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Throughout this subject, we consider a small fragment of the Python language (different from
that of the project), whose abstract syntax is given in figure 2. This fragment includes the value
None, Booleans (False and True), integers and “lists”. Expressions are limited to constants (c),
variables (x), primitive operations (op), function calls (f) and a conditional expression. The latter,
e1 if e2 else e3, evaluates e2 then returns the value of e1 if e2 is true and the value of e3 otherwise.
A program is a sequence of function definitions (d), followed by the evaluation of a single expression
whose value is displayed with print. The body of a function is a sequence of assignments x = e,
followed by a return instruction. Each function can refer to previously defined functions or to
the function currently being defined (recursive function). Here’s an example of a program in this
fragment, written in concrete Python syntax, which calculates and displays a list of five integers:

def aux(s):

a = s[0]

b = s[1]

return [a+b] + s

def myst(n, s):

return s if n==0 else myst(n-1, aux(s))

print(myst(3, [1]+[0]))

A big-step operational semantic is shown in figure 3. It expresses call-by-value. A value is denoted v.
The value of variables is given by an environment V , i.e. a function that maps variable names to
values. The semantics includes the definition of primitive operations (in the table at the bottom of
the figure). For each operation op, its semantics is given by a function [[op]] defined on values. This
function can be partial, i.e. not defined over all values. For example, the expression 1+None has no
value. The num operation is used to interpret a Boolean as an integer in certain operations.

Question 1 What is the list calculated and displayed by the above program? (No justification is
required.)

Correction : This program computes the Fibonacci numbers and outputs the following
list:

[3, 2, 1, 1, 0]
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Question 2 Implement a function rev that, when applied to a list [v0, v1, . . . , vn−1], returns the
list [vn−1, . . . , v1, v0], with n ≥ 0. This function must be able to work with n = 0, even though it is
not possible to construct an empty list in our fragment. You can introduce an auxiliary function.

Correction : We use an auxiliary function, with an index i and an accumulator acc.
We handle the case n = 0 separately, as we can’t build the empty list in this fragment.

def revaux(s, i, acc):

return acc if i==len(s) else revaux(s, i+1, [s[i]] + acc)

def rev(s):

return s if len(s)==0 else revaux(s, 1, [s[0]])
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Question 3 For each of the following expressions, give the derivation of its evaluation in an empty
environment, when it exists, or justify that there is none. (Here we take the context of the two
functions aux and myst given as examples at the beginning of the subject.)

• myst(0, [1]+[0])

• aux([0])

• myst(-1, [1]+[0])

Correction :

• myst(0, [1]+[0])

Let bmyst be the body of function myst.

1-->1 0-->0

--------- --------- ------------- -----------

[1]-->[1] [0]-->[0] V,n==0-->True V,s-->[1,0]

------------------- -------------------------------

0-->0 [1]+[0]-->[1,0] V={n:0,s:[1,0]},bmyst-->[1,0]

--------------------------------------------------------

myst(0,[1]+[0]) --> [1,0]

• aux([0])

We have [0] ↠ [0]. Let V := {s 7→ [0]}. We have V, s[0] ↠ 0. Then we seek
to evaluates[1] in V ′ = {s 7→ [0]; a 7→ 0}. But [[get]] is only defined for an access
within bounds, which is not the case here. So s[1] has no value in V ′ and thus the
whole expression has no value.

• myst(-1, [1]+[0]) has no value since evaluation does not terminate, which big-
step semantics does not capture. More precisely, let us show that if e1 ↠ n and
e2 ↠ v, and if myst(e1, e2) ↠ v′, then n ≥ 0, by induction on the derivation of myst.

– if n = 0, this is immediate;

– otherwise, the derivation is as follows

...

----------------------------

V,n=0->False V,myst(n-1, aux(s))-->v’

-------------------------------------------

e1-->n e2-->v V={n->n,s->v},bmyst --> v’

------------------------------------------------

myst(e1, e2) --> v’

and by induction hypothesis applied to the sub-derivation if myst(n−1, aux(s)),
we have n− 1 ≥ 0 and thus n > 0.
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Question 4 We propose to program an interpreter of our language, in Java or in OCaml (your
choice), following the big-step semantics of figure 3. Specify the Java/OCaml types and data struc-
tures used. Give the type of each Java/OCaml function involved in the interpreter. You are not
asked to write the code for these functions. Recall that in Java (resp. OCaml) we obtain dictionaries
whose keys are strings with HashMap<String, ...> (resp. module StrMap = Map.Make(String)).

