INF562 – Géométrie Algorithmique et Applications

Curve and surface reconstruction

Steve Oudot

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SACLAY - ÎLE-DE-FRANCE

Q What do you see?

Why?

.

.

 ${\bf Q}$ What do you see?

Why?

•

 ${\bf Q}$ What do you see?

Why?

 ${\bf Q}$ What do you see?

Why?

without the numbers...

Q Given a point cloud, build a *faithful* (implicit, PL, ...) approximation of the shape underlying the data.

Reconstruction problem is ill-posed by nature.

Reconstruction problem is ill-posed by nature.

 \rightarrow make assumptions on the underlying shape, *e.g.*: fix dimension, topological type, regularity (differentiability), Hausdorff distance to input...

Reconstruction problem is ill-posed by nature.

 \rightarrow make assumptions on the underlying shape, *e.g.*: fix dimension, topological type, regularity (differentiability), Hausdorff distance to input...

Reconstruction problem is ill-posed by nature.

 \rightarrow make assumptions on the underlying shape, e.g.: fix dimension, topological type, regularity (differentiability), Hausdorff distance to input...

 \rightarrow for a suitable choice of hypotheses, the solution becomes unique **up** to a set of local regular deformations (solution never unique!)

clustering topological inference reconstruction

Where do the data come from?

3D scans

Sources LASER stereo vision mechanical sensor

Applications

Reverse engineering Prototyping Quality control

Stanford Michelangelo Project

Where does the data come from?

Medical Imaging

Sources MRI scan echograph

Applications

Diagnostic Endoscopy simulation Chirurgical intervention planning

Where does the data come from?

Geography, Geology

Sources satellite/aerial images ground probing seismograph

Applications

Maps making / Terrain modeling Prospection (tunnels, oil) Where does the data come from?

Higher-Dimensions Sources Data bases Simulations **Applications** Machine Learning Path planning Pattern recognition Image processing

Various reconstruction techniques

Delaunay-based

- Crust / Power Crust
- Cocone
- Gabriel / $\alpha\text{-shape}$ / $\beta\text{-skeleton}$
- flow complex

Implicitization

- Local polynomial fitting
- Natural Neighbors (Voronoi-based)
- Radial Basis Functions

Projection operators

- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions

- Unions of balls $/\ {\rm nerves}$
- Witness Complex

What Delaunay has to do with reconstruction

 \rightarrow a faithful approximation of the curve appears as a subcomplex of the Delaunay \rightarrow this should hold whenever the point cloud is sufficiently densely sampled along the curve

What Delaunay has to do with reconstruction

 \rightarrow a faithful approximation of the curve appears as a subcomplex of the Delaunay \rightarrow this should hold whenever the point cloud is sufficiently densely sampled along the curve **Q** What is this *good* subcomplex? Can it be defined in some canonical way?

Restricted Delaunay triangulation

Restricted Delaunay triangulation

Restricted Delaunay triangulation

 \rightarrow Our assumptions:

1. the underlying shape S is a closed curve or surface with positive reach ρ_S

2. the point cloud P is an ε -sample of \mathcal{S} with $\varepsilon \in O(\varrho_{\mathcal{S}})$.

- \rightarrow Our assumptions:
- \rightarrow analogy with 1-d signal theory (Shannon's reconstruction theorem):
- 1. the underlying shape S is a closed curve or surface with positive reach ρ_S
- 1'. the underlying signal is a weighted sum of sinusoids
- 2. the point cloud P is an ε -sample of \mathcal{S} with $\varepsilon \in O(\varrho_{\mathcal{S}})$.
- 2'. the sampling has ≥ 2 samples per period (signal has bounded bandwidth)

Theorem: [Amenta et al. 1998-99]

If S is a curve or surface with positive *reach*, and if P is an ε -sample of S with $\varepsilon < \varrho_S$ (curve) or $\varepsilon < 0.1 \varrho_S$ (surface), then:

- $\operatorname{Del}_{\mathcal{S}}(P)$ is homeomorphic to \mathcal{S} ,
- $d_{\mathrm{H}}(\mathrm{Del}_{\mathcal{S}}(P), \mathcal{S}) \in O(\varepsilon^2),$
- $\forall f \in \text{Del}_{\mathcal{S}}(P), \forall v \in f, \angle n_f n_v \mathcal{S} \in O(\varepsilon),$
- \cdots (similar areas, curvature estimation, etc.)

