
PersLay: A Simple and Versatile Neural Network
Layer for Persistence Diagrams

Mathieu Carrière
Rabadan Lab

Columbia University
New York, US.

mc4660@columbia.edu

Frédéric Chazal
Datashape, Inria Saclay

Palaiseau, France.
frederic.chazal@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
ike.yuichi@fujitsu.com

Théo Lacombe
Datashape, Inria Saclay

Palaiseau, France.
theo.lacombe@inria.fr

Martin Royer
Datashape, Inria Saclay

Palaiseau, France.
martin.royer@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
umeda.yuhei@fujitsu.com

Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.

ar
X

iv
:1

90
4.

09
37

8v
2

 [
st

at
.M

L
]

 5
 J

un
 2

01
9

addition and mean. This dramatically impedes their capacity to be used in machine learning ap-
plications so far. To handle this issue, a lot of attention has been devoted to the vectorization of
persistence diagrams through the construction of either finite-dimensional embeddings of persistence
diagrams [2, 8, 11, 18], i.e., embeddings turning diagrams into vectors in Euclidean space Rd, or
kernels for persistence diagrams [3, 9, 20, 21, 25], i.e., generalized scalar products that implicitly turn
diagrams into elements of infinite-dimensional Hilbert spaces. Unfortunately, both approaches suffer
from major issues: it has been shown that finite-dimensional embeddings miss a lot of information
about persistence diagrams [7], and kernel methods require to compute and store the kernel evalua-
tions for each pair of persistence diagrams. Since all available kernels have a complexity that is at
least linear, and often quadratic, in the number of persistence diagram points for a single matrix entry
computation, kernel methods quickly become very expensive in terms of running time and memory
usage on large sets or for large diagrams. An interesting preliminary approach has been developed in
trying to feed persistence diagrams to neural networks [16], which consists in adapting and branching
an existing vectorization method (the so-called persistence images [2]) to a large neural network.
However, there are applications for which persistence images might be inappropriate a choice, and it
is generally hard to tell ahead of time which kernel or vectorization method will be the most relevant
one.

In this article, we present a framework to make full use of the modularity, learning capacities
and computing power of neural networks for Topological Data Analysis. Building on the recent
introduction of DeepSet from [33] that produces a neural network formatting targeted at processing
sets of points, we apply and extend that framework to the context of persistence diagrams, thus
defining PersLay: a simple, highly versatile, automatically differentiable layer for neural network
architectures that can process topological information from all sorts of datasets. Our framework
encompasses most of the popular vectorization and kernel methods that exist in the literature. We
demonstrate its strengths on two challenging applications where we reach, improve or significantly
improve over state-of-the-art classifying accuracies with performances evaluated by simple network
architectures based on PersLay layers. The first is a large-scale classification application on a
synthetic set of a hundred thousand dynamical system orbits. Second, we turn to a real graph
classification application with benchmark datasets borrowing from the fields of biology, chemistry
or social networks. Since graph data also suffer from a lack of general structure, we independently
provide a robust method to efficiently encode graph information in a theoretically sound way using
an extension of ordinary persistence called extended persistence, that is computed from a family of
functions defined on the graph vertices called heat kernel signatures with ensuing stability properties.
Lastly, we make our contribution available as a public tensorflow-based Python package.

To summarize our contributions:

• We introduce a simple, versatile neural network layer for persistence diagrams, called PersLay
for handling topological information from all sorts of datasets, encompassing most of vectorizing
approaches in the literature.

• We showcase the strength of our method by achieving state-of-the-art effectiveness on classifying
a collection of a hundred thousand synthetic orbit data from dynamical systems, as well as on
difficult graph classification problems from the literature.

• We introduce a theoretically-based approach for extracting topological information from graph
data using a combination of extended persistence and graph signatures.

• We provide a ready-to-use PersLay Python package based on tensorflow: https://github.
com/MathieuCarriere/perslay.

The basics of (extended) persistence theory are first introduced in Section 2. Our general neural
network layer PersLay for persistence diagrams is then defined in Section 3. Finally, the two
applications showcased are presented in Section 4.1 for the dynamical system problem, and in
Section 4.2 for the graph application. This Section 4.2 also informs on the family of functions used
to generate persistence diagrams, the so-called heat kernel signatures with stability properties.

2 Persistence diagrams as topological features

In this section, we recall the basics of persistence (and extended persistence) diagrams. We point
to [13, 14, 23] for a thorough description of general (extended) persistence theory for metric spaces.

2

https://github.com/MathieuCarriere/perslay
https://github.com/MathieuCarriere/perslay

1

1

1 3

2

2 1

1

(b)(a) (c) (d) (e) (f) (g)

Figure 1: Illustration of sublevel and superlevel graphs. (a) Input graph (V,E) along with the values of a
function f : V → R (blue). (b, c, d) Sublevel graphs for α = 1, 2, 3 respectively. (e, f, g) Superlevel graphs
for α = 3, 2, 1 respectively.

