. Indeed,4 let pX, θq P obpPq. Let
ǫ1, . . . , ǫk be the (finitely many) transition/discontinuity points of θ. For x, x1 P X define dXpx, x

1

q � mintǫiu
s.t. x, x1 belong to same block of θpǫiq.

This is a pseudo metric on X . Indeed, pick points x, x1 and x2 in X . Let ǫ1 and ǫ2 be minimal s.t. x, x1

belong to the same block of θpǫ1q and x1, x2 belong to the same block of θpǫ2q. Let ǫ12 :� maxpǫ1, ǫ2q. Since
pX, θq is a persistent set (Definition 2.1), θpǫ12q must have a block B s.t. x, x1 and x2 all lie in B. Hence
dXpx, x

2

q ¤ ǫ12 ¤ ǫ1 � ǫ2 � dX px, x
1

q � dXpx
1, x2q.

Finally, Kleinberg’s third condition, consistency, could be viewed as a rudimentary example of functori-
ality. His morphisms are similar to the ones in Mgen.

4.3. Functoriality over Mmon. In this section, we illustrate how relaxing the functoriality permits more
clustering algorithms. In other words, we will restrict ourselves to Mmon which is smaller (less stringent)
than Mgen but larger (more stringent) than Miso. We consider the restriction of Rgen to the category
Mmon. For any metric space and every value of the persistence parameter r, we will obtain a partition of
the underlying set X of the metric space in question, and the set of equivalence classes under �r. For any
x P X , let rxsr be the equivalence class of x under the equivalence relation �r, and define cpxq � #rxsr.
For any integer m, we now define Xm � X by Xm � tx P X |cpxq ¥ mu. We note that for any morphism
f : X Ñ Y in Mmon, we find that fpXmq � Ym. This property clearly does not hold for more general
morphisms. For every r, we can now define a new equivalence relation �

m
r on X , which refines �r, by

requiring that each equivalence class of �r which has cardinality ¥ m is an equivalence class of �m
r , and

that for any x for which cpxq   m, x defines a singleton equivalence class in �

m
r . We now obtain a new

persistent set pX, θmq, where θmprq will denote the partition associated to the equivalence relation �m
r . It is

readily checked that X Ñ pX, θmq is functorial on Mmon. This scheme could be motivated by the intuitition
that one does not regard clusters of small cardinality as significant, and therefore makes points lying in small
clusters into singletons, where one can then remove them as representing “outliers”.

4We only prove triangle inequality.
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5. Metric stability and convergence properties of Rgen

In this section we briefly discuss some further properties of Rgen (single linkage dendrograms). We will
provide quantitative results on the stability and convergence/consitency properties of this functor (algo-
rithm). To the best of our knowledge, the only other related results obtained for this algorithm appear in
[Har81]. The issues of stability and convergence/consistency of clustering algorithms have brought back into
attention recently, see [vLBD05, BDvLP06] and references therein. In Theorem 5.1 besides proving stability,
we prove convergence in a simple setting.

Given finite metric spaces pX, dXq and pY, dY q, our goal is to define a distance between the persistence
objects θdX and θdY respectively produced byRgen. We know that this functor actually outputs dendrograms
(rooted trees), which have a natural metric structure attached to them. Moroever, it is well known that
rooted trees are uniquely characterized by their distance matrix, [SS03].

For a finite metric space pX, dXq consider the derived metric space pX, εXq with the same underlying set
and metric

(5–3) εXpx, x
1

q :� mintε ¥ 0|x �ε x
1

u.

Note that pX, θdX
q can therefore obviously be regarded as the metric space pX, εXq, cf. with the con-

struction of the metric in section 4.2.1. We now check that indeed εX defines a metric on X .

Proposition 5.1. For any finite metric space pX, dXq, pX, εXq is also a metric space.