Correction : We can setup the following types for the abstract syntax

type expr =

| Enone

| Ebool of bool

| Eint of int

| Evar of string

| Eapp of string * expr list

| Eite of expr * expr * expr

type stmt = string * expr

type def = string * string list * stmt list * expr

type program = def list * expr

and the following type for the values:

type value =

| Vnone

| Vbool of bool

| Vint of int

| Vlist of value array

Functions can be stored in a global hash table:

let funs : (string, string list * stmt list * expr) H.t = ...

The environment can be implemented with an immutable dictionary:

module M = Map.Make(String)

type env = value M.t

The interpreter can be implemented with the following three functions:

val num: value -> int

val expr: env -> expr -> value

val program: program -> unit (* évalue et imprime la valeur *)
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∆,Γ ⊢ None : none ∆,Γ ⊢ b : bool ∆,Γ ⊢ n : int

x ∈ dom(Γ)

∆,Γ ⊢ x : Γ(x)

∆,Γ ⊢ e1 : τ1 ∆,Γ ⊢ e2 : τ2 ∆,Γ ⊢ e3 : τ3
∆,Γ ⊢ e1 if e2 else e3 : τ1 ∪ τ3

∀ 0 ≤ i < n, ∆,Γ ⊢ ei : τi
∆,Γ ⊢ f(e0, . . . , en−1) : ∆(f)(τ0, . . . , τn−1)

with ∆(f)(τ0, . . . , τn−1)
def
=

⋃
f : τ ′0 × · · · τ ′n−1 → τ ∈ ∆
∀0 ≤ i < n, τi ∩ τ ′i ̸= ∅

τ

Environment ∆op :

operator type

add {list} × {list} → {list}
add {bool, int} × {bool, int} → {int}
sub {bool, int} × {bool, int} → {int}
len {list} → {int}
mk {none, bool, int, list} → {list}
get {list} × {bool, int} → {none, bool, int, list}
eq {none, bool, int, list} × {none, bool, int, list} → {bool}

Figure 1: Static typing of expressions.

Static Typing. Although Python is a dynamically-typed language, we propose here to perform
a little static typing on our language, with the dual aim of rejecting inconsistent programs and
executing certain programs more efficiently. We give ourselves four kinds none, bool, int, and list,
to represent respectively a None value, a Boolean value, an integer value or a list. A type τ is then
a set of kinds, i.e.

τ ⊆ {none, bool, int, list},

with the following interpretation: if an expression of type τ evaluates to a value, then this value will
necessarily be of one of the kinds of τ . In particular, a type can be the empty set ∅ (the expression
cannot have a value) or the set {none, bool, int, list} (the value can be any).

To type an expression, we give ourselves a context made up of two environments: an environment
Γ giving the type of the variables (a function from variables to types) and an environment ∆ giving
function types. (Primitive operations are seen as functions for typing.) The type of a function, noted
σ, is of the form

τ0 × · · · × τn−1 → τ

where n is the number of function parameters. The environment ∆ is a set of pairs (f, σ) where f
is the name of a function and σ is a function type. For a single function, there may be several
different types in the ∆ environment. The typing judgment for an expression is noted ∆,Γ ⊢ e : τ .
Figure 1 gives typing rules for expressions, as well as an environment ∆op giving the types of primitive
operations. Note that the add operation has two different types in ∆op, which is consistent with its
two interpretations in figure 3.

To type an application f(e0, . . . , en−1), we make the union of all the types that can be obtained
with the types of f given by ∆ and compatible with the types τi of the actual parameters ei. In
particular, the result may be the empty type ∅ if ∆ contains no compatible function type.
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Question 5 In an empty environment Γ and an environment ∆ containing only primitive opera-
tions, give

1. an expression of type ∅ ;

2. an expression of type {bool, int, list}.

