
École Polytechnique 2023–2024

INF564 Compilation
Mini Python

version 1 — January 26, 2024

The goal is to build a compiler for a tiny fragment of the Python language, called
Mini Python in the following, to x86-64 assembly. This fragment contains Booleans,
integers, strings, and lists. It is 99% compatible with Python 3. This means that Python
documentation and a Python interpreter can be used as a reference when needed.

The syntax of Mini Python is described in Sec. 1. A parser is provided (for both OCaml
and Java). You have to implement static type checking (Sec. 2) and code generation
(Sec. 4).

1 Syntax
We use the following notations in grammars:

⟨rule⟩⋆ repeats ⟨rule⟩ an arbitrary number of times (including zero)
⟨rule⟩⋆t repeats ⟨rule⟩ an arbitrary number of times (including zero), with sep-

arator t
⟨rule⟩+ repeats ⟨rule⟩ at least once
⟨rule⟩+t repeats ⟨rule⟩ at least once, with separator t
⟨rule⟩? use ⟨rule⟩ optionally
(⟨rule⟩) grouping

Be careful not to confuse “⋆” and “+” with “*” and “+” that are Python symbols. Similarly,
do not confuse grammar parentheses with terminal symbols (and).

1.1 Lexical Conventions

Comments start with # and extend to the end of line. Identifiers follow the regular
expression ⟨ident⟩ :

⟨digit⟩ ::= 0–9
⟨alpha⟩ ::= a–z | A–Z
⟨ident⟩ ::= (⟨alpha⟩ | _) (⟨alpha⟩ | _ | ⟨digit⟩)⋆

The following identifiers are keywords:

and def else for if True False
in not or print return None

Integer literals follow the regular expression ⟨integer⟩:

1

⟨integer⟩ ::= 0 | 1–9 ⟨digit⟩⋆

String literals are written between quotes ("). There are two escape sequences: \" for
the character " and \n for a new line character. We assume that string literals do not
contain any character \ beyond these two escape sequences.

In the Python language, block structure is defined by line indentation, i.e., the number
of spaces at the beginning of a line (it is assumed that files do not contain tabulation
characters). Most of the work is done by the lexical analyzer, which produces NEWLINE,
BEGIN, and END tokens corresponding to the end of lines and the increase or decrease
in indentation respectively. The algorithm is as follows. The lexical analyzer maintains
a stack of integers, representing successive current indentations. This stack is sorted,
with the largest value at the top. Initially, the stack contains a single value, namely 0.
When the lexical analyzer encounters a carriage return, it produces a NEWLINE token,
then measures the indentation at the beginning of the next line, n, and compares it with
the indentation at the top of the stack, m. There are three cases:

• if n = m, we do nothing;

• if n > m, we push n on the stack and we emit a second token BEGIN ;

• if n < m, then we pop until we find the value n, emitting a token END for each value
strictly greater than n popped from the stack (the value n, if any, stays on top of
the stack); if n does not appear on the stack, we fail with an indentation error.

In this process, empty lines, that is lines only containing spaces or comments, are ignored.

1.2 Syntax

The grammar of source files is given in Fig. 1. The entry point is ⟨file⟩. Associativity
and priorities are given below, from lowest to strongest priority.

operation associativity priority
or left lowest
and left
not —
< <= > >= == != — ↓
+ - left
* // % left
- (unary) —
[— strongest

Note that, contrary to Python, an expression such as x < y < z is not part of our syntax.

2

⟨file⟩ ::= NEWLINE? ⟨def ⟩⋆ ⟨stmt⟩+ EOF
⟨def ⟩ ::= def ⟨ident⟩ (⟨ident⟩⋆,) : ⟨suite⟩
⟨suite⟩ ::= ⟨simple_stmt⟩ NEWLINE

| NEWLINE BEGIN ⟨stmt⟩+ END
⟨simple_stmt⟩ ::= return ⟨expr⟩

| ⟨ident⟩ = ⟨expr⟩
| ⟨expr⟩ [⟨expr⟩] = ⟨expr⟩
| print (⟨expr⟩)
| ⟨expr⟩

⟨stmt⟩ ::= ⟨simple_stmt⟩ NEWLINE
| if ⟨expr⟩ : ⟨suite⟩
| if ⟨expr⟩ : ⟨suite⟩ else : ⟨suite⟩
| for ⟨ident⟩ in ⟨expr⟩ : ⟨suite⟩

⟨expr⟩ ::= ⟨const⟩
| ⟨ident⟩
| ⟨expr⟩ [⟨expr⟩]
| - ⟨expr⟩
| not ⟨expr⟩
| ⟨expr⟩ ⟨binop⟩ ⟨expr⟩
| ⟨ident⟩ (⟨expr⟩⋆,)
| [⟨expr⟩⋆,]
| (⟨expr⟩)

⟨binop⟩ ::= + | - | * | // | % | <= | >= | > | < | != | ==
| and | or

⟨const⟩ ::= ⟨integer⟩ | ⟨string⟩ | True | False | None

Figure 1: Grammar of Mini Python.

