9. Threads

0. Threads

@ Applications

@ Principles

@ Programmer Interface

@ Threads and Signals

@ Example

@ Threads and Mutual Exclusion

@ Logical Threads vs. Hardware Threads

211 /352

9. Threads

Lightweight Shared Memory Concurrency

Motivations

@ Finer-grain concurrency than processes

» Reduce cost of process creation and context switch
» = lightweight processes (save the process state)

@ Implement shared-memory parallel applications
» Take advantage of cache-coherent parallel processing hardware

212 /352

9. Threads — Applications

0. Threads

@ Applications

213/ 352

9. Threads — Applications

Multi- Threaded Applications

Thread-Level Concurrency

@ Many algorithms can be expressed more naturally with independent
computation flows

@ Reactive and interactive systems: safety critical controller, graphical user
Interface, web server, etc.

@ Client-server applications, increase modularity of large applications without
communication overhead

@ Distributed component engineering (CORBA, Java Beans), remote method
Invocation, etc.

214 /352

9. Threads — Applications

Multi- Threaded Applications

Thread-Level Parallelism

@ Tolerate latency (I/O or memory), e.g., creating more logical threads than
hardware threads

@ Scalable usage of hardware resources, beyond instruction-level and vector
parallelism

@ Originate in server (database, web server, etc.) and computational (numerical
simulation, signal processing, etc.) applications

@ Now ubiquitous on multicore systems: Moore's law translates into
performance improvements through thread-level parallelism only

215 / 352

9. Threads — Principles

0. Threads

@ Principles

216 / 352

9. Threads — Principles

Principles

Thread-Level Concurrency and Parallelism

@ A single process may contain multiple POSIX threads, a.k.a. logical threads,
or simply, threads
» Share a single memory space
Code, static data, heap

» Distinct, separate stack
@ Impact on operating system

» Schedule threads and processes
» Map POSIX threads to hardware threads
» Programmer interface compatibility with single-threaded processes

@ $ man 7 pthreads

217 / 352

9. Threads — Principles

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

218 / 352

9. Threads — Principles

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes
@ Thread identifier: pthread t data type
Signal mask (pthread _sigmask())

errno variable

CPU affinity (NUMA machines)

)
)

@ Scheduling policy and real-time priority

)

@ Capabilities (Linux only, $ man 7 capabilities)

218 / 352

9. Threads — Principles

Threads vs. Processes

Shared Attributes
e PID, PPID, PGID, SID, UID, GID

@ Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

@ Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes
@ Thread identifier: pthread t data type
Signal mask (pthread _sigmask())

errno variable

CPU affinity (NUMA machines)

)
)

@ Scheduling policy and real-time priority

)

@ Capabilities (Linux only, $ man 7 capabilities)

To use POSIX threads, compile with ~pthread)

218 / 352

9. Threads — Programmer Interface

0. Threads

@ Programmer Interface

219 / 352

9. Threads — Programmer Interface

System Call: pthread create()

Create a New Thread
#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
void *(xstart_routine) (void *), void *arg);

Semantics

@ The new thread calls start routine(arg)

@ The attr argument corresponds to thread attributes, e.g., it can be
detached or joinable, see pthread attr_init() and pthread detach()

» If NULL, default attributes are used (it is joinable (i.e., not detached) and has
default (i.e., non real-time) scheduling policy

@ Return 0 on success, or a non-null error condition: stores identifier of the new
thread in the location pointed to by the thread argument

@ Note: errno Is not set

220 / 352

9. Threads — Programmer Interface

System Call: pthread exit ()

Terminate the Calling Thread
#include <pthread.h>

void pthread_exit(void *retval);

Semantics

@ [erminates execution

> After calling cleanup handlers; set with pthread cleanup push()
» Then calling finalization functions for thread-specific data, see
pthread key_create()

@ The retval argument (an arbitrary pointer) is the return value for the
thread; it can be consulted with pthread join()