Ordinary persistence. Let us consider a pair (X, f), whereX is a topological space, and f : X → R
is a real-valued function, and define the sublevel set Xα = {x ∈ X : f(x) ≤ α}. Making α increase
from −∞ to +∞ gives an increasing sequence of sets, called the filtration induced by f , and which
starts with the empty set and ends with the whole space X . Ordinary persistence will record the
time of appearance and disappearance of topological components (connected components, loops,
cavities, etc.) in this sequence. For instance, one can record the value αb for which a new connected
component appears in Xαb

, called the birth time of the connected component. This connected
component eventually gets merged with another for some value αd ≥ αb, and thus αd is stored and
called the death time of the component, and one says that the component persists on the interval
[αb, αd]. Similarly, we save the [αb, αd] values of each loop, cavity, etc. that appears in a specific
sublevel set Xαb

and disappears (get “filled”) in Xαd
. This family of intervals is called the barcode,

or persistence diagram, of (X, f), and can be represented as a multiset of points (i.e., point cloud
where points are counted with multiplicity) supported on R2 with coordinates {(αb, αd)}.
In some context, ordinary persistence might not be sufficient to encode the topology of an object
X . For instance, consider a graph G = (V,E), with vertices V and (non-oriented) edges E. Let
f : V → R be a function defined on its vertices, and consider the sublevel graphs Gα = (Vα, Eα)
where α ∈ R, Vα = {v ∈ V : f(v) ≤ α} , and Eα = {(v1, v2) ∈ E : v1, v2 ∈ Vα}, see (b− d) in
Figure 1. In this sequence (Gα)α, loops persist forever since they never disappear from the sequence
of sublevel graphs (they never get “filled”), and the same applies for whole connected components of
G. Moreover, branches pointing upwards (with respect to the orientation given by f , see Figure 2) are
missed (while those pointing downward are detected), since they do not create connected components
when they appear in the sublevel graphs, making ordinary persistence unable to detect them.

Extended persistence. To handle the issue stated above, extended persistence refines the analysis by
also looking at the superlevel set Xα = {x ∈ X : f(x) ≥ α}. Similarly, making α decrease from
+∞ to −∞ also gives a sequence of increasing subsets, for which structural changes can be recorded.

Although extended persistence can be defined for general metric spaces (see the references given
above), we restrict ourselves to the case where X = G is a graph. The sequence of increasing
superlevel graphs Gα is illustrated in Figure 1 (e − g). In particular, death times can be defined
for loops and whole connected components by picking the superlevel graphs for which the feature
appears again, and using the corresponding α value as the death time for these features. In this case,
branches pointing upwards can be detected in this sequence of superlevel graphs, in the exact same
way that downwards branches were in the sublevel graphs. See Figure 2 for an illustration. Finally,

f
Ext+0

Ord0

Rel1

Ext−1

f

Figure 2: Extended persistence diagram computed on a graph: topological features of the graph are detected in
the sequence of sublevel and superlevel graphs shown on the left of the figure. The corresponding intervals are
displayed under the sequence: the black interval represents the connected component of the graph, the red one
represents its downward branch, the blue one represents its upward branch, and the green one represents its loop.
The extended persistence diagram given by the intervals is shown on the right.

3

the family of intervals of the form [αb, αd] is turned into a multiset of points in the Euclidean plane
R2 by using the interval endpoints as coordinates. This multiset is called the extended persistence
diagram of f and is denoted by Dg(G, f) ⊂ R2.

Since graphs have four types of topological features (see Figure 2), namely upwards branches, down-
wards branches, loops and connected components, the corresponding points in extended persistence
diagrams can be of four different types. These types are denoted as Ord0, Rel1, Ext+

0 and Ext−1 for
downwards branches, upwards branches, connected components and loops respectively:

Dg(G, f) = Ord0(G, f) t Rel1(G, f) t Ext+
0 (G, f) t Ext−1 (G, f). (1)

Note that an advantage of using extended persistence is that all diagram types can be treated similarly,
in the sense that points in each type all have finite coordinates. Moreover, as each point represents a
topological feature that persists along a given interval, Dg(G, f) provides explainable information
about the topological structure of the pair (G, f). In practice, computing extended persistence
diagrams can be efficiently done with the C++/Python Gudhi library [27]. Persistence diagrams are
usually compared with the so-called bottleneck distance dB—whose proper definition is not required
for this work (see e.g. [14, VIII.2]). However, the resulting metric space is not Hilbert and as such,
incorporating diagrams in a learning pipeline requires to design specific tools.

3 PersLay: A Neural Network Layer for Persistence Diagrams

We have seen in Section 2 how to derive topological descriptors from data, namely (extended)
persistence diagrams, which we aim at using in machine learning applications. In this section, we
present PersLay, our general neural network layer for (extended) persistence diagrams. To define it,
we leverage a recent neural network architecture called DeepSet [33] that was targeted at processing
sets of points.

The main purpose of the DeepSet design is to be invariant to the point orderings in the sets. Any such
neural network is called a permutation invariant network. In order to achieve this, Zaheer et al. [33]
propose to process point sets with a layer implementing the general equation: L(X) =

∑n
i=1 φ(xi),

where L : Rn×p → Rq is the function implemented by the layer, X = {x1, . . . , xn} ⊂ Rp, and
φ : Rp → Rq is a point transformation. Their final neural network architecture is then obtained by
composing L with a transformation ρ : Rq → Rd, which can be parametrized by any other neural
network architecture. It is shown in [33, Theorem 2] that if the cardinality n is the same for all
sets, then for any permutation invariant function F , there exist ρF and LF such that F = ρF ◦ LF .
Moreover, this is still true for variable n if the sets belong to some countable space.