Proof. (a) Since dX is a metric on X , it is obvious that εXpx, x
1

q � 0 implies x � x1. (b) Symmetry is also
obvious since �ε is an equivalence relation. (c) Triangle inequality: Pick x, x1, x2 P X . Let εXpx, x

1

q � ε1
and εXpx

1, x2q � ε2. Then, there exist points a0, a1, . . . , aj and b0, b1, . . . , bk in X with a0 � x, aj � x1 � b0,
bk � x2 and dXpai, ai�1q ¤ ε1 for i � 0, . . . , j � 1 and dXpbi, bi�1q ¤ ε2 for i � 0, . . . , k � 1. Consider the

points tciu
j�k�1
i�0 � ta0, . . . , aj , b1, . . . , bku.

Then dXpci, ci�1q ¤ maxpε1, ε2q ¤ ε1� ε2. Hence x �ε12 x2 with ε12 � ε1� ε2 and then by definition (5–3),
εXpx, x

2

q ¤ εXpx, x
1

q � εXpx
1, x2q. �

In order to compare the outputs of Rgen on two different finite metric spaces pX, dXq and pX
1, dX1

q we
will instead compare the metric space representations of those outputs, pX, εXq and pX

1, εX1

q, respectively.
For this purpose, we choose to work with the Gromov-Hausdorff distance which we define now, [BBI01].

Definition 5.1 (Correspondence). For sets A and B, a subset R � A�B is a correspondence (between A

and B) if and and only if

 � a P A, there exists b P B s.t. pa, bq P R

 � b P B, there exists a P X s.t. pa, bq P R

Let RpA,Bq denote the set of all possible correspondences between sets A and B.
Consider finite metric spaces pX, dXq and pY, dY q. Let ΓX,Y : X � Y

�

X � Y Ñ R
� be given by

px, y, x1, y1q ÞÑ |dXpx, x
1

q � dY py, y
1

q|.

Then, the Gromov-Hausdorff distance between X and Y is given by

(5–4) dGHpX,Y q :� inf
RPRpX,Y q

max
px,yq,px1,y1qPR

ΓX,Y px, y, x
1, y1q

Remark 5.1. This expression defines a metric on the set of (isometry classes of) finite metric spaces,
[BBI01] (Theorem 7.3.30).

One has:

Proposition 5.2. For any finite metric spaces pX, dXq and pY, dY q

dGHppX, dXq, pY, dY qq ¥ dGHppX, εXq, pY, εY qq.

Proof. Let η � dGHppX, dXq, pY, dY qq and R P RpX,Y q s.t. |dXpx, x
1

q � dY py, y
1

q| ¤ η for all px, yq, px1, y1q P
R. Fix px, yq and px1, y1q P R. Let x0, . . . , xm P X be s.t. x0 � x, xm � x1 and dX pxi, xi�1q ¤ εpx, x1q for
all i � 0, . . . ,m � 1. Let y � y0, y1, . . . , ym�1, ym � y1 P Y be s.t. pxi, yiq P R for all i � 0, . . . ,m (this is
possible by definition of R). Then, dY pyi, yi�1q ¤ dXpxi, xi�1q � η ¤ εXpx, x

1

q � η for all i � 0, . . . ,m � 1
11



and hence εY py, y
1

q ¤ εXpx, x
1

q � η. By exchanging the roles of X and Y one obtains the inequality
εXpx, x

1

q ¤ εY py, y
1

q � η. This means |εXpx, x
1

q � εY py, y
1

q| ¤ η. Since px, yq, px1, y1q P R are arbitrary, and
upon recalling the definition of the Gromov-Hausdorff distance we obtain the desired conclusion. �

Proposition 5.2 will allow us to quantify stability and convergence. We provide deterministic arguments.
The same construction, essentially, yields similar results under the assumption that pZ, dZq is enriched with
a (Borel) probability measure and one takes i.i.d. samples w.r.t. this probability measure. Assume pZ, dZq is
an underlying (perhaps “continuous”) metric space from which different finite samples are drawn. We would
like to see, quantitatively, (1) how the results yielded by Rgen differ when applied to those different sample
sets (which possibly contain different numbers of points), this is stability and (2) that when the underlying
metric space is partitioned, there is convergence and consistency in a precise sense.