Correction :

1. 1+None

2. True if True else 1 if True else [1]

Question 6 For this question, the following environments are used:

∆
def
= ∆op ∪ {(f, {int} × {list} → {list}), (f, {int} × {none} → {none})}

Γ
def
= {x 7→ {list}}

For each of the following expressions, give its typing derivation in ∆,Γ.

1. f(1, x)

2. f(1, x[0])

3. f(None, None)

Correction :

1.
1 : {int} x : {list}

f(1, x) : {list}

2.
1 : {int}

x[0]:{none,bool,int,list}

f(1, x[0]) : {none, list}

3.
None : {none} None : {none}

f(None, None) : ∅
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Question 7 What are the conditions over ∆,Γ and e for the existence of a type τ such that
∆,Γ ⊢ e : τ?

Correction : Let us show by induction on e that e has a type in ∆,Γ if and only if all
the variables in e are defined in Γ.

• if e is a constant, this is immediate;

• if e is a variable, the condition is precisely x ∈ dom(Γ);

• if e = e1 if e2 else e3, then by IH the three sub-expressions have a type iff their
variables are defined in Γ, and thus e has a type iff all its variables are defined in Γ;

• if e = f(e1, . . . , en), then by IH all the sub-expressions ei have a type iff their
variables are defined in Γ, and thus e has a type iff all its variables are defined
in Γ (since the union is always defined, even if f is not in ∆ or does not have any
compatible type).

Question 8 Show that, for an environment ∆,Γ and an expression e, there exists at most one type
τ such that ∆,Γ ⊢ e : τ .

Correction : Let us assume ∆,Γ ⊢ e : τ and ∆,Γ ⊢ e : τ ′, and let us show τ = τ ′ by
structural induction on the typing derivation.

• if e is a constant, this is immediate;

• if e is a variable, we have τ = τ ′ = Γ(x);

• if e = f(e1, . . . , en), then by IH the three types for the three sub-expressions are the
same, hence the result;

• if e = f(e1, . . . , en), then by IH all the sub-expressions ei have the same types in the
two derivations, and the union gives the same type for e.

Question 9 With regard to typing, is there a difference between the following two environments?

∆ = {(f, {bool} × {bool} → {int}); (f, {bool} × {int} → {int})}
and ∆′ = {(f, {bool} × {bool, int} → {int})}

Same question with the following two environments:

∆ = {(f, {bool} × {bool} → {int}); (f, {bool} × {int} → {list})}
and ∆′ = {(f, {bool} × {bool, int} → {int, list})}

Correction :
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1. In the first case, there is no difference. Indeed, if the types of the two arguments
of f intersect {bool} and, either {bool}, or {int}, then we have {int} for the
application, and otherwise ∅, in both cases.

2. In the second case, however, there is a difference, since we could get less precise
types. Example: f(False, False) is now given the type list.

Typing a function. To type a function definition, we introduce the judgment ∆ ⊢ f : σ which
means “in environment ∆, the definition of function f admits the function type σ”. We propose the
following rule for this judgment:

f(x0, . . . , xn−1)
def
= xn = en; . . . ;xm−1 = em−1; return e

Γn
def
= {x0 7→ τ0; . . . ;xn−1 7→ τn−1}

∀ n ≤ i < m, ∆,Γi ⊢ ei : τi Γi+1
def
= Γi[xi 7→ τi]

∆,Γm ⊢ e : τ

∆ ⊢ f : τ0 × · · · × τn−1 → τ
(1)

(Note its similarity to the semantics rule.) In particular, this rule allows a recursive definition to be
typed, by showing ∆ ⊢ f : σ for an environment ∆ containing one or more types for f .

Question 10 For the aux function at the beginning of the subject, show that we have

∆op ⊢ aux : {list} → {list}.

Give the complete typing derivation.

Correction :

we set G := {s:list} and any={none,bool,int,list}

a:any b:any

--------------

s:list 0:int s:list 1:int a+b:{int,list} s:list

-------------- ------------------- ---------------------------

G|-s[0] : any G+{a:any}|-s[1]:any G+{a,b:any}|-[a+b]+s:{list}

--------------------------------------------------------------------

|- aux : {list} -> {list}

Question 11 Propose at least two different types σ such that, for each, we have

∆op ∪ {(aux : {list} → {list}); (myst, σ)} ⊢ myst : σ

for the myst function at the beginning of the subject. (No justification is requested, i.e., we don’t
ask for the typing derivations, but only for the two types σ.)
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Correction :

myst : {int} × {list} → {list}
myst : {bool, int} × {list} → {list}

Question 12 Propose a type for the function

def loop(x):

return loop(x)

that is as informative as possible.