In this work, we transpose this architecture to the context of persistence diagrams by defining and
implementing a series of new permutation invariant layers that will generalize some standard tools
used in Topological Data Analysis. To that end we define our generic neural network layer for
persistence diagrams Dg, that we call PersLay, through the following equation:

PersLay(Dg) := op ({w(p) · φ(p)}p∈Dg) , (2)
where op is any permutation invariant operation (such as minimum, maximum, sum, kth largest
value...), w : R2 → R is a weight function for the persistence diagram points, and φ : R2 → Rq
is a function that we call point transformation function. We emphasize that any neural network
architecture ρ can be composed with PersLay to generate a neural network architecture for persistence
diagrams. Let us now introduce the three point transformation functions that we use and implement
for parameter φ in Equation (2).

• The triangle point transformation φΛ : R2 → Rq, p 7→ [Λp(t1),Λp(t2), . . . ,Λp(tq)]
T where the

triangle function Λp associated to a point p = (x, y) ∈ R2 is Λp : t 7→ max{0, y − |t− x|}, with
q ∈ N and t1, . . . , tq ∈ R.

• The Gaussian point transformation φΓ : R2 → Rq, p 7→ [Γp(t1),Γp(t2), . . . ,Γp(tq)]
T , where the

Gaussian function Γp associated to a point p = (x, y) ∈ R2 is Γp : t 7→ exp
(
−‖p− t‖22/(2σ2)

)
for a given σ > 0, q ∈ N and t1, . . . , tq ∈ R2.

• The line point transformation φL : R2 → Rq, p 7→
[
L∆1

(p), L∆2
(p), . . . , L∆q

(p)
]T

, where the
line function L∆ associated to a line ∆ with direction vector e∆ ∈ R2 and bias b∆ ∈ R is
L∆ : p 7→ 〈p, e∆〉+ b∆, with q ∈ N and ∆1, . . . ,∆q q lines.

4

Note that line point transformations are examples of permutation equivariant functions, which are
specific functions defined on sets of points that were used to build the DeepSet layer in [33].

Formulation (2) has high representative power: it allows to remarkably encode most of classical
persistence diagram representations with a very small set of point transformation functions φ, allowing
to consider the choice of φ as a hyperparameter of sort. Let us show how we connect it to popular
vectorizations and kernel methods for persistence diagrams in the literature.

• Using φ = φΛ with samples t1, . . . , tq ∈ R, op = kth largest value, w(p) = 1, amounts to
evaluating the kth persistence landscape [3] on t1, . . . , tq ∈ R.

• Using φ = φΛ with samples t1, . . . , tq ∈ R, op = sum, arbitrary w(p), amounts to evaluating the
persistence silhouette weighted by w [11] on t1, . . . , tq ∈ R.

• Using φ = φΓ with samples t1, . . . , tq ∈ R2, op = sum, arbitrary w(p), amounts to evaluating
the persistence surface weighted by w [2] on t1, . . . , tq ∈ R2. Moreover, characterizing points
of persistence diagrams with Gaussian functions is also the approach advocated in several kernel
methods for persistence diagrams [20, 21, 25].

• Using φ = φΓ̃ where Γ̃ is a modification of the Gaussian point transformation defined with:
Γ̃p = Γp̃ for any p = (x, y) ∈ R2, where p̃ = p if y ≤ ν for some ν > 0, and

(
x, ν + log

(
y
ν

))
otherwise, op = sum, w(p) = 1, is the approach presented in [16].

• Using φ = φL with lines ∆1, . . . ,∆q ∈ R2, op = kth largest value, w(p) = 1, is similar to
the approach advocated in [9], where the sorted projections of the points onto the lines are then
compared with the ‖ · ‖1 norm and exponentiated to build the so-called Sliced Wasserstein kernel
for persistence diagrams.

In practice, samples t1, . . . , tq and lines ∆1, . . . ,∆q are parameters that are optimized on the training
set by the network. This means that our approach looks for the best locations to evaluate the
landscapes, silhouettes and persistence surfaces, as well as the best lines to project the diagrams onto,
with respect to the problem the network is trying to solve.

4 Applications and experimental results

We now introduce two different applications aimed at showcasing both the scaling power, precision
and versatility of PersLay. In order to truly showcase the contribution of this layer we use a very
simple network architecture, namely a two-layer network. The first layer is the PersLay layer that
processes persistence diagrams. The output of this layer is then either used as such (as in the first
application §4.1) or concatenated with additional features (for the graph application §4.2). The
resulting vector is normalized and fed to the second and final layer, a fully connected layer whose
output is used for predictions. An illustration in the context of graph classification is found Fig. 3.
We emphasize that this simplistic two-layer architecture is designed so as to produce knowledge and
understanding, rather than the best possible performances.

In those applications, the weight function w from Equation (2) is actually treated as a trainable
parameter whose values are optimized during training. More precisely, the input diagrams are scaled
to [0, 1] × [0, 1], so that w becomes a function defined on the unit square, that we approximate by
discretizing this square into a set of pixels. The value ofw on each pixel is then optimized individually
during training. As both φ and w are functions defined on R2, it suggests—we leave it as perspective
work—that they can be interpreted and visualized in ways to help explain the network learning
behavior on persistence diagrams.

