
École Polytechnique

INF564 – Compilation

Jean-Christophe Filliâtre

memory allocation

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 1

aujourd’hui

1. memory

2. allocation

3. GC
• reference counting
• mark and sweep
• stop and copy

4. an example: OCaml’s GC

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 2

memory

the physical memory of a computer is a huge array
of M bytes,

to which the CPU may access for reading and
writing using physical addresses 0, 1, 2, etc.

the order of magnitude of M today is several billions
(e.g., M = 232 for 4 Gb of memory)

M − 1
M − 2

...
3
2
1
0

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 3

virtual memory

for a long time now, we do not have direct access to physical memory

we use instead a virtual memory mechanism provided by the hardware,
namely the MMU (for Memory Management Unit)

CPU MMU
virtual addr. physical addr.

memory

...

it translates virtual addresses (in 0, 1, . . . ,N − 1)
to physical addresses (in 0, 1, . . . ,M − 1)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 4

paged virtual memory

the MMU is typically controlled by the operating system

the virtual memory is split into pages (e.g. each of 4 kb)

each page is either

• not allocated

• allocated in physical memory (and the MMU is set)

• allocated on the disk

the operating system maintains a page table

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 5

example

8 pages

• 2 not allocated

• 4 in physical memory

• 2 on the disk

null

null

pages

memory

disk

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 6

operation

when the CPU wants to read or write at some virtual address,
the MMU translates the operation to a physical address

• either it succeeds and the instruction is executed

• or it fails and

1. an interruption is raised (page fault)
2. the handler installs the page in physical memory

(possibly by moving another page to the disk)
3. execution resumes on the same instruction

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 7

process

the operating system maintains a page table per process

so each program has the illusion to run inside the full (virtual) memory, for
its own purposes

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 8

advantages

this simplifies

• linking
(the code is always set at the same address,
e.g. 0x400000 in 64-bit Linux)

• loading
(pages are already on the disk)

• sharing of pages between processes
(one physical page = several virtual pages)

• memory allocation
(physical pages do not have to be contiguous)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 9

further reading

more details about virtual memory in

Randal E. Bryant and David R. O’Hallaron
Computer Systems: A Programmer’s Perspective
Chapter 9 Virtual Memory

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 10

memory allocation

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 11

static allocation

it is easy to allocate memory statically

• either in the .data segment (initialized explicitly)

• or in the .bss segment (initialized with zero)

yet...

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 12

dynamic allocation

most programs have to allocate memory dynamically

• either implicitly, through programming constructs
(objects, closures, etc.)

• either explicitly, to store data whose size is not known at compile time
(arrays, lists, trees, etc.)

it is generally advisable to release it

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 13

the heap

dynamic allocated is performed on the stack and
in the heap

the heap is located above the data segment

the system maintains its ends in a variable brk
(program break)

stack

↓

brk→ ↑

heap

.bss

.data

.text

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 14

simplistic allocation

the easiest way to allocate memory consists in increasing the value of brk

the system call

void *sbrk(int n);

increases brk by n bytes and returns its previous value

one may decrease brk with a negative value for n,
or query its value with n = 0

this limits us to using the heap as a stack

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 15

memory management

we seek for a more flexible memory manager to allocate and free blocks in
a random order

deallocation can be

• performed explicitly by the programmer
example: the C library malloc

• performed automatically by a memory manager
example : a garbage collector

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 16

the malloc library

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 17

goal

starting from sbrk, we want to provide two operations

void *malloc(int size);

// returns a pointer to a new block

// of at least size bytes, or NULL in case of failure

and

void free(void *ptr);

// frees the block at address ptr

// (must have been allocated with malloc

// and not yet freed,

// other undefined behavior)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 18

rules of the game

• we assume nothing about the forthcoming sequence of calls to
malloc and free

• the answer to malloc cannot be deferred

• any data structure needed by malloc and free must itself be
allocated on the heap

• any block returned by malloc must be 8-byte aligned

• any allocated block can no longer be moved

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 19

a first idea

the blocks, either allocated or free, are contiguous in memory

they are chained: given the address of a block, we can deduce the address
of the next block

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 20

implementation

• a header contains the (total) size of the block and the status
(allocated / free)

• then come the n bytes of the block

• and a possible padding, to give a total size multiple of 8

header block contents padding
(4 bytes) (n bytes) (optional)