Correction :

loop : {none, bool, int, list} → ∅

Question 13 We would like to show the type safety property in the following sense: if V, e ↠ v and
∆,Γ ⊢ e : τ , then T (v) ∈ τ where function T gives the type of a semantic value and is unsurprisingly
defined as

T (None) = none

T (b) = bool

T (n) = int

T ([v0, . . . , vn−1]) = list

Give necessary conditions on V and ∆,Γ for type safety to be possible. But we don’t ask to show
type safety.

Correction : A first obvious condition is consistency between Γ and V :

for all x ∈ dom(V ), we have T (V (x)) ∈ Γ(x)

Another condition is consistency between ∆ and operations:

if (op, τ0 × · · · × τn−1 → τ) ∈ ∆,
then for all v0, . . . , vn−1 such that T (vi) ∈ τi,
we have T ([[op]](v0, . . . , vn−1)) ∈ τ

We can check that it is indeed the case with the contents of figures 3 and 1. Last, we
need every function to be well-typed wrt ∆, that is, for all (f, σ) ∈ ∆, we have ∆ ⊢ f : σ.

9



Question 14 Our typing rule for function is not algorithmic: it only allows us to check the definition
of a function f with respect to ∆, not to find a type for f . Propose an algorithm to infer a set of
types for a function whose definition we have.

Correction : Although not very efficient, one solution is to successively give the pa-
rameters all possible combinations of singleton types, then type the function in this
environment. If you obtain a type ∅ during typing, you fail, i.e. you eliminate this case.
We then give the function all the types we’ve obtained.

When two types differ only in the type of the result, or in the type of a single parameter,
we can combine them into a single type with a union (and then start again). This improves
type readability and, above all, typing efficiency, since less work is required to type an
application.

There is, however, one difficulty in typing a recursive function f . We start by giving it
a type all × · · · × all → ∅ to perform a first iteration (during which we do not fail on a
type ∅ if this is due to a recursive call, directly or indirectly). Once you’ve a set of types
has been found for f , we start again with these types. The process converges.

Parsing. We wish to perform a syntactic analysis of our small language. A grammar for a subset
of the expressions is as follows:

E ::= id

| E if E else E
| E [ E ]

Question 15 Show that this grammar is ambiguous.

Correction : We have two derivation trees for the expression id if id else id[id],
namely

E E

| |

------------- ----------------

E [ E ] E if E else E

| | | | |

------------- id id id -------

E if E else E E [ E ]

| | | | |

id id id id id

Question 16 This grammar is fed to a tool such as CUP or Menhir, as follows:

expr:

| IDENT { ... }

| expr IF expr ELSE expr { ... }

| expr LBR expr RBR { ... }
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(Semantic actions don’t interest us here and are omitted, as are terminal symbol declarations). The
CUP or Menhir tool reports two conflicts. What kind of conflicts are they? Propose a solution to
resolve these conflicts, by adding suitable priority and/or associativity.

Correction : These are shift/reduce conflicts:

• the conflict E if E else E . [E] (reduce if-else or shift of [)

• the conflict E if E else E . if E else E (reduce if-else or shift of if)

We can declare priorities as follows

%nonassoc ELSE

%nonassoc IF

%nonassoc LBR

that is, strongest priority for the shifting of [, then for shifting of IF last for the reduction
of IF-ELSE (the priority is that of the rightmost token in the rule to be reduced, that is
ELSE here).

Question 17 Another grammar is proposed for this language:

E ::= A
| A if E else E

A ::= ident

| A [ E ]

Show that this grammar is SLR(1). (Reminder: SLR(1) means that there is no conflict anymore in
the deterministic LR(0) automaton when reduction of non-terminal symbol X is only performed for
lookahead symbols in follow(X).)