Our results can be reproduced with the help of Table 5 in the supplementary material with specific
settings for each experiment. The implementation relies on the open source C++/Python library
Gudhi [27], Python packages sklearn-tda [6] and tensorflow [1], and is available at https:
//github.com/MathieuCarriere/perslay.

4.1 A large-scale dynamical system orbits application

The first application is demonstrated on synthetic data used as a benchmark in Topological Data
Analysis [2, 9, 21]. It consists in sequences of points generated by different dynamical systems, see

5

https://github.com/MathieuCarriere/perslay
https://github.com/MathieuCarriere/perslay

Diagrams 1
(e.g. Ord0)

w(·)φ(·)

op op op

concatenate

ρ

sum
max
min
kth largest

sum
max
min
kth largest

sum
max
min
kth largest

φΛ

φΓ

φL

φΛ

φΓ

φL

φΛ

φΓ

φL

labels

ρ

w(·)φ(·) w(·)φ(·)

batch normalization + fully-connected

op
sum
max
min
kth largest

φΛ

φΓ

φL

w(·)φ(·)

Diagrams 2
(e.g. Ext+0)

Diagrams 4
(e.g. Rel1)

features (optional)Diagrams 3
(e.g. Ext−1)

︷
︸
︸
︷ P
er
sL
ay

Observations
(e.g. graphs)

Figure 3: Network architecture illustrated in the case of our graph classification experiments (§4.2). Each graph
is encoded as a set of persistence diagrams, then processed by an independent instance of PersLay. Each instance
embeds diagrams in some vector space using two functions w, φ that are optimized during training and a fixed
permutation-invariant operator op.

[15]. Given some initial position (x0, y0) ∈ [0, 1]2 and a parameter r > 0, we generate a point cloud
(xn, yn)n=1,...,N following xn+1 := xn+ ryn(1− yn) (mod 1) and yn+1 := yn+ rxn+1(1−xn+1)
(mod 1). The orbits of this dynamical system are highly dependent on parameter r. More precisely,
for some values of r, voids can form in these orbits (see Fig. 5 in the Supplementary Material), and as
such, persistence diagrams are likely to perform well when attempting to classify orbits with respect
to the value of r generating them. As in previous works [2, 9, 21], we use the five different parameters
r = 2.5, 3.5, 4.0, 4.1 and 4.3 to simulate the different classes of orbits, with random initialization
of (x0, y0) and N = 1000 points in each simulated orbit. These point clouds are then turned into
persistence diagrams using a standard geometric filtration [10], namely the AlphaComplex filtration1

in dimensions 0 and 1. Doing so, we generate two datasets. The first is ORBIT5K, where for each
value of r, we generate 1, 000 orbits, ending up with a dataset of 5, 000 point clouds. This dataset is
the same as the one used in [21]. The second, ORBIT100K contains 20, 000 orbits per class, resulting
in a dataset of 100, 000 point clouds — a scale that kernel methods cannot handle. This dataset aims
to show the edge of our neural-network based approach over kernels methods when dealing with very

1http://gudhi.gforge.inria.fr/python/latest/alpha_complex_ref.html

6

http://gudhi.gforge.inria.fr/python/latest/alpha_complex_ref.html

Dataset PSS-K PWG-K SW-K PF-K PersLay
ORBIT5K 72.38(±2.4) 76.63(±0.7) 83.6(±0.9) 85.9(±0.8) 87.7(±1.0)
ORBIT100K — — — — 89.2(±0.3)

Table 1: Performance table. PSS-K, PWG-K, SW-K, PF-K stand for Persistence Scale Space Kernel [25],
Persistence Weighted Gaussian Kernel [20], Sliced Wasserstein Kernel [9] and Persistence Fisher Kernel [21]
respectively. We report the scores given in [21] for competitors on ORBIT5K, and the one we obtained using
PersLay for both the ORBIT5K and ORBIT100K datasets.

large datasets of large diagrams. The goal is now to perform classification with the aforementioned
architecture, while all the previous works dealing with this data [2, 9, 21] use a kernel method to
classify the persistence diagrams built on top of the point clouds.

Results are displayed in Table 1. Not only do we improve on previous results for ORBIT5K, with
performances on ORBIT100K we also show that classification accuracy is further increased as more
observations are made available. For consistency we use the same accuracy metric as [21], we split
observations in 70%-30% training-test sets and report the average test accuracy over 100 runs. The
parameters used summarized Section C in the Supplementary Material.

4.2 PersLay for graph classification

We now specialize our framework to the evaluation of graph datasets. We have seen in Section 2 how
extended persistence diagrams can be computed from a graph for a given function f , defined on its
vertices. As the choice for this function is essential in capturing relevant topological information,
we first provide more details about our choice of the family of such functions that we use in our
experiments: the heat kernel signatures (HKS).

Heat kernel signatures on graphs. HKS is an example of spectral family of signatures, i.e. functions
derived from the spectral decomposition of graph Laplacians, which provide informative features
for graph analysis. The adjacency matrix A of a graph G with vertex set V = {v1, . . . , vn} is the
matrix A := (1(vi,vj)∈E)i,j . The degree matrix D is the diagonal matrix defined by Di,i =

∑
j Ai,j .