↑
address returned by malloc

(aligned on 8 bytes)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 21

example

allocated free allocated free
12 bytes 28 bytes 16 bytes 20 bytes

• one square = 4 bytes

• blue = header / red = allocated / gray = padding / white = free

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 22

trick

the size being a multiple of 8, its three least significant bits are zero

we can use one of these bits to store the status (allocated / free)

on the previous example

bit 5 4 3 2 1 0
. . . 0 1 0 0 0 1 size 16, allocated
. . . 1 0 0 0 0 0 size 32, free
. . . 0 1 1 0 0 1 size 24, allocated
. . . 0 1 1 0 0 0 size 24, free

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 23

malloc(n)

we traverse the list of blocks looking for a free block that is large enough

• if we find one, then
• we possibly split it into two blocks (one allocated + one free)
• we return the allocated block

• otherwise,
• we allocated a new block at the end of the list, with sbrk
• we return it

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 24

strategy

to find a free block, several strategies can be used

• the first block that is large enough (first fit)

• same thing, but starting where the previous search stopped (next fit)

• we choose a block of minimal size among he blocks that are large
enough (best fit)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 25

free(p)

we simply change the status of block p (from allocated to free)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 26

problem

with time, we get memory fragmentation: more and more small blocks

⇒ memory is wasted

⇒ search becomes costly

we need compaction

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 27

second idea

we refine the implementation with a new idea: when a block is freed, we
check whether it can be merged with an adjacent free block (coalescing)

it is easy to determine whether the next block is free
and to merge them in that case (adding the sizes)

but there is no easy way to merge with the previous block

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 28

third idea

to do so, we duplicate the header at the end of each block
(idea due to Knuth, called boundary tags)

blocks are now doubly-linked

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 29

coalescing

when we free a block p, we check the previous and the next blocks

there are four situations

• allocated | p | allocated: do nothing

• allocated | p | free : merge with the next

• free | p | allocated: merge with the previous

• free | p | free : merge the three blocks

invariant: we never have two adjacent free blocks

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 30

trick

duplicate the header requires space

but we can

• do that only in free blocks

• use one bit in the header to indicate whether the previous block is free

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 31

fourth idea

it is still costly to traverse blocks when allocating

but we can chain the free blocks in a singly-linked list (free list)

for that we use the contents of the block, which is free, to store two
pointers (this imposes a minimum block size)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 32

deallocation

when we free a block, we now have several options to insert it back in the
free list:

• insert at the beginning

• free list sorted by increasing addresses

• free list sorted by size of blocks

• etc.

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 33

fifth idea

traversing the free list can be costly when there are numerous small blocks

we can use several free lists, organized by size

example: a list of free blocks whose size is between 2n and 2n+1 − 1, for
each n

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 34

conclusion

as we see, malloc/free are far more subtle than they appear
(Linus’s malloc.c is more than 5 kloc)

many parameters, many possible strategies

a huge literature, with many empirical evaluations

[see for instance Wilson, Johnstone, Neely, Boles.
Dynamic Storage Allocation: A Survey and Critical Review, 1995]

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 35

further reading

we find C code implementing those ideas in

• Brian W. Kernighan and Dennis M. Ritchie
The C Programming Language

• Randal E. Bryant and David R. O’Hallaron
Computer Systems: A Programmer’s Perspective

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 36

GC

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 37

GC

many programming languages (Lisp, Python, OCaml, Java, etc.) rely on
some automatic memory management to free blocks,
called GC for Garbage Collector

(in French, GC is translated as “ramasse-miettes” or “glâneur de cellules”)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 38

GC

principle: the space allocated to some data (closure, record, array, object,
etc.) that is not reachable anymore from the program variables can be
reclaimed and further reused for other data

difficulty: we typically cannot determine at compile time the moment
when a block is not reachable anymore
⇒ the GC is part of the program

• either as some part of the interpreter if the language is interpreted

• or as a library linked with the user code if the language is compiled
(this is called the runtime)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 39

terminology

in the following, a block is any portion of the heap that is allocated by the
program

a block may contain one or several pointers to other blocks but also other
kind of data (characters, integers, pointers outside of the heap, etc.)

at some point in the program execution, we call root any variable that is
active (global variable or local variable contained in a stack frame or in a
register)

we say that a block is alive if it is reachable from a root i.e. there is a
path of pointers from a root to this block

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 40

example

let x, y =

let l = [1; 2; 3] in

(List.filter even l, List.tl l)

...

roots heap

1

2

3

2

x
y

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 41

reference counting

a first technique to implement a GC is reference counting

each block contains the number of pointers to that block (from roots or
from other blocks)

this number must be updated when the code performs assignments
(explicit or implicit as in 1::x) such as b.f ← p; then we need

• to decrement the counter of the block previously in b.f ; if it
reaches 0, we free this block