Correction : We have null(A) = null(E) = false. We have first(A) = first(E) =
{ident}. We have follow(A) = {#, [, ], else, if} and follow(E) = {#, ], else}.
The SLR(1) automaton has ten states:

state 0:

S -> . E #

E -> . A

E -> . A if E else E

A -> . ident

A -> . A [ E ]

state 1:

A -> ident .

state 2:

S -> E . #

state 3: // no conflict here, since if and [ are not in Follow(E)

E -> A .
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E -> A . if E else E

A -> A . [ E ]

state 4:

E -> . A

E -> . A if E else E

A -> . ident

A -> . A [ E ]

A -> A [ . E ]

state 4:

A -> A [ E . ]

state 6:

A -> A [ E ] .

state 7:

A -> . ident

A -> . A [ E ]

E -> . A

E -> . A if E else E

E -> A if . E else E

state 8:

E -> A if E . else E

state 9:

A -> . ident

A -> . A [ E ]

E -> . A

E -> . A if E else E

E -> A if E else . E

state 10:

E -> A if E else E .

and no state contains a conflict.

Compiling to x86-64 assembly. We propose to compile our little language to x86-64 assembler.
(A cheat sheet is given in the appendix.) We assume that the integers in our language are limited
to signed 64-bit integers. We adopt the same representation as in the project, where any value is
the address of a memory block allocated on the heap, whose size is a multiple of 64 bits, with the
following form:

None 0 0

Boolean False 1 0

Boolean True 1 1

integer n 2 n

list 3 n v0 v1 . . . vn−1

The first word is an integer indicating the kind of value.
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Question 18 Discuss this choice of representation. In particular, could None be represented by
the null pointer? If so, would there be any interest in doing so? And could we represent an integer
directly by its value?

Correction : The choice is guided by the fact that, even if we did a little bit of static
typing, we do not always know statically the type of a value. In particular, some Python
functions are “polymorphic” in the sense that they have to accommodate values of dif-
ferent types. Thus, a first benefit of this representation is uniformity (one value = one
address = one word).

Second, functions have to test types dynamically, e.g. to perform a + operation or to
print a value (making a distinction

We could indeed represent None with the null pointer. Yet, the proposed representation
makes no difference, as we can allocate it statically (and only once).

On the contrary, we could not represent an integer by its value, for we could mistake it
for a pointer (e.g. to a list).

Question 19 Explain how the static typing described in the previous questions can be used locally
to produce more efficient assembly code. Give examples.

Correction : The information provided by static typing allows us to avoid, in some cases,
checking for the value type at runtime. For instance, if we compile the expression e1+e2

and we know that both e1 and e2 have type {bool, int}, then we can directly call the
function that performs the addition of two integers, instead of first checking whether we
have to perform an addition or a concatenation.

Example: the compilation of function

def opt(x, y):

return 1+x+y

whose type is {bool, int} × {bool, int} → {int}.
We can go further and not allocate intermediate values on the heap, storing them directly
in registers or on the stack (unboxing). In the example above, we do not have to allocate
the intermediate value 1+x on the heap, but only the final value. We can do so because
the sub-expression 1+x has type {bool, int}.

Compiling a small function. We consider the following Python function

def mult(x, y, z):

return z if x==0 else mult(dec(x), y, add(y, z))

where dec (not shown) implements the function n 7→ n − 1 for an integer n and add (not shown)
implements the addition of two integers. We assume that function mult is given the type

{int} × {int} × {int} → {int}
that is, we only use it with integer parameters and we get a result that is an integer. We intend to
compile function mult to some optimized x86-64 assembly code.
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Question 20 Give some RTL code for function mult.

Correction :

#4 mult(#1, #2, #3)

1: load 8(#1) #5 -> 2

2: jz #5 -> 3, 4

3: mov #3 #4 -> exit

4: #6 <- call dec(#1) -> 5

5: #7 <- call add(#2, #3) -> 6

6 #4 <- call mult(#6, #2, #7) -> exit

Question 21 Give some optimized assembly code for function mult. In particular, if a tail call can
be optimized, do it. You are free to proceed the way you want, i.e., you do not have to follow the
optimized code generation scheme described in the course. We assume that functions dec and add

are available, and that they follow the x86-64 calling conventions (but you don’t have to align the
stack before calling them).