Theorem: [Amenta et al. 1998-99]

If S is a curve or surface with positive *reach*, and if P is an ε -sample of S with $\varepsilon < \varrho_S$ (curve) or $\varepsilon < 0.1 \varrho_S$ (surface), then:

- $\operatorname{Del}_{\mathcal{S}}(P)$ is homeomorphic to \mathcal{S} ,
- $d_{\mathrm{H}}(\mathrm{Del}_{\mathcal{S}}(P), \mathcal{S}) \in O(\varepsilon^2),$
- $\forall f \in \text{Del}_{\mathcal{S}}(P), \forall v \in f, \angle n_f n_v \mathcal{S} \in O(\varepsilon),$
- \cdots (similar areas, curvature estimation, etc.)
- \rightarrow to be explicited: $\varepsilon\text{-sampling, reach}$

$\varepsilon\text{-samples}$

Def: P is an ε -sample of S if $\forall x \in S$, $\min\{||x-p|| \mid p \in P\} \le \varepsilon$.

Def: $M_{\mathcal{S}}$ is the closure of the set of points of \mathbb{R}^d that have ≥ 2 nearest neighbors on \mathcal{S} .

Def: $M_{\mathcal{S}}$ is the closure of the set of points of \mathbb{R}^d that have ≥ 2 nearest neighbors on \mathcal{S} .

Def: $M_{\mathcal{S}}$ is the closure of the set of points of \mathbb{R}^d that have ≥ 2 nearest neighbors on \mathcal{S} .

Shapes with positive reach (Cont'd)

 \rightarrow Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: $\forall x \in S, \forall c \in n_x S, ||x - c|| < lfs(x) \Rightarrow B(c, ||x - c||) \cap S = \emptyset.$

Shapes with positive reach (Cont'd)

 \rightarrow Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: $\forall x \in S, \forall c \in n_x S, ||x - c|| < lfs(x) \Rightarrow B(c, ||x - c||) \cap S = \emptyset.$

Theorem: [Amenta et al. 1998-99]

If S is a curve or surface with positive *reach*, and if P is an ε -sample of S with $\varepsilon < \varrho_S$ (curve) or $\varepsilon < 0.1 \varrho_S$ (surface), then:

- $\operatorname{Del}_{\mathcal{S}}(P)$ is homeomorphic to \mathcal{S} ,
- $d_{\mathrm{H}}(\mathrm{Del}_{\mathcal{S}}(P), \mathcal{S}) \in O(\varepsilon^2),$
- $\forall f \in \text{Del}_{\mathcal{S}}(P), \forall v \in f, \angle n_f n_v \mathcal{S} \in O(\varepsilon),$
- \cdots (similar areas, curvature estimation, etc.)

Proof for curves:

Proof for curves:

Proof for curves:

Proof for curves:

 \rightarrow show that every edge of $\mathrm{Del}_{\mathcal{S}}(P)$ connects consecutive points of P along \mathcal{S} , and vice-versa

Let $c \in \operatorname{arc}_{\mathcal{S}}(pq) \cap \partial p^*$. $c \in ps^*$ for some $s \in P \setminus \{p\}$

Proof for curves:

Proof for curves:

 \rightarrow show that every edge of $\mathrm{Del}_{\mathcal{S}}(P)$ connects consecutive points of P along \mathcal{S} , and vice-versa

 $\Rightarrow \mathrm{Del}_{\mathcal{S}}(P)$ is homeomorphic to $\mathcal S$ between each pair of consecutive points of P

Computing the restricted Delaunay

Q How to compute $\text{Del}_{\mathcal{S}}(P)$ when \mathcal{S} is unknown?

Computing the restricted Delaunay

Q How to compute $\text{Del}_{\mathcal{S}}(P)$ when \mathcal{S} is unknown?

 \rightarrow a whole family of algorithms use various Delaunay extraction criteria:

1. Compute Delaunay triangulation of ${\cal P}$

3. Add poles to the set of vertices

$$\rightarrow$$
 in 2-d, crust = $\text{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$

$$\rightarrow$$
 in 2-d, crust = $\text{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$

→ in 2-d, crust =
$$\text{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$$

→ in 3-d, crust ⊃ $\text{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$

[Amenta et al. 1997-98]

- \rightarrow in 2-d, crust = $\text{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$
- \rightarrow in 3-d, crust $\supseteq \operatorname{Del}_{\mathcal{S}}(P) \approx \mathcal{S}$

 \Rightarrow manifold extraction step in post-processing

Back to the reconstruction paradigm

Back to the reconstruction paradigm

 ${\bf Q}$ What do you see?

Why?

Back to the reconstruction