@ Called implicitely if the thread routine returns

@ pthread _exit () never returns

221 /352

9. Threads — Programmer Interface

System Call: pthread join()

Wait For Termination of Another Thread
#include <pthread.h>

int pthread_join(pthread_t thread, void **thread_return);

Semantics

@ Suspend execution of the calling thread until thread terminates or is
canceled, see pthread_cancel ()

@ If thread return is not null

> Its value is the pointer returned upon termination of thread
» Or PTHREAD_CANCELED if thread was canceled

@ thread must not be detached, see pthread detach()

@ Thread resources are not freed upon termination, only when calling
pthread join() of pthread detach(); watch out for memory leaks!

@ Return 0 on success, or a non-null error condition

@ Note: errno Is not set)

222 /352

9. Threads — Programmer Interface

Thread-Local Storage

Thread-Specific Data (TSD)

@ Private memory area associated with each thread
@ Some global variables need to be private

» Example: errno
» More examples: OpenMP programming language extensions
» General compilation method: privatization

@ Implementation: pthread key create()

Finalization Functions

@ Privatization of non-temporary data may require

» Copy-in: broadcast shared value into multiple private variables
» Copy-out: select a private value to update a shared variable upon termination

@ Memory management (destructors) for dynamically allocated TSD

223 /352

9. Threads — Threads and Signals

0. Threads

@ Threads and Signals

224 / 352

9. Threads — Threads and Signals

Threads and Signals

Sending a Signal to A Particular Thread

— pthread kill ()
Behaves like ki11 (), but signal actions and handlers are global to the process

.

Blocking a Signal in A Particular Thread

— pthread_sigmask()
Behaves like sigprocmask ()

Suspending A Particular Thread Waiting for Signal Delivery

— sigwait ()
Behaves like sugsuspend (), suspending thread execution (thread-local) and
blocking a set of signals (global to the process).

225 / 352

9. Threads — Example

0. Threads

@ Example

226 / 352

9. Threads — Example

Example: Typical Thread Creation/Joining

#include
#include
#include
#include
#include
#include
#include

<pthread.h>
<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<errno.h>
<sys/times.h>

#define NTHREADS 5

void *thread fun(void *num) {

int 1i

*(int *)num;

printf ("Thread %d\n", i);

//

// More thread-specific code

//

pthread_exit (NULL) ;

// Or pthread_self()

// Or simply return NULL

227 / 352

9. Threads — Example

Example: Typical Thread Creation/Joining

pthread_t threads[NTHREADS] ;

int main(int argc, char *argv[]) {
pthread_attr_t attr;
int i, error;
(i = 0; i < NTHREADS; i++) {
pthread_attr_init(&attr);
int *ii = malloc(sizeof(int)); *ii = i;
error = pthread_create(&threads[i], &attr, thread_fun, ii);
(error '= 0) {
fprintf (stderr, "Error in pthread_create: %s \n", strerror(error));

exit(1);
+
+
(i=0; i < NTHREADS; i++) {
error = pthread_join(threads[i], NULL);
(error !'= 0) {
fprintf (stderr, "Error in pthread_join: %s \n", strerror(error));
exit(1);
+
}
+

v

228 / 352

9. Threads — Threads and Mutual Exclusion

0. Threads

@ Threads and Mutual Exclusion

229 / 352

9. Threads — Threads and Mutual Exclusion

System Call: pthread mutex_init ()

Initialisation of a mutex

#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);

Semantics

@ Perform mutex initialization

@ The mutex variable has to be shared among the threads willing to use the
same lock; initialization has to occur exactly one time

» For re-using an already initialized mutex see pthread mutex destroy

@ The attr argument is the mutex type attribute: it can be fast, recursive or
error checking; see pthread mutexattr_init ()

» |f NULL, fast is assumed by default
@ Return 0 on success, or a non-null error condition

@ Initialization can also be performed statically with default attributes by using:
pthread mutex_t mutex = PTHREAD MUTEX_INITIALIZER,

y
230 / 352

9. Threads — Threads and Mutual Exclusion

System Call: pthread mutex_unlock()

