
9. Threads

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

211 / 352

9. Threads

Lightweight Shared Memory Concurrency

Motivations

Finer-grain concurrency than processes
I Reduce cost of process creation and context switch
I ≈ lightweight processes (save the process state)

Implement shared-memory parallel applications
I Take advantage of cache-coherent parallel processing hardware

212 / 352

9. Threads – Applications

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

213 / 352

9. Threads – Applications

Multi-Threaded Applications

Thread-Level Concurrency

Many algorithms can be expressed more naturally with independent
computation flows

Reactive and interactive systems: safety critical controller, graphical user
interface, web server, etc.

Client-server applications, increase modularity of large applications without
communication overhead

Distributed component engineering (CORBA, Java Beans), remote method
invocation, etc.

214 / 352

9. Threads – Applications

Multi-Threaded Applications

Thread-Level Parallelism

Tolerate latency (I/O or memory), e.g., creating more logical threads than
hardware threads

Scalable usage of hardware resources, beyond instruction-level and vector
parallelism

Originate in server (database, web server, etc.) and computational (numerical
simulation, signal processing, etc.) applications

Now ubiquitous on multicore systems: Moore’s law translates into
performance improvements through thread-level parallelism only

215 / 352

9. Threads – Principles

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

216 / 352

9. Threads – Principles

Principles

Thread-Level Concurrency and Parallelism

A single process may contain multiple POSIX threads, a.k.a. logical threads,
or simply, threads

I Share a single memory space
I Code, static data, heap

I Distinct, separate stack

Impact on operating system
I Schedule threads and processes
I Map POSIX threads to hardware threads
I Programmer interface compatibility with single-threaded processes

$ man 7 pthreads

217 / 352

9. Threads – Principles

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only, $ man 7 capabilities)

To use POSIX threads, compile with -pthread

218 / 352

9. Threads – Principles

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only, $ man 7 capabilities)

To use POSIX threads, compile with -pthread

218 / 352

9. Threads – Principles

Threads vs. Processes

Shared Attributes

PID, PPID, PGID, SID, UID, GID

Current and root directories, controlling terminal, open file descriptors, record
locks, file creation mask (umask)

Timers, signal settings, priority (nice), resource limits and usage

Distinct Attributes

Thread identifier: pthread t data type

Signal mask (pthread sigmask())

errno variable

Scheduling policy and real-time priority

CPU affinity (NUMA machines)

Capabilities (Linux only, $ man 7 capabilities)

To use POSIX threads, compile with -pthread

218 / 352

9. Threads – Programmer Interface

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

219 / 352

9. Threads – Programmer Interface

System Call: pthread create()

Create a New Thread

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);

Semantics

The new thread calls start routine(arg)

The attr argument corresponds to thread attributes, e.g., it can be
detached or joinable, see pthread attr init() and pthread detach()

I If NULL, default attributes are used (it is joinable (i.e., not detached) and has
default (i.e., non real-time) scheduling policy

Return 0 on success, or a non-null error condition; stores identifier of the new
thread in the location pointed to by the thread argument

Note: errno is not set

220 / 352

9. Threads – Programmer Interface

System Call: pthread exit()

Terminate the Calling Thread

#include <pthread.h>

void pthread_exit(void *retval);

Semantics

Terminates execution
I After calling cleanup handlers; set with pthread cleanup push()
I Then calling finalization functions for thread-specific data, see

pthread key create()

The retval argument (an arbitrary pointer) is the return value for the
thread; it can be consulted with pthread join()

Called implicitely if the thread routine returns

pthread exit() never returns

221 / 352

9. Threads – Programmer Interface

System Call: pthread join()

Wait For Termination of Another Thread

#include <pthread.h>

int pthread_join(pthread_t thread, void **thread_return);

Semantics

Suspend execution of the calling thread until thread terminates or is
canceled , see pthread cancel()

If thread return is not null
I Its value is the pointer returned upon termination of thread
I Or PTHREAD CANCELED if thread was canceled

thread must not be detached , see pthread detach()

Thread resources are not freed upon termination, only when calling
pthread join() of pthread detach(); watch out for memory leaks!

Return 0 on success, or a non-null error condition

Note: errno is not set
222 / 352

9. Threads – Programmer Interface

Thread-Local Storage

Thread-Specific Data (TSD)

Private memory area associated with each thread

Some global variables need to be private
I Example: errno
I More examples: OpenMP programming language extensions
I General compilation method: privatization

Implementation: pthread key create()

Finalization Functions

Privatization of non-temporary data may require
I Copy-in: broadcast shared value into multiple private variables
I Copy-out: select a private value to update a shared variable upon termination

Memory management (destructors) for dynamically allocated TSD

223 / 352

9. Threads – Threads and Signals

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

224 / 352

9. Threads – Threads and Signals

Threads and Signals

Sending a Signal to A Particular Thread

→ pthread kill()

Behaves like kill(), but signal actions and handlers are global to the process

Blocking a Signal in A Particular Thread

→ pthread sigmask()

Behaves like sigprocmask()

Suspending A Particular Thread Waiting for Signal Delivery

→ sigwait()

Behaves like sugsuspend(), suspending thread execution (thread-local) and
blocking a set of signals (global to the process).