Assume A is a finite set and let W : A � A Ñ R
� be a symmetric map. Using the usual path-length

construction, we endow A with the (pseudo)metric

dApa, a
1

q :� min
m�1̧

k�0

W pak, ak�1q

where the minimum is taken over m and all sets of m� 1 points a0, . . . , am such that a0 � a and am � a1.
We denote dA � LpW q. This is a standard construction, see [BH99] §1.24.

For a compact metric space pZ, dZq and any two of its compact subsets Z1, Z2 let

DZpZ1, Z2q � min
z1PZ1

min
z2PZ2

dZpz1, z2q.

For pZ, dZq compact and X,X 1

� Z compact, let dZHpX,X 1

q denote the Hausdorff distance (in Z) between
X and X 1, [BBI01]. For any X � Z let RpXq :� dZHpX,Zq. Intuitively this number measures how well X
approximates Z. One says that X is an RpXq-covering of Z or an RpXq-net of Z.

The following theorem summarizes our main results regarding metric stability and convergence/consistency.
The situation described by the theorem is depicted in Figure 5.

Theorem 5.1. Assume pZ, dZq is a compact metric space. Let X and X 1 be any two finite sets of points
sampled from Z. Endow these two sets with the (restricted) metric dZ . Then,

(1) (Finite Stability) dGHppX, εXq, pX
1, εX1

qq ¤ 2pRpXq �RpX 1

qq.

(2) (Asymptotic Stability) As max pRpXq, RpX 1

qq Ñ 0 one has dGHppX, εXq, pX
1, εX1

qq Ñ 0.
(3) (Convergence/consistency) Assume in addition that Z � YαPAZα where A is a finite index set

and Zα are compact, disjoint and path-connected sets. Let pA, dAq be the finite metric space with
underlying set A and metric given by dA :� LpW q where W pα, α1q :� DZpZα, Zα1q for α, α1 P A.5

Then, as RpXq Ñ 0 one has

dGHppX, εXq, pA, εAqq Ñ 0.

Proof. Let δ ¡ 0 be s.t. minα�β DZpZα, Zβq ¥ δ.

Claim 1. follows from Proposition 5.2: let dX (resp. dX1) equal the restriction of dZ to X � X (resp.
X 1

�X 1). Then, by the triangle inequality for the Gromov-Hausdorff distance

dGHpX,Zq � dGHpX
1, Zq ¥ dGHppX, εXqq, pX

1, εX1

qqq.

Now, the claim follows from the fact that whenever Z � Z 1, dGHpZ
1, Zq ¤ 2dZHpZ,Z

1

q � 2RpZ 1

q, [BBI01],
§7.3.

Claim 2. follows directly from claim 1.
We now prove the third claim. For each x P X let αpxq denote the index of the path connected component

of Z s.t. x P Zαpxq. Assume, RpXq   δ
2
. Then, it is clear that # pZα XXq ¥ 1 for all α P A. Then it follows

that R � tpx, αpxqq|x P Xu belongs to RpX,Aq. We prove below that for all x, x1 P X

εApαpxq, αpx
1

qq

p1q

¤ εXpx, x
1

q

p2q

¤ εApαpxq, αpx
1

qq � 2RpXq.

It follows immediately from the definition of W that for all y, y1 P X , W pαpyq, αpy1qq ¤ dXpy, y
1

q. From
the definition of dA it follows that W pα, α1q ¥ dApα, α

1

q. Then in order to prove (1) pick x0, . . . , xm in X with

5Since the Zα are disjoint, dA is a true metric on A.
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Figure 5. Explanation of Theorem 5.1. Top: A space Z composed of 3 disjoint path
connected parts, Z1, Z2 and Z3. The black dots are the points in the finite sample X . In
the figure, wij � DZpZi, Zjq, 1 ¤ i � j ¤ 3. Bottom Left : The dendrogram representation
of pX, θdX

q. Bottom Right The dendrogram representation of the persistent set pA, θdA
q.