The normalized graph Laplacian Lw = Lw(G) is the linear operator acting on the space of functions
defined on the vertices of G, and is represented by the matrix Lw = I −D− 1

2AD−
1
2 . It admits an

orthonormal basis of eigenfunctions Ψ = {ψ1, . . . , ψn} and its eigenvalues satisfy 0 ≤ λ1 ≤ · · · ≤
λn ≤ 2. As the orthonormal eigenbasis Ψ is not uniquely defined, the eigenfunctions ψi cannot be
used as such to compare graphs. Instead we consider the heat kernel signatures:

Definition 4.1 ([17, 26]) Given a graph G and t ≥ 0, the heat kernel signature at time t is the
function hksG,t defined on the vertices of G by hksG,t : v 7→

∑n
k=1 exp(−tλk)ψk(v)2.

The HKS have already been used as signatures to address graph matching problems [17] or to define
spectral descriptors to compare graphs [29]. These signatures rely on the distributions of values
taken by the HKS but not on their global topological structures, which are encoded in their extended
persistence diagrams. Moreover the following theorem shows these diagrams to be stable with respect
to the bottleneck distance dB between persistence diagrams. The proof is found in the Supplementary
Material, Section D.

Theorem 4.2 Let t ≥ 0 and let Lw be the Laplacian matrix of a graph G with n vertices. Let G′ be
another graph with n vertices and Laplacian matrix L̃w = Lw +W . Then there exists a constant
C(G, t) > 0 only depending on t and the spectrum of Lw such that, for small enough ‖W‖:

dB(Dg(G,hksG,t),Dg(G,hksG′,t)) ≤ C(G, t)‖W‖, (3)

Graph classification experiments. We are now ready to evaluate our architecture on a series of
different graph datasets commonly used as a baseline in graph classification problems. REDDIT5K,
REDDIT12K, COLLAB (from [32]) IMDB-B, IMDB-M (from [28]) are composed of social graphs.
BZR, COX2, DHFR, MUTAG, PROTEINS, NCI1, NCI109, FRANKENSTEIN are graphs coming
from medical or biological frameworks (also from [28]). A quantitative summary of these datasets is
found in Table 4 from the Supplementary Material.

We compare performances with four other top graph classification methods. Scale-variant topo
[28] uses a kernel for ordinary persistence diagrams computed on the graphs. RetGK [34] is a

7

Dataset ScaleVariant1 RetGK1 * 2 RetGK11 * 2 FGSD 3 GCNN 4 Spectral + HKS 5 PersLay
REDDIT5K — 56.1(±0.5) 55.3(±0.3) 47.8 52.9 49.7(±0.3) 56.6(±0.3)
REDDIT12K — 48.7(±0.2) 47.1(±0.3) — 46.6 39.7(±0.1) 47.7(±0.2)
COLLAB — 81.0(±0.3) 80.6(±0.3) 80.0 79.6 67.8(±0.2) 76.4(±0.4)
IMDB-B 72.9 71.9(±1.0) 72.3(±0.6) 73.6 73.1 67.6(±0.6) 70.9(±0.7)
IMDB-M 50.3 47.7(±0.3) 48.7(±0.6) 52.4 50.3 44.5(±0.4) 48.7(±0.6)
BZR * 86.6 — — — — 80.8(±0.8) 87.2(±0.7)
COX2 * 78.4 80.1(±0.9) 81.4(±0.6) — — 78.2(±1.3) 81.6(±1.0)
DHFR * 78.4 81.5(±0.9) 82.5(±0.8) — — 69.5(±1.0) 81.8(±0.8)
MUTAG * 88.3 90.3(±1.1) 90.1(±1.0) 92.1 86.7 85.8(±1.3) 89.8(±0.9)
PROTEINS * 72.6 75.8(±0.6) 75.2(±0.3) 73.4 76.3 73.5(±0.3) 74.8(±0.3)
NCI1 * 71.6 84.5(±0.2) 83.5(±0.2) 79.8 78.4 65.3(±0.2) 72.8(±0.3)
NCI109 * 70.5 — — 78.8 — 64.9(±0.2) 71.7(±0.3)
FRANKENSTEIN 69.4 — — — — 62.9(±0.1) 70.7(±0.4)

Table 2: Mean accuracies and standard deviations over ten 10-folds, for [34]2 and our own evaluations (right hand
side). In [28]1 the average accuracy over 100 random splits at different proportions of training data is reported,
and in [30]3 and [31]4 the mean accuracy over a single 10-fold is reported. The * indicates those datasets
that contain attributes (labels) on graph nodes and symmetrically the methods that leverage such attributes for
classification purposes. Blue color represents the best method that does not use node attributes (when there are),
and bold fonts mark the overall best score on a given problem.

kernel method for graphs that leverages attributes on the graph vertices and edges, and reaches
state-of-the-art results on many datasets. Note that while the exact computation (denoted RetGK1
in Table 2) can be quite long, the method can be efficiently approximated (RetGK11 in Table 2)
while preserving good accuracy scores. FGSD [30] is a finite-dimensional graph embedding that
does not leverage attributes, and reaches state-of-the-art results on different datasets. Finally, [31] is a
neural network approach that also reaches top-tier results. One could also compare our results on the
REDDIT datasets to the ones of [16], where authors also use persistence diagrams to feed a network
(using as first channel a particular case of PersLay, see Section 3), achieving 54.5% and 44.5% of
accuracy on REDDIT5K and REDDIT12K respectively.