225 / 352

9. Threads – Example

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

226 / 352

9. Threads – Example

Example: Typical Thread Creation/Joining

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <sys/times.h>

#define NTHREADS 5

void *thread_fun(void *num) {

int i = *(int *)num;

printf("Thread %d\n", i); // Or pthread_self()

// ...

// More thread-specific code

// ...

pthread_exit(NULL); // Or simply return NULL

}

227 / 352

9. Threads – Example

Example: Typical Thread Creation/Joining

pthread_t threads[NTHREADS];

int main(int argc, char *argv[]) {

pthread_attr_t attr;

int i, error;

for (i = 0; i < NTHREADS; i++) {

pthread_attr_init(&attr);

int *ii = malloc(sizeof(int)); *ii = i;

error = pthread_create(&threads[i], &attr, thread_fun, ii);

if (error != 0) {

fprintf(stderr, "Error in pthread_create: %s \n", strerror(error));

exit(1);

}

}

for (i=0; i < NTHREADS; i++) {

error = pthread_join(threads[i], NULL);

if (error != 0) {

fprintf(stderr, "Error in pthread_join: %s \n", strerror(error));

exit(1);

}

}

}

228 / 352

9. Threads – Threads and Mutual Exclusion

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

229 / 352

9. Threads – Threads and Mutual Exclusion

System Call: pthread mutex init()

Initialisation of a mutex

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *attr);

Semantics

Perform mutex initialization

The mutex variable has to be shared among the threads willing to use the
same lock; initialization has to occur exactly one time

I For re-using an already initialized mutex see pthread mutex destroy

The attr argument is the mutex type attribute: it can be fast, recursive or
error checking ; see pthread mutexattr init()

I If NULL, fast is assumed by default

Return 0 on success, or a non-null error condition

Initialization can also be performed statically with default attributes by using:
pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

230 / 352

9. Threads – Threads and Mutual Exclusion

System Call: pthread mutex un lock()

Acquiring/Releasing a lock

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Semantics of pthread mutex lock

Block the execution of the current thread until the lock referenced by mutex
becomes available

I Attemtping to re-lock a mutex after acquiring the lock leads to different
behaviour depending on mutex attributes (see previous slide)

The system call is not interrupted by a signal

Return 0 on success, or a non-null error condition

Semantics of pthread mutex unlock

Release the lock (if acquired by the current thread)

The lock is passed to a blocked thread (if any) depending on schedule

Return 0 on success, or a non-null error condition 231 / 352

9. Threads – Threads and Mutual Exclusion

System Call: pthread mutex try/timed lock()

Acquiring a lock without blocking

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t * mutex);

int pthread_mutex_timedlock(pthread_mutex_t * mutex,

struct timespec * abs_timeout);

Semantics of pthread mutex trylock

Try to acquire the lock and return immediately in case of failure

Return 0 on success, or a non-null error condition

Semantics of pthread mutex timedlock

Block the execution of the current thread until the lock becomes available or
until abs timeout elapses

Return 0 on success, or a non-null error condition

232 / 352

9. Threads – Threads and Mutual Exclusion

Read/Write Locks

Principles

Allow concurrent read and guarantee excluse write

Similar API to regular mutexes
I pthread rwlock init() – initialize a read/write lock
I pthread rwlock rdlock() – get a shared read lock
I pthread rwlock wrlock() – get an exclusive write lock
I pthread rwlock unlock() – unlock an exclusive write or shared read lock
I pthread rwlock tryrdlock() – get a shared read lock w/o waiting
I pthread rwlock trywrlock() – get an exclusive write lock w/o waiting
I pthread rwlock timedrdlock() – get a shared read lock with timeout
I pthread rwlock timedwrlock() – get an exclusive write lock with timeout

233 / 352

9. Threads – Threads and Mutual Exclusion

Condition Variables

Overview

Producer-Consumer synchronization mechanism

Block the execution of a thread until a boolean predicate becomes true

Require dedicated instructions to wait without busy-waiting

Principles

A mutex is used to atomically test a predicate, and according to its value:
I either the execution continues
I or the execution is blocked until it is signaled

Once signaled, the thread waiting on the condition resumes

The mutex prevents race-conditions when a thread is going to wait while
being signaled

234 / 352

9. Threads – Threads and Mutual Exclusion

System Call: pthread cond wait()

Blocking a thread according to a given condition

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);

Semantics

Atomically block the execution of a thread and release the mutex lock

Once the condition variable cond is signaled by another thread, atomically
reacquire the mutex lock and resume execution

Return 0 on success, or a non-null error condition

Like mutex variables, condition variables have to be initialized with a system
call

pthread cond timedwait() can also resume the execution after the end of
a given timeout

235 / 352

9. Threads – Threads and Mutual Exclusion

System Call: pthread cond signal/broadcast ()

Signaling or broadcasting a condition

#include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_signal(pthread_cond_t *cond);

Semantics

Signal one (pthread cond signal) or every (pthread cond broadcast)
threads waiting on the condition variable cond.