Acquiring/Releasing a lock

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Semantics of pthread mutex lock

@ Block the execution of the current thread until the lock referenced by mutex
becomes available

» Attemtping to re-lock a mutex after acquiring the lock leads to different
behaviour depending on mutex attributes (see previous slide)

@ The system call is not interrupted by a signal

@ Return 0 on success, or a non-null error condition

Semantics of pthread mutex_unlock

@ Release the lock (if acquired by the current thread)
@ The lock is passed to a blocked thread (if any) depending on schedule

@ Return 0 on success, or a non-null error condition

231 /352
y

9. Threads — Threads and Mutual Exclusion

System Call: pthread mutex_try/timedlock()

Acquiring a lock without blocking

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t * mutex);
int pthread_mutex_timedlock(pthread_mutex_t * mutex,

struct timespec * abs_timeout);

Semantics of pthread mutex trylock

@ Try to acquire the lock and return immediately in case of failure

@ Return 0 on success, or a non-null error condition

Semantics of pthread mutex_timedlock

@ Block the execution of the current thread until the lock becomes available or
until abs_timeout elapses

@ Return 0 on success, or a non-null error condition

232 /352

9. Threads — Threads and Mutual Exclusion

Read /Write Locks

Principles
@ Allow concurrent read and guarantee excluse write

@ Similar API to regular mutexes

» pthread rwlock init() — initialize a read/write lock

pthread rwlock rdlock() — get a shared read lock

pthread rwlock wrlock() — get an exclusive write lock

pthread rwlock unlock() — unlock an exclusive write or shared read lock
pthread rwlock tryrdlock() — get a shared read lock w/o waiting
pthread rwlock trywrlock() — get an exclusive write lock w/o waiting
pthread rwlock timedrdlock() — get a shared read lock with timeout
pthread rwlock timedwrlock() — get an exclusive write lock with timeout

vV vV vV v v VvY

y

233/ 352

9. Threads — Threads and Mutual Exclusion

Condition Variables

Overview
@ Producer-Consumer synchronization mechanism
@ Block the execution of a thread until a boolean predicate becomes true

@ Require dedicated instructions to wait without busy-waiting

Principles

@ A mutex is used to atomically test a predicate, and according to its value:

> either the execution continues
» or the execution is blocked until it is signaled

@ Once signaled, the thread waiting on the condition resumes

@ The mutex prevents race-conditions when a thread is going to wait while
being signaled

234 /352

9. Threads — Threads and Mutual Exclusion

System Call: pthread cond wait ()

Blocking a thread according to a given condition

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex) |
A

Semantics
@ Atomically block the execution of a thread and release the mutex lock

@ Once the condition variable cond is signaled by another thread, atomically
reacquire the mutex lock and resume execution

@ Return 0 on success, or a non-null error condition

@ Like mutex variables, condition variables have to be initialized with a system
call

@ pthread cond timedwait () can also resume the execution after the end of
a given timeout

235 / 352

9. Threads — Threads and Mutual Exclusion

System Call: pthread cond_signal/broadcast ()

Signaling or broadcasting a condition
#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t xcond) ;
int pthread_cond_signal(pthread_cond_t *cond);

Semantics

@ Signal one (pthread cond signal) or every (pthread _cond broadcast)
threads waiting on the condition variable cond.

@ If no thread is waiting, nothing happens. Signal is /ost.