In order to extract topological features, we use this general scheme: for each graph we compute the
HKS filtrations at one or two time step (e.g. t with values in {0.1, 1, 10, 100}). After generating
the corresponding extended persistence diagram Dg(hkst) induced by HKS (see §2 and §4.2), we
eventually keep, for each diagram, the first k points which are the farthest away from the diagonal (a
specific k is fixed for each dataset, see Table 5 in the supplementary material). We combine these
topological features with more traditional graph features formed by the eigenvalues of the normalized
graph Laplacian along with the deciles of the computed HKS (right-side channel in Figure 3). So as
to evaluate the impact of persistence diagrams, we also report classification performances for those
features alone (thus unplugging the PersLay layers) denoted "Spectral + HKS"5 in Table 2.

We use the same accuracy metric as in [34]. For each dataset, we compute a final score by averaging
ten 10-folds, where a single 10-fold is computed by randomly shuffling the dataset, then splitting
it into 10 different parts, and finally classifying each part using the nine others for training and
averaging the classification accuracy obtained throughout the folds. We report in Table 2 the average
and standard deviation of the scores we obtain. In most cases, our approach is comparable, if not
better, than state-of-the-art results, despite using a very simple neural network architecture. More
importantly, it can be observed from the last two columns of Table 2 that, for all datasets, the use of
extended persistence diagrams significantly improves over using the additional features alone.

5 Conclusion
In this article, we propose a versatile, powerful and simple neural network layer to process persistence
diagrams called PersLay, which generalizes most of the techniques used to vectorize persistence
diagrams that can be found in the literature—while optimizing them task-wise. Our code is freely
available publicly at https://github.com/MathieuCarriere/perslay. We showcase the effi-
ciency of our approach by achieving state-of-the-art results on synthetic orbit classification coming
from dynamical systems and several graph classification problems from real-life data, while working
at larger scales than kernel methods developed for persistence diagrams and remaining simpler than
most of its neural network competitors. We believe that PersLay has the potential to become a central
tool to incorporate topological descriptors in a wide variety of complex machine learning tasks.

8

https://github.com/MathieuCarriere/perslay

References
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software available from tensorflow.org.

[2] Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S.,
Hanson, E., Motta, F., and Ziegelmeier, L. Persistence images: a stable vector representation of
persistent homology. Journal of Machine Learning Research, 18(8), 2017.

[3] Bubenik, P. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(77):77–102, 2015.

[4] Buchet, M., Hiraoka, Y., and Obayashi, I. Persistent homology and materials informatics. In
Nanoinformatics, pp. 75–95. 2018.

[5] Cámara, P. Topological methods for genomics: present and future directions. Current Opinion
in Systems Biology, 1:95–101, feb 2017.

[6] Carrière, M. sklearn-tda: a scikit-learn compatible python package for Machine Learning
and TDA. https://github.com/MathieuCarriere/sklearn_tda, 2018.

[7] Carrière, M. and Bauer, U. On the metric distortion of embedding persistence diagrams into sep-
arable Hilbert spaces. Accepted for publication in International Symposium on Computational
Geometry, 2019.

[8] Carrière, M., Oudot, S., and Ovsjanikov, M. Stable topological signatures for points on 3d
shapes. In Computer Graphics Forum, volume 34, pp. 1–12. Wiley Online Library, 2015.

[9] Carrière, M., Cuturi, M., and Oudot, S. Sliced Wasserstein kernel for persistence diagrams. In
International Conference on Machine Learning, volume 70, pp. 664–673, jul 2017.

[10] Chazal, F., de Silva, V., and Oudot, S. Persistence stability for geometric complexes. Geometriae
Dedicata, 173(1):193–214, 2014.

[11] Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., and Wasserman, L. Stochastic convergence of
persistence landscapes and silhouettes. Journal of Computational Geometry, 6(2):140–161,
2015.

[12] Chazal, F., de Silva, V., Glisse, M., and Oudot, S. The structure and stability of persistence
modules. Springer International Publishing, 2016.

[13] Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. Extending persistence using Poincaré and
Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, feb 2009.

[14] Edelsbrunner, H. and Harer, J. Computational topology: an introduction. American Mathemati-
cal Society, 2010.

[15] Hertzsch, J.-M., Sturman, R., and Wiggins, S. Dna microarrays: design principles for maximiz-
ing ergodic, chaotic mixing. Small, 3(2):202–218, 2007.

[16] Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. Deep learning with topological signatures.
In Advances in Neural Information Processing Systems, pp. 1634–1644, 2017.

[17] Hu, N., Rustamov, R., and Guibas, L. Stable and informative spectral signatures for graph
matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2305–2312, 2014.

[18] Kališnik, S. Tropical coordinates on the space of persistence barcodes. Foundations of
Computational Mathematics, pp. 1–29, jan 2018.

9

http://tensorflow.org/
https://github.com/MathieuCarriere/sklearn_tda

[19] Kingma, D. and Ba, J. Adam: a method for stochastic optimization. arXiv, dec 2014.

[20] Kusano, G., Hiraoka, Y., and Fukumizu, K. Persistence weighted Gaussian kernel for topological
data analysis. In International Conference on Machine Learning, volume 48, pp. 2004–2013,
jun 2016.