Note that dApa1, a2q � w13 � w23, dApa1, a3q � w13 and dApa2, a3q � w23. As RpXq Ñ 0,
pX, θdX

q Ñ pA, θdA
q in the Gromov-Hausdorff sense, see text for details.

x0 � x, xm � x1 and dX pxi, xi�1q ¤ εXpx, x
1

q. Consider the points in A given by αpxq � αpx0q, . . . , αpxmq �

αpx1q. Then, dApαpxiq, αpxi�1qq ¤W pαpxiq, αpxi�1qq ¤ dXpxi, xi�1q ¤ εXpx, x
1

q for i � 0, . . . ,m� 1 by the
claim above. Hence (1) follows.

We now prove (2). Assume first that αpxq � αpx1q � α. Fix ǫ0 ¡ 0 small. Let γ : r0, 1s Ñ Zα be a
continuous path s.t. γp0q � x and γp1q � x1. Let z1, . . . , zm be points on imagepγq s.t. z0 � x, zm � x1

and dXpzi, zi�1q ¤ ǫ0, i � 0, . . . ,m � 1. By hypothesis, one can find x � x0, x1, . . . , xm�1, xm � x1 s.t.
dZpxi, ziq ¤ RpXq. Hence dX pxi, xi�1q ¤ ǫ0 � 2RpXq and hence εXpx, x

1

q ¤ ǫ0 � 2RpXq. Let ǫ0 Ñ 0 to
obtain the desired result.

Now if α � αpxq � αpx1q � β, let α0, α1, . . . , αl P A be s.t. α0 � αpxq, αl � αpx1q and dApαj , αj�1q ¤

εApαpxq, αpx
1

qq for j � 0, . . . , l � 1.

By definition of dA, for each j � 0, . . . , l � 1 one can find a path Cj � tα
p0q

j , . . . , α
prjq

j u s.t. α
p0q

j � αj ,

α
prjq

j � αj�1 and
°rj�1

i�0 W pα
piq
j , α

pi�1q

j q � dApαj , αj�1q ¤ εApα, βq. It follows thatW pα
piq
j , α

pi�1q

j q ¤ εApα, βq

for i � 0, . . . , rj � 1. Consider the path C � tpα0, . . . , pαsu in A joining α to β given by the concatenation of
all the Cj . By eliminating repeated consecutive elements in C if necessary, one can assume that pαi � pαi�1.
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By construction W ppαi, pαi�1q ¤ εApα, βq and pα0 � α, pαs � β. We will now lift C into a path in Z joining x

to x1.
Note that by compactness, for all ν, µ P A, ν � µ there exist zνν,µ P Zν and zµν,µ P Zµ s.t. W pν, µq �

dZpz
ν
ν,µ, z

µ
ν,µq. Consider the path G in Z given by

G � tx, z pα0

pα0,pα1
, z pα1

pα0,pα1
, . . . , z pαs

pαs�1,pαs
, x1u.

For each point g P G pick a point xpgq P X s.t. dZpg, xpgqq ¤ RpXq. This is possible by definition of RpXq.
Let G1

� tx0, x1, . . . , xtu be the resulting path in X . Notice that if αpxtq � αpxt�1q then dXpxt, xt�1q ¤

2RpXq�W pαpxtq, αpXt�1qq by the triangle inequality. Also, by construction,p�q W pαpxtq, αpxt�1qq ¤

εApα, βq.

Now, we claim that

εXpx, x
1

q ¤ max
t

W pαpxtq, αpxt�1qq � 2RpXq.

This claim will follow from the simple observation that εXpx, x
1

q ¤ maxt εXpxt, xt�1q. If αpxtq � αpxt�1q

we already proved that εXpxt, xt�1q ¤ 2RpXq. If on the other hand αpxtq � αpxt�1q then, εXpxt, xt�1q ¤