• to increment the counter of the block p

when we free a block, we decrement the counters of all the blocks to
which it points (possibly triggering other deallocations)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 42

reference counting

issues:

• updating counters is costly

• cycles in data structures may prevent some blocks to be reclaimed

r 34 55

89 ⊥

1 1

1

reference counting is sometimes used explicitly by programmers (e.g., the
type Rc<T> of Rust) or combined with other techniques (e.g. CPython)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 43

mark and sweep

let us consider another technique, called mark and sweep

it proceeds in two steps

1. we mark the blocks that are reachable from the roots (using a
depth-first traversal and one bit per block)

2. we scan all blocks and
• we reclaim those that are not marked

(they are put back in the free list)
• we unset the mark on the other blocks

when an allocation is requested, we look in the free list; if it is empty, this
is a good opportunity for a mark and sweep

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 44

marking

marking uses a depth-first traversal, as follows

mark(x) =
if x is a pointer to some unmarked block in the heap
mark x
for each field f of x
mark(x .f)

for each root r
mark(r)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 45

sweeping

sweeping reclaims the unmarked blocks

for each block x
if x is marked
unmark x

else
insert x in the free list

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 46

example

mark

roots heap

1

2

3

2

x
y

sweep

roots

freelist

heap

2

3

2

x
y

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 47

issue

marking is a recursive algorithm, which may require a stack size as large
as the heap

we could use an explicit stack or the blocks themselves to encode the
stack (pointer reversal)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 48

another issue

but more importantly, we do not want to “stop the world” to perform a
long mark-and-sweep collection

to remedy this, we mark the blocks incrementally, during the various calls
to the GC

this is incremental garbage collection

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 49

incremental mark and sweep

a single mark is not enough, we need three colors

we have blocks colored

• white, not reached (yet)

• black, reached from roots and without pointers to white blocks

• gray, reached from root but not yet scanned

initially, roots are gray and all the other blocks are white

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 50

incremental mark and sweep

while there are gray blocks
pick a gray block x
color it black
for each field f of x
if x .f points to a white block

color this block gray

roots heap

1

2

3

2

x
y

roots heap

1

2

3

2

x
y

roots heap

1

2

3

2

x
y

roots heap

1

2

3

2

x
y

advantage: we can do any number of turns of this loop

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 51

incremental mark and sweep

once we do not have gray blocks anymore,

• black blocks are all reachable from the roots

• white blocks, on the contrary, are not
for a black block never points to a white block

therefore,

1. we reclaim the white blocks

2. we whiten the black blocks

3. we color the roots in gray

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 52

mark and sweep

this is a good way to determine unreachable blocks
(in particular, we now reclaim unreachable cycles)

not a solution to the problem of fragmentation

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 53

stop and copy

let us consider a third technique, called stop and copy

we split the heap in two halves

1. we only use one half, in which we allocate linearly

2. when it is full, we copy the reachable blocks into the other half, and
we swap roles

immediate benefits:

• allocation is cheap (an addition and a comparison)

• no more fragmentation issue

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 54

example

origin

1

2

3

2

roots destination

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 55

example

origin

1

2

3

2

roots destination

2

2

3

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 56

Cheney scanning algorithm (1970)

performs the copy using only constant extra space

principle: a breadth-first traversal that uses

• the destination space as temporary storage for blocks yet to be
updated

• the origin space as storage for pointers already updated: when a block
is copied, its first field indicates where it was copied

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 57

Cheney scanning algorithm

we first implement a function to copy the block at address p, if not yet
already done

next points to the first available space in destination

move(p) =
if p points to origin

if p.f1 points to destination

return p.f1
else
for each field fi in p
next.fi ← p.fi

p.f1 ← next

next ← next + size of block p
return p.f1

else
return p

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 58

Cheney scanning algorithm

we can now make the copy, starting with the roots

scan ← next ← start of destination
for each root r
r ← move(r)

while scan < next

for each field fi of scan
scan.fi ← move(scan.fi)

scan ← scan + size of block scan

org

...

roots dst

...

←scan,next

org

...

roots dst

...

←scan

←next

org

...

roots dst

...

←scan

←next

the zone in destination between scan and next contains the blocks
whose fields are not yet updated

note that scan increases, but so does next!