3

2 Static Typing
Though Python is a dynamically-typed language, Mini Python is simple enough to allow
us some checks at compile time. These checks are the following:

1. Any function used in an expression must be

• either a function that was previously defined;
• either the function we are currently defining (a recursive function);
• one of the three built-in functions len, list, and range. (In Mini Python,
print has built-in syntax and thus is not considered as a function.)

In particular, there are no mutually recursive functions in Mini Python.

2. The names of the functions declared with def are pairwise distinct, and distinct
from len, list, and range.

3. Function arity must be obeyed, i.e., a function defined with n formal parameters
must be called with exactly n actual parameters. Functions len, list, and range
all have one parameter.

4. Built-in functions list and range are exclusively used in the compound expression
list(range(e)).

5. The formal parameters of a function must be pairwise distinct.

6. The scope of variables is statically defined. A variable is either local to a function
or global. A local variable x is introduced either as a function parameter or via
an assignment x = e anywhere in the function body. The scope of a local variable
extends to the full body of the function. A global variable is introduced via an
assignment in the toplevel code (the code outside of function definitions at the end
of the program). Hint: It is convenient to see the toplevel code as the body of
a main function. This way, global variables are simply variables that are local to
function main.

Note that it is not possible to shadow a variable in Mini Python. We do not (and
could not) check at compile time that a variable is defined before being used.

3 Semantics
Any value in Mini Python has a dynamic type. This type is assigned to the value at
creation time and it cannot be modified thereafter. There are five possible types: none,
bool, int, string, and list. The semantics of an operation can vary according to the
type of its actual parameters. In some cases, it can lead to a runtime failure. In this case,
the code produced will display a message of the form

error: some message

and will terminate with exit code 1. The message does not matter but the exit code is
important, as it will be used in automated tests.

4

Values. The none type contains a single value, noted as None. In particular, this is the
value returned by a function that reaches its return point without encountering a return
statement. The bool type is the Boolean type, with two possible values are False and
True. The int type is for signed 64-bit integers. Type string is for character strings.
Finally, type list is for lists, which are heterogeneous and possibly empty. The elements
of a list can be modified in place, with the statement x[e1] = e2, but the length of a list
cannot be modified.

Built-in Function print. The print statement displays the value passed as a param-
eter, followed by a newline. The display format is as follows:

type affichage
none None
bool False, True
int in decimal, e.g. 42
list [e1, . . . , en], e.g. [1, 2, 3]
string without quotes, e.g. abc

\n is printed as a newline
\" is printed as "

Boolean Condition. The statement if and the operators and, or, and not all accept
operands of any type, with the following semantics:

• None, False, the integer 0, the empty string, and the empty list are interpreted as
false;

• any other value is interpreted as true.

Operators and and or are lazily-evaluated: the second operand is evaluated only if needed,
i.e. if the value of the first operand does not determine the final value. The result of e1
and e2 (resp. e1 or e2) is either the value of e1 or the value of e2. For instance, 0 and
[1,2] evaluates to 0 and 1 and [1,2] evaluates to [1,2].

Iteration. The statement for x in e: s first evaluates expression e, which must be
of type list. Then, for each value v in this list, in order, it assigns v to the variable x
and executes the statement s.

Operators. Subtraction (-), negation (unary -), multiplication (*), division (//), and
modulo (%) are only defined on type int, with signed 64-bits machine arithmetic1. Oper-
ator + is overloaded, with two parameters of the same type and the following semantics:

type of parameters semantics
int arithmetic addition
string concatenation (in a new string)
list concatenation (in a new list)
otherwise failure

1Python’s division is actually not machine’s division, but we accept this difference.

5

Comparison Operators. The six comparison operators (<, <=, >, >=, ==, !=) always
return a Boolean value. For any comparison operator, Boolean operands are interpreted
as integer values (False being 0 and True being 1). Operators == and != are defined for
operands of any type, including two operands of different types. Operators <, <=, >, and
>= are limited to the following cases:

type of operands semantics
bool or int arithmetic comparison
string lexicographic comparison
list lexicographic comparison

The comparison is structural: when comparing lists, the comparison operation is recur-
sively applied to the list elements.

Built-in Functions. Function len is only defined on types string and list. It returns
the length of the string and of the list, respectively. The expression list(range(e)) is
defined for an expression e that evaluates to some integer n ≥ 0. It returns a list of
integers [0, 1, . . . , n− 1].

Differences w.r.t Python. There are some small runtime differences between Python
and Mini Python, including (but not exhaustively):

Python Mini Python
arithmetic unbounded signed 64 bits
string display within lists [’abc’] [abc]
multiplying a string/list and an integer defined undefined
access l[i] with i < 0 defined undefined

Your compiler will not be tested on programs for which there is a distinct runtime behavior
between Python and Mini Python.