2RpXq �W pαpxtq, αpxt�1qq and hence the claim. Combine this fact with p�q to conclude the proof of (2).
Putting (1) and (2) together we have

dGHppX, εXq, pA, εAqq ¤ 2RpXq

and the conclusion follows by letting RpXq Ñ 0.
�

6. Functoriality and bootstrap clustering

In the previous section, we have observed that by encoding the output of a clustering scheme as diagram
(i.e. as a persistent set or dendrogram) allows one to assess stability of the clustering obtained from the
scheme. In this section, we will demonstrate that another use of functoriality can be used to assess stability
of clustering schemes whose output is simply a partition of the underlying point cloud. We begin by recalling
the basics of the bootstrapmethod developed by B. Efron [Efr79]. The bootstrap considers a set of point cloud
data X, and repeatedly samples (with replacement) collections of (say) n elements from X. For each sample,
one measures of central tendency such as means, medians, variances, are computed, and the distribution of
these measures as a statistic are studied. It is understood that such computations are more informative than
the measures computed a single time on the full set X. We wish to perform a similar analysis for clustering.
The difficulty is that the output of clustering is not a single numerical statistic, but is rather a structural,
qualitative output. We will now show how functoriality can be used to assess compatibilty of clusterings of
subsamples, and thereby obtain a method for confirming that clustering is a significant feature of the data
rather than an artifact.

In the context of clustering these bootstrapping ideas arise when dealing with massive datasets: one is
forced to analysing several smaller, more manageable random subsamples of the original data to produce
partial pictures of the underlying clustering structure. The problem then is how to agglomerate all this
information together.

In this section, for us, a clustering scheme will denote any rule C which assigns to every finite metric
space S a partition PCpSq. We write BCpSq for the set of blocks of the partition PCpSq. If we are given
two finite metric spaces S, T , an embedding from S to T , is an injective set map ι : S ãÑ T , so that

dT pιpxq, ιpx
1

qq � dSpx, x
1

q. Given any partition P of a metric space T , and given any set map ϕ : S Ñ T , we
write ϕ�

pPq for the partition of S which places s, s1 P S in the same block if and only if ϕpsq and ϕps1q lie in
the same block of P . The clustering scheme C is now said to be I-functorial if PCpSq refines ι

�

pPCpT qq

for any embedding ι : S Ñ T . Note that for any I-functorial clustering scheme C, there is an induced map
BCpιq : BCpSq Ñ BCpT q for any embedding ι : S ãÑ T . An example of an I-functorial clustering scheme is
single linkage clustering for a fixed threshhold ǫ.

Now let X be a set of point cloud data, equipped with a metric d. We build collections of samples Si � X

of size n from X, with replacement, for 1 ¤ i ¤ N . We assume we are given an I-functorial clustering scheme
C. We note that each of the samples Si and the sets Si Y Si�1 are finite metric spaces in their own right,
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that the natural inclusions Si ãÑ Si Y Si�1 and Si�1 ãÑ Si Y Si�1 are embeddings of finite metric spaces. It
follows from the I-functoriality of the clustering scheme C that we obtain a diagram of sets in Figure 6

· · · B(Si−1 ∪ Si) B(Si ∪ Si+1) · · ·

B(Si−1) B(Si) B(Si+1)

❍
❍

❍❍❨

✟
✟

✟✯

❍
❍

❍❨

✟
✟

✟✯

❍
❍

❍❨

✟
✟

✟✟✯

Figure 6. Diagram of sets obtained via I-functoriality of the clustering scheme.

We will refer to such a diagram as a zig zag. In an intuitive sense, this diagram now carries information
about the stability or the significance of the clustering. The informal idea is that sequences of the form
txνu

t
ν�s (formed by consecutive elements), with xν P BCpSνq, and with BCpi

�

ν qpxνq � BCpi
�

ν�1qpxν�1q should

describe small scale pictures of a clustering of X, where i�ν : Sν ãÑ Sν Y Sν�1 and i�ν�1 : Sν�1 ãÑ Sν Y Sν�1

are the inclusions. Informally, the idea is that “compatible families” of clusterings of the samples Sν should
correspond to clusterings of the entire set X. Of course, the length of the sequence (t � s � 1) must be
significant. A single pair of compatible clusters will not be as significant as a long sequence. The problem
with this idea as stated is that it is very hard to make precise the definitions of the sequences, and to describe
them.

Unlike the case of ordinary persistent sets, where dendrograms provide a straightforward visualization of
all such structure, we believe that in the case of zig-zags of sets no such simple representation is possible.
However, there turns out to be (see below) a readily computable analogue of the persistence barcode, [Ghr08,
ZC04]. We now see how this works.