If no thread is waiting, nothing happens. Signal is lost.

Return 0 on success, or a non-null error condition

236 / 352

9. Threads – Threads and Mutual Exclusion

Example: Typical use of Condition Variables

int x, y; // Shared variables

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

void *thread one(void *param) {

// ...

pthread_mutex_lock(&mutex);

while (x <= y) {

pthread_cond_wait(&cond, &mutex);

}

// Now we can be sure that x > y

pthread_mutex_unlock(&mutex);

// No more guarantee on the value of x > y

}

void *thread two(void *param) {

// ...

pthread_mutex_lock(&mutex);

// modification of x and y

// no need to send a signal if the predicate is false

if (x > y)

pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&mutex);

}
237 / 352

9. Threads – Threads and Mutual Exclusion

pthread Implementation: Futexes

Futexes Overview

Futex: fast userspace mutex

Low level synchronization primitives used to program higher-level locking
abstractions

Appeared recently in the Linux kernel (since 2.5.7)

Rely on:
I a shared integer in user space to synchronize threads
I two system calls (kernel space) to make a thread wait or to wake up a thread

Fast: most of the time only the shared integer is required

Difficult to use: no deadlock protection, subtle correctness and performance
issues

For more information: read futexes are tricky by Ulrich Drepper
http://people.redhat.com/drepper/futex.pdf

238 / 352

9. Threads – Logical Threads vs. Hardware Threads

9. Threads

Applications
Principles
Programmer Interface
Threads and Signals
Example
Threads and Mutual Exclusion
Logical Threads vs. Hardware Threads

239 / 352

9. Threads – Logical Threads vs. Hardware Threads

Logical Threads vs. Hardware Threads

Logical Thread Abstraction

Multiple concurrent execution contexts of the same program, cooperating over a
single memory space, called shared address space (i.e., shared data, consistent
memory addresses across all threads)

Among the different forms of logical thread abstrations, user-level threads do not
need a processor/kernel context-switch to be scheduled

Mapping Logical to Hardware Threads

The hardware threads are generally exposed directly as operating system kernel
threads (POSIX threads); these can serve as worker threads on which user-level
threads can be mapped
Mapping strategies: one-to-one, many-to-one (“green” threads), many-to-many

240 / 352

9. Threads – Logical Threads vs. Hardware Threads

Logical Threads vs. Hardware Threads

Thread “Weight”

1 Lightest: run-to-completion coroutines
→ indirect function call

2 Light: coroutines, fibers, protothreads, cooperative user-level threads
→ garbage collector, cactus stacks, register checkpointing

3 Lighter: preemptive user-level threads
→ preemption support (interrupts)

4 Heavy: kernel threads (POSIX threads)
→ context switch

5 Heavier: kernel processes
→ context switch with page table operations (TLB flush)

241 / 352

9. Threads – Logical Threads vs. Hardware Threads

Task Pool

General approach to schedule user-level threads

Single task queue

Split task queue for scalability and dynamic load balancing

More than one pool may be needed to separate ready threads from
waiting/blocked threads

242 / 352

9. Threads – Logical Threads vs. Hardware Threads

Task Pool: Single Task Queue

Simple and effective for small number of threads

Caveats:

The single shared queue becomes the point of contention

The time spent to access the queue may be significant as compared to the
computation itself

Limits the scalability of the parallel application

Locality is missing all together

243 / 352

9. Threads – Logical Threads vs. Hardware Threads

Task Pool: Split Task Queue

Work Sharing

Threads with more work push work to threads with less work A centralized
scheduler balances the work between the threads

Work Stealing

A thread that runs out of work tries to steal work from some other thread

244 / 352

9. Threads – Logical Threads vs. Hardware Threads

The Cilk Project

Language for dynamic multithreaded applications

C dialect

Developed since 1994 at MIT in the group of Charles Leiserson
http://supertech.csail.mit.edu/cilk

Now part of Intel Parallel Studio (and TBB, ArBB)

Influenced OpenMP tasks (OpenMP 3.0), and other coroutine-based parallel
languages

245 / 352

9. Threads – Logical Threads vs. Hardware Threads

Fibonacci in Cilk
Tasks are (nested) coroutines
Two keywords:

I spawn function () to indicate that the function call may be executed as a
coroutine

I sync to implement a synchronization barrier , waiting for all previously
spawned tasks

cilk int fib(int n) {

if (n < 2)

return n;

else {

int x, y;

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return (x+y);

}

}

246 / 352