Correction :

multadd:pushq %r12 # we use 3 callee-save registers for x,y,z

movq %rdi, %r12

pushq %r13

movq %rsi, %r13

pushq %r14

movq %rdx, %r14

1: testq %r12, %r12 # TCO => loop

jz 2f

movq %r12, %rdi

call dec

movq %rax, %r12

movq %r13, %rdi

movq %r14, %rsi

call add

movq %rax, %r14

jmp 1b

2: movq %r14, %rax # return z and restore the callee-save

popq %r14

popq %r13

popq %r12

ret
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e ::= c constant
| x variable
| op(e, . . . , e) operation
| f(e, . . . , e) application
| e if e else e conditional

c ::= None

| b b ∈ {True, False}
| n n ∈ Z

d ::= f(x, . . . , x)
def
= x = e; . . . ;x = e; return e

p ::= d . . . d print(e)

Figure 2: Abstract Syntax.

value v ::= c
| [v, . . . , v]

environment V ::= x 7→ v

num(False)
def
= 0

num(True)
def
= 1

num(n)
def
= n

V, c ↠ c

x ∈ dom(V )

V, x ↠ V (x)

V, e2 ↠ v2 v2 ̸∈ {None, False, 0, []} V, e1 ↠ v1
V, e1 if e2 else e3 ↠ v1

V, e2 ↠ v2 v2 ∈ {None, False, 0, []} V, e3 ↠ v3
V, e1 if e2 else e3 ↠ v3

V, ei ↠ vi [[op]](v0, . . . , vn−1) = v

V, op(e0, . . . , en−1) ↠ v

∀ 0 ≤ i < n, V, ei ↠ vi
f(x0, . . . , xn−1)

def
= xn = en; . . . ;xm−1 = em−1; return e

Vn
def
= {x0 7→ v0; . . . ;xn−1 7→ vn−1}

∀ n ≤ i < m, Vi, ei ↠ vi Vi+1
def
= Vi[xi 7→ vi]

Vm, e ↠ v

V, f(e0, . . . , en−1) ↠ v

concrete syntaxe op semantics [[op]]

e + e add [[add ]]([v0, . . . , vn−1], [v
′
0, . . . , v

′
m−1])

def
= [v0, . . . , vn−1, v

′
0, . . . , v

′
m−1]

[[add ]](v0, v1)
def
= num(v0) + num(v1), otherwise

e - e sub [[sub]](v0, v1)
def
= num(v0)− num(v1)

len(e) len [[len]]([v0, . . . , vn−1])
def
= n

[e] mk [[mk ]](v)
def
= [v]

e[e] get [[get ]]([v0, . . . , vn−1], i)
def
= vnum(i) if 0 ≤ num(i) < n

e == e eq [[eq ]](v0, v1)
def
= True if v0 = v1 or num(v0) = num(v1)

False otherwise

Figure 3: Big-step Operational Semantics.
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Appendix: x86-64 cheat sheet

A fragment of the x86-64 instruction set is given here. You are free to use any other part of the
x86-64 assembler. In the following, ri designates a register, n an integer constant and L a label.

mov r2, r1 copies register r2 into register r1
mov $n, r1 loads constant n into register r1
mov $L, r1 loads the address of label L into register r1
sub r2, r1 computes r1 − r2 and stores it into r1
mov n(r2), r1 loads r1 with the value contained in memory at address r2 + n
mov r1, n(r2) writes in memory at address r2 + n the value of r1
push r1 pushes the value of r1 on the stack
pop r1 pops a value from the stack and stores it into register r1
test r2, r1 sets the flags according to the value of r1 AND r2
jz L jumps to address L if flags signal a zero value
jmp L jumps to address L
call L pushes the return address to the stack and jumps to address L
ret pops an address from the stack and jumps there

Calling conventions:

• up to six arguments are passed via registers %rdi, %rsi, %rdx, %rcx, %r8, %r9;

• other arguments are passed on the stack, if any;

• the returned value is put in %rax;

• registers %rbx, %rbp, %r12, %r13, %14 and %r15 are callee-saved : they won’t be clobbered by a
call;

• the other registers are caller-saved : they may be clobbered by a call;

• %rsp is the stack pointer, %rbp the frame pointer.
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