[21] Le, T. and Yamada, M. Persistence Fisher kernel: a Riemannian manifold kernel for persistence
diagrams. In Advances in Neural Information Processing Systems, pp. 10027–10038, 2018.

[22] Li, C., Ovsjanikov, M., and Chazal, F. Persistence-based structural recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2003–2010, jun 2014.

[23] Oudot, S. Persistence theory: from quiver representations to data analysis. American Mathe-
matical Society, 2015.

[24] Perea, J. and Harer, J. Sliding windows and persistence: an application of topological methods
to signal analysis. Foundations of Computational Mathematics, 15(3):799–838, jun 2015.

[25] Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. A stable multi-scale kernel for topological
machine learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[26] Sun, J., Ovsjanikov, M., and Guibas, L. A concise and provably informative multi-scale
signature based on heat diffusion. Computer graphics forum, 28:1383–1392, 2009.

[27] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL http://gudhi.gforge.inria.fr/doc/latest/.

[28] Tran, Q. H., Vo, V. T., and Hasegawa, Y. Scale-variant topological information for characterizing
complex networks. arXiv preprint arXiv:1811.03573, 2018.

[29] Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A., and Müller, E. Netlsd: hearing the shape of
a graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2347–2356. ACM, 2018.

[30] Verma, S. and Zhang, Z.-L. Hunt for the unique, stable, sparse and fast feature learning on
graphs. In Advances in Neural Information Processing Systems, pp. 88–98, 2017.

[31] Xinyi, Z. and Chen, L. Capsule graph neural network. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Byl8BnRcYm.

[32] Yanardag, P. and Vishwanathan, S. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp.
1365–1374, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3664-2. doi: 10.1145/
2783258.2783417. URL http://doi.acm.org/10.1145/2783258.2783417.

[33] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola, A. Deep
sets. In Advances in Neural Information Processing Systems, pp. 3391–3401, 2017.

[34] Zhang, Z., Wang, M., Xiang, Y., Huang, Y., and Nehorai, A. RetGK: Graph Kernels based on
Return Probabilities of Random Walks. In Advances in Neural Information Processing Systems,
pp. 3968–3978, 2018.

10

http://gudhi.gforge.inria.fr/doc/latest/
https://openreview.net/forum?id=Byl8BnRcYm
http://doi.acm.org/10.1145/2783258.2783417

A Diagram vectorization techniques

Λp1

Λp2

Λp3

p1

p2

p3

p4

(a) Example of triangle functions
on a persistence diagram with
four points p1, p2, p3, p4. Note
that Λp4 is not displayed since it
is the null function.

Γp1

Γp2

Γp3

Γp4

(b) Example of Gaussian func-
tions on a persistence diagram
with four points p1, p2, p3, p4.

[φL(p1)]1

[φL(p1)]2 [φL(p3)]2 [φL(p2)]2

[φL(p2)]1

[φL(p3)]1

∆1

∆2

p1

p2

p3
p4

(c) Example of line functions for two
lines ∆1,∆2 on a persistence diagram
with four points p1, p2, p3, p4. We use
[·]k to denote the kth coordinate of a
vector.

Figure 4: Illustration of commonly used diagram vectorizations that are particular cases of PersLay.

B Datasets description

Tables 3 and 4 summarizes key information for each dataset for both our experiments. We also
provide an illustration of the orbit we generated (§4.1).

Dataset Nb of orbit observed Number of classes Number of points per orbit
ORBIT5K 5000 5 1000
ORBIT100K 100000 5 1000

Table 3: Description of the two orbits dataset we generated. The five classes correspond to the five parameter
choices for r ∈ {2.5, 3.5, 4.0, 4.1, 4.3}. In both ORBIT5K and ORBIT100K, classes are balanced.

0 1
0

1
r = 2.5

0 1
0

1
r = 3.5

0 1
0

1
r = 4.0

0 1
0

1
r = 4.1

0 1
0

1
r = 4.3

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Figure 5: Some example of orbits generated by the different choices of r (three simulations are represented for
the different values of r).

11

Dataset Nb graphs Nb classes Av. nodes Av. Edges Av. β0 Av. β1

REDDIT5K 5000 5 508.5 594.9 3.71 90.1
REDDIT12K 12000 11 391.4 456.9 2.8 68.29
COLLAB 5000 3 74.5 2457.5 1.0 2383.7
IMDB-B 1000 2 19.77 96.53 1.0 77.76
IMDB-M 1500 3 13.00 65.94 1.0 53.93
BZR 405 2 35.75 38.36 1.0 3.61
COX2 467 2 41.22 43.45 1.0 3.22
DHFR 756 2 42.43 44.54 1.0 3.12
MUTAG 188 2 17.93 19.79 1.0 2.86
PROTEINS 1113 2 39.06 72.82 1.08 34.84
NCI1 4110 2 29.87 32.30 1.19 3.62
NCI109 4127 2 29.68 32.13 1.20 3.64
FRANKENSTEIN 4337 2 16.90 17.88 1.09 2.07

Table 4: Datasets description. β0 (resp. β1) stands for the 0th-Betti-number (resp. 1st), that is the number of
connected components (resp. cycles) in a graph. In particular, an average β0 = 1.0 means that all graph in the
dataset are connected, and in this case β1 = #{edges} −#{nodes}.