4 Code Generation
The aim is to produce a simple but correct compiler. In particular, we do not attempt
to do any kind of register allocation, but simply use the stack to store any intermediate
calculations. Of course, it is possible, and even desirable, to use some x86-64 registers
locally. Memory is allocated using malloc and no attempt will be made to free memory.

Value Representation. Though Python is an object-oriented language, we are not
compiling Mini Python using objects. We propose a simple compilation scheme (but you
are free to use any other) where a value is always a pointer to some heap-allocated block.
The first word (64 bits) of this block is an integer tag that encodes the type.

6

none 0 0

bool 1 n (where n is either 0 or 1)

int 2 n

string 3 n 0-terminated string

list 4 n v0 v1 . . . vn−1

where n is a 64-bit integer and vi are values (i.e., pointers to other heap-allocated blocks).
For strings and lists, the integer n is the length. For a string, the third component is a
0-terminated string stored in n+ 1 bytes (we assume ASCII strings in Mini Python).

Stack Layout. We suggest a compilation scheme where all parameters are passed on
the stack (each of them being a 64-bit pointer), and where the return value is in register
%rax. The stack frame is as follows:

parameter n
...

parameter 1
return address

%rbp → saved %rbp
local variables

...
temporary values

%rsp → ...
↓

Local variables are allocated on the stack. The top of the stack is used to store inter-
mediate computations, such as the value of e1 during the evaluation of e2 in a binary
operation e1 ⊕ e2.

With recent versions of the libc, it is important to have a 16-byte stack alignment
when calling library functions such as malloc or printf (this is required by the System
V Application Binary Interface). Since it is not always easy to ensure stack alignment
when calling library functions (because of intermediate computations temporarily stored
on the stack), it may be convenient to introduce wrappers around library functions, as
follows:

my_malloc:
pushq %rbp
movq %rsp, %rbp
andq $-16, %rsp # 16-byte stack alignment
call malloc
movq %rbp, %rsp
popq %rbp
ret

7

These wrappers are simply concatenated to the generated assembly code — and of course
any call to malloc is replaced with a call to my_malloc.

Here is a list of functions from the C standard library that you may want to use (feel
free to use any other):

void *malloc(size_t size);
malloc(n) returns a pointer to a freshly heap-allocated block of size n
You don’t have to free memory.

int putchar(int c);
putchar(c) writes the character c to standard output (ignore the return value)

int printf(const char *format, ...);
printf(f,...) write to standard output according to the format string
(ignore the return value). Register %rax must be set to zero before calling printf.

int strcmp(const char *s1, const char *s2);
compare strings s1 and s2, returning 0 if they are equal, a negative value
if s1 is smaller than s2, and a positive value if s1 is greater

char *strcpy(char *dest, const char *src);
copy the 0-terminated string src to dest, including the ’\0’ character
(ignore the return value)

char *strcat(char *dest, const char *src);
appends the 0-terminated string src at the end of string dest, assuming there is
enough space (ignore the return value)

Important Notice. Grading involves (for one part only) some automated tests using
small Python programs with print commands. They are compiled with your compiler,
and the output is compared to the expected output. This means you should be careful
in compiling calls to print.

5 Project Assignment (due March 17, 6pm)
The project must be done alone or in pair, in Java or OCaml. It must be deliv-
ered on Moodle, as a compressed archive containing a directory with your name(s) (e.g.
dupont-durand). Inside this directory, source files of the compiler must be provided (no
need to include compiled files). The command make must create the compiler, named
minipython. The compilation may involve any tool (such as dune for OCaml) and the
Makefile can be as simple as a call to such a tool. The command minipython may be
a script to run the compiler, for instance if the compiler is implemented in Java.

The archive must also contain a short report explaining the technical choices and,
if any, the issues with the project and the list of whatever is not delivered. The report
can be in format ASCII, Markdown, or PDF.

The command line of minipython accepts an option (among --parse-only and
--type-only) and exactly one file with extension .py. If the file is parsed successfully,
the compiler must terminate with code 0 if option --parse-only is on the command line.
Otherwise, the compiler moves to static type checking. Any type error must be reported
as follows:

8

file.py:4:6:
bad arity for function f

The location indicates the filename name, the line number, and the column number. Feel
free to design your own error messages. The exit code must be 1.

If the file is type-checked successfully, the compiler must exit with code 0 if option
--type-only is on the command line. Otherwise, the compiler generates x86-64 assembly
code in file file.s (same name as the input file, but with extension .s instead of extension
.py). The x86-64 file will be compiled and run as follows

gcc file.s -o file
./file

possibly with option -no-pie on the gcc command line. Any runtime error must be
reported, but no location nor a detailed message is expected so it is fine to simply output

error

and terminate with exit code 1.

An Extension of Your Choice. Last, but not least, you have to implement an ex-
tension of your choice. This can be

• the support of another Python construct;

• more static analysis;

• awesome error messages;

• a compiler optimization;

• etc.

This extension must be described in the report and illustrated with test files.

9