@ Return 0 on success, or a non-null error condition

236 / 352

9. Threads — Threads and Mutual Exclusion
Example: Typical use of Condition Variables

int x, y; // Shared variables
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

void *thread_one(void *param) {
//
pthread_mutex_lock(&mutex) ;
while (x <= y) {
pthread_cond_wait(&cond, &mutex);
}
// Now we can be sure that x > y
pthread_mutex_unlock(&mutex) ;
// No more guarantee on the value of x > y

}
void *thread_two(void *param) {
/] ...
pthread_mutex_lock(&mutex) ;
// modification of x and y
// no need to send a signal if the predicate is false
if (x> y)
pthread_cond_broadcast (&cond) ;
pthread_mutex_unlock(&mutex) ;

237 /352

9. Threads — Threads and Mutual Exclusion

pthread Implementation: Futexes

Futexes Overview

Futex: fast userspace mutex

Low level synchronization primitives used to program higher-level locking
abstractions

Appeared recently in the Linux kernel (since 2.5.7)

@ Rely on:

> a shared integer in user space to synchronize threads
» two system calls (kernel space) to make a thread wait or to wake up a thread

Fast: most of the time only the shared integer is required

Difficult to use: no deadlock protection, subtle correctness and performance
Issues

For more information: read futexes are tricky by Ulrich Drepper
http://people.redhat.com/drepper/futex.pdf

238 / 352

9. Threads — Logical Threads vs. Hardware Threads

0. Threads

@ Logical Threads vs. Hardware Threads

239 / 352

9. Threads — Logical Threads vs. Hardware Threads

Logical Threads vs. Hardware Threads

Logical Thread Abstraction

Multiple concurrent execution contexts of the same program, cooperating over a
single memory space, called shared address space (i.e., shared data, consistent
memory addresses across all threads)

Among the different forms of logical thread abstrations, user-level threads do not
need a processor/kernel context-switch to be scheduled

Mapping Logical to Hardware Threads

The hardware threads are generally exposed directly as operating system kernel
threads (POSIX threads); these can serve as worker threads on which user-level

threads can be mapped
Mapping strategies: one-to-one, many-to-one (“green” threads), many-to-many

y

240 / 352

9. Threads — Logical Threads vs. Hardware Threads

Logical Threads vs. Hardware Threads

Thread “Weight”

©Q Lightest: run-to-completion coroutines
— indirect function call

Light: coroutines, fibers, protothreads, cooperative user-level threads
— garbage collector, cactus stacks, register checkpointing

Lighter: preemptive user-level threads
— preemption support (interrupts)

Heavy: kernel threads (POSIX threads)
— context switch

© ©0 o ©

Heavier: kernel processes
— context switch with page table operations (TLB flush)

241 /352

9. Threads — Logical Threads vs. Hardware Threads

Task Pool

General approach to schedule user-level threads

@ Single task queue

@ Split task queue for scalability and dynamic load balancing

More than one pool may be needed to separate ready threads from
waiting /blocked threads

242 /352

9. Threads — Logical Threads vs. Hardware Threads

Task Pool: Single Task Queue

Simple and effective for small number of threads

Caveats:

@ The single shared queue becomes the point of contention

@ The time spent to access the queue may be significant as compared to the
computation itself

@ Limits the scalability of the parallel application

@ Locality is missing all together

243 / 352

9. Threads — Logical Threads vs. Hardware Threads

Task Pool: Split Task Queue

Work Sharing

Threads with more work push work to threads with less work A centralized
scheduler balances the work between the threads

Work Stealing J

A thread that runs out of work tries to steal work from some other thread

244 / 352

9. Threads — Logical Threads vs. Hardware Threads

The Cilk Project

@ Language for dynamic multithreaded applications
@ C dialect

@ Developed since 1994 at MIT in the group of Charles Leiserson

http://supertech.csail.mit.edu/cilk
Now part of Intel Parallel Studio (and TBB, ArBB)

@ Influenced OpenMP tasks (OpenMP 3.0), and other coroutine-based parallel
languages

245 / 352

9. Threads — Logical Threads vs. Hardware Threads

Fibonacci in Cilk

@ Tasks are (nested) coroutines
@ Two keywords:
» spawn function () to indicate that the function call may be executed as a
coroutine
» sync to implement a synchronization barrier, waiting for all previously
spawned tasks

int fib(int n) {

(n < 2)
n;
{
int x, Vy;
X = fib(n-1);
y = fib(n-2);
(x+y);

246 / 352