Dataset Func. used PD preproc. DeepSet Channel Optim.
ORBIT5K Alpha0, Alpha1 prom(400) Pm(25,25,10,top-5) adam(0.01, 0., 300)
ORBIT100K Alpha0, Alpha1 prom(400) Pm(25,25,10,top-5) adam(0.01, 0., 300)
REDDIT5K hks1.0 prom(300) Pm(25,25,10,sum) adam(0.01, 0.99, 500)
REDDIT12K hks1.0 prom(400) Pm(5,5,10,sum) adam(0.01, 0.99, 1000)
COLLAB hks0.1, hks10 prom(200) Pm(5,5,10,sum) adam(0.01, 0.9, 1000)
IMDB-B hks0.1, hks10 prom(200) Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
IMDB-M hks0.1, hks10 prom(500) Im(10,(10,2),10,sum) adam(0.01, 0.9, 500)
BZR hks0.1, hks10 — Im(15,(10,2),10,sum) adam(0.01, 0.9, 100)
COX2 hks0.1, hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
DHFR hks0.1, hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 500)
MUTAG hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 300)
PROTEINS hks10 prom(200) Im(15,(10,2),10,sum) adam(0.01, 0.9, 70)
NCI1 hks0.1, hks10 — Pm(25,25,10,sum) adam(0.01, 0.9, 300)
NCI109 hks0.1, hks10 — Pm(25,25,10,sum) adam(0.01, 0.9, 300)
FRANKENSTEIN hks10 — Im(20,(10,2),20,sum) adam(0.01, 0.9, 300)

Table 5: Settings used to generate our experimental results.

C Parameters used in our experiments

Input data was fed to the network with mini-batches of size 128. For each dataset, various parameters
are given (extended persistence diagrams, neural network architecture, optimizers, etc.) that were
used to obtain the scores from Table 2. In Table 5, we use the following shortcuts:

• Alphad: persistence diagrams obtained with Gudhi’s d-dimensional AlphaComplex filtration.
• hkst: extended persistence diagram obtained with HKS on the graph with parameter t.
• prom(k): preprocessing step selecting the k points that are the farthest away from the diagonal.
• PersLay channel Im(p, (a, b), q, op) stands for a function φ obtained by using a Gaussian point

transformation φΓ sampled on (p× p) grid on the unit square followed by a convolution with a
filters of size b× b, for a weight function w optimized on a (q × q) grid and for an operation op.

• PersLay channel Pm(d1, d2, q, op) stands for a function φ obtained by using a line point transfor-
mation φL with d1 lines followed by a permutation equivariant function [33] in dimension d2, for
a weight function w optimized on a (q × q) grid and for an operation op.

• adam(λ, d, e) stands for the ADAM optimizer [19] with learning rate λ, using an Exponential
Moving Average2 with decay rate d, and run during e epochs.
2https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage

12

https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage

D Proof of Theorem 4.2

The proof directly follows from the following two theorems. This first one, proved in [17], is a
consequence of classical arguments from matrix perturbation theory.

Theorem D.1 ([17], Theorem 1) Let t ≥ 0 and let Lw be the Laplacian matrix of a graph G with
n vertices. Let λ1 < · · · < λk, k ≤ n be the distinct eigenvalues of Lw and denote by δ > 0
the smallest distance between two distinct eigenvalues: δ = minj=1,··· ,k−1 |λj+1 − λj |. Let G′ be
another graph with n vertices and Laplacian matrix L̃w = Lw + W with ‖W‖ < δ, where ‖W‖
denotes the Frobenius norm of W . Then, if k = n, there exists a constant C0(G, t) > 0 such that for
any vertex v ∈ G,

|hksG,t(v)− hksG′,t(v)| ≤ C0(G, t)‖W‖;
if k < n, there exists two constants C1(G, t), C2(G, t) > 0 such that for any vertex v ∈ G,

|hksG,t(v)− hksG′,t(v)| ≤ C1(G, t)
‖W‖

δ − ‖W‖
+ C2(G, t)‖W‖

In particular, if ‖W‖ < δ
2 , there exists a constant C(G, t) > 0 - notice that δ also depends on G -

such that in the two above cases,

|hksG,t(v)− hksG′,t(v)| ≤ C(G, t)‖W‖.

Theorem 4.2 then immediately follows from the second following theorem, which is a special case of
general stability results for persistence diagrams.

Theorem D.2 ([12, 13]) Let G = (V,E) be a graph and f, g : V → R be two functions defined on
its vertices. Then:

dB(Dg(G, f),Dg(G, g)) ≤ ‖f − g‖∞, (4)
where dB stands for the so-called bottleneck distance between persistence diagrams and ‖f −
g‖∞ = supv∈G |f(v) − g(v)|. Moreover, this inequality is also satisfied for each of the subtypes
Ord0,Rel1,Ext+

0 and Ext−1 individually.

13

	1 Introduction
	2 Persistence diagrams as topological features
	3 PersLay: A Neural Network Layer for Persistence Diagrams
	4 Applications and experimental results
	4.1 A large-scale dynamical system orbits application
	4.2 PersLay for graph classification

	5 Conclusion
	A Diagram vectorization techniques
	B Datasets description
	C Parameters used in our experiments
	D Proof of Theorem ??