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 59

Cheney scanning algorithm

although very elegant, this algorithm has at least one flaw: it modifies the
locality of the data, i.e. blocks that were close before copying are not
necessarily close afterwards

with memory caches, locality cannot be ignored

it is possible to modify Cheney algorithm to combine breadth-first and
depth-first traversals

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 60

generational GC

in many programs, most values have a short lifetime, and those surviving
several collections are likely to survive others

hence the idea to organize the heap into several generations

• G0 contains the most recent data, and we make frequent collections
here

• G1 contains data older than those in G0, and we make collections
there less frequently

• etc.

in practice, this is not easy to identify the roots of each generations,
notably because an assignment may introduce a pointer from G1 to G0

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 61

further reading

The Garbage Collection Handbook
Richard Jones, Antony Hosking, Eliot Moss
CRC Press, 2023

• other algorithms

• implementations details

• parallel and concurrent garbage collection

• real-time garbage collection

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 62

example: OCaml’s GC

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 63

OCaml’s GC

two generations

• a minor heap (young values): Stop & Copy

• a major heap (older values): incremental Mark & Sweep

the minor heap’s destination is the major heap

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 64

value representation

now that we understand the GC requirements, we can explain the value
representation chosen by OCaml

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 65

value

an OCaml value is

• either an integer, that is a value of type int or a 0-ary constructor
(true, false, [], etc.)

• or a pointer

reminder: OCaml’s passing mode is by value (cf lecture 5)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 66

block

a pointer points to block of n + 1 words
(one word = 8 bytes on a 64-bit architecture)

the first word is a header containing the size n, the nature of the block
and two bits for the GC

63 . . . 10 9 8 7 . . . 0

size color nature

(this is different from malloc’s headers)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 67

size of a block

the size being stored on 54 bits, we have

Sys.max_array_length;;

- : int = 18014398509481983

character strings are represented in a compact way (8 bytes per word), thus

Sys.max_string_length;;

- : int = 144115188075855863

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 68

nature of a block

the block’s nature is coded on 8 bits (0..255); it is used to distinguish

• floating-point number

• character string

• object

• closure

• record, array, tuple

• constructor
(and tells which constructor it is, needed for pattern matching)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 69

integers and pointers

when the GC is scanning a block (for marking or copying), it must
distinguish between integers and pointers

issue: the compiler cannot always tell the GC which are the fields
containing pointers in the presence of polymorphism

let f x = (x, x)

f 42 (* a block containing two integers *)

f [42] (* a block containing two pointers *)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 70

solution

an OCaml value is

• either a pointer, necessarily even for alignment reasons

• or an odd integer 2n + 1, standing for the value n

the GC tests the least significant bit to determine if a field is a pointer

consequence: OCaml’s integers are 63-bit signed integers
(but the OCaml standard library provides a module Int64)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 71

example

the value 1 :: 2 :: 3 :: [] has the following memory layout

3 5 7 1

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 72

arithmetic

the integer n being represented by 2n+1, arithmetic becomes a little more
complicated

but the OCaml compiler makes a good use of lea at many places

e.g., function

let f x y = x + y

is compiled to

f: leaq -1(%rax,%rbx), %rax

ret

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 73

another solution

to avoid wasting a bit, another solution is to consider “any value that
looks like a pointer” as a pointer

this is

• sound i.e. reachable blocks are not reclaimed

• but incomplete i.e. some unreachable blocks may not be reclaimed

this is called conservative collection

an example: Boehm–Demers–Weiser’s GC for C and C++
(see https://www.hboehm.info/gc/)

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 74

https://www.hboehm.info/gc/

yet another solution

another solution consists in allocated all the values on the heap, so that
we only have pointers (we say that all values are boxed)

this is what Python does for instance

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 75

take away

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 76

programming languages

understanding programming languages is essential for

• coding
• have a precise execution model in mind
• choose the right abstractions

• doing research in Computer Science
• design new languages
• design tools

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 77

programming languages

in particular, we explained

• what is the stack

• various passing modes

• what is an object

• what is a closure

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 78

compilation

compilation involves

• numerous techniques

• several passes, mostly orthogonal

most of these techniques can be reused in contexts other than code
generation, such as

• computational linguistics

• computer-assisted proofs

• databases

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 79

compilation also means...

many other things we didn’t have time to explore

module systems
common sub-expression
program transformations
abstract interpretation

alias analysis
loop unrolling

interprocedural analysis
peephole optimization

memory caches
logic programming

just-in-time compilation
instruction scheduling

etc.

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 80

next

• lab 9
• mini-Python continued

• the project is due Sunday March 17, 6pm
• via Moodle
• graded on the basis of your report and your source code

• exam on Monday March 18 2pm–5pm (T5)
• lecture notes are allowed
• archives on the website of the course

Jean-Christophe Filliâtre INF564 – Compilation memory allocation 81