We note first that this situation has certain things in common with dendrograms. Rooted trees can be
viewed as diagrams of sets of the form

X0
f0
Ñ X1

f1
Ñ � � �Xn�1

fn�1

Ñ Xn Ñ � � �

for which there is an integer N so that Xk consists of one element for all k ¥ N . The smallest such N

will be called the depth of the tree, d. One constructs a tree from such a diagram by forming the disjoint

union
²d

i�0 Xi�r0, 1s, and then forms the quotient by the equivalence relation generated by the equivalences
x � 1 � fspxq � 0 for all x P Xs and s   d. The set Xl will now correspond to the nodes of depth d � l in
the tree. The tree representation turns out to be a useful representation of structure of the sets of clusters
as a set varying with a threshhold parameter. Given instead a zig zag diagram as above, it is again possible
to construct a graph which represents the data, but it is harder to make useful sense of it, since it is a
fairly general graph. Nonetheless, it turns out that it is possible to obtain a useful partial description using
algebraic techniques.

One begins with a field k (typically F2, the field with two elements), and constructs for each of the sets
BpSiq and BpSi Y Si�1q in the zig zag the corresponding vector spaces krBpSiqs and krBpSi Y Si�1qs, i.e.
vector spaces with the given sets as bases. The zig zag diagram now gives rise to a diagram of vector spaces
and linear transformations of the same shape. It turns out that there is an algebraic classification of such
diagrams up to isomorphism. To describe this classification, we will describe every zig zag diagram as a
family of vector spaces tViui, equipped with linear transformations λi : V2i Ñ V2i�1 and µi : V2i Ñ V2i�1.
Given integers a ¤ b, we denote by Zra, bs the zig zag diagram for which Vi � k for all a ¤ i ¤ b, and
Vi � t0u for i R ra, bs, and for which every possible non-zero linear transformation is equal to the identity.
For example, Zr3, 6s is the diagram

� � � t0u Ñ V3
id
� V4

id
Ñ V5

id
� V6 Ñ t0u � � �

where V3, V4, V5, V6 � k. Note that these diagrams are parametrized by closed intervals with integer end-
points.

We now have the following theorem of Gabriel (see [GR97]).

Theorem 6.1. Every zig zag diagram is isomorphic to a direct sum of diagrams of the form rai, bis, and the
decomposition is unique up to reordering of the summands.
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7. Discussion

We have presented the ideas of functoriality and persisence as useful organizing principles for clustering
algorithms. We have made particular choices of category structures on the collection of finite metric spaces,
as well as for the notion of multiscale/resolution sets. One can imagine different notions of morphisms of
metric spaces and of persistent sets. For example, the idea of multidimensional persistence (see [CZ07]) could
provide methods which in addition to the parameter r could track density as estimated by some estimator,
giving a more informative picture of the dataset. It also appears likely that from the point of view described
here, it will in many cases be possible, given a collection of constraints on a clustering functor, to determine
the universal one satisfying the constraints. One could therefore use sets of constraints as the definition of
clustering functors.

We believe that the conceptual framework presented here can be a useful tool in reasoning about clustering
algorithms. We have also shown that clustering methods which have some degree of functoriality admit the
possibility of certain kind of qualitative geometric analysis of datasets which can be quite valuable. The
general idea that the morphisms between mathematical objects (together with the notion of functoriality)
are critical in many situations is well-established in many areas of mathematics, and we would argue that it
is valuable in this statistical situation as well.

We have also discussed how to obtain quantitative stability, consistency and convergence results using a
metric space representation of the output of clustering algorithms. We believe these tools can also contribute
to the understanding of theoretical questions about clustering as well.

Finally we would like to comment on the fact that functoriality ideas and metric based study complement
eachother. In the sense that using functoriality, first, one can reason about global stability or rigidity of
methods in order to identify a class of them that is sensible, and then, by applying metric tools one can
understand the behaviour/convergence as, say, the number of samples goes to infinity, or to the quantify
error in approximating the underlying reality when only finitely many samples are used.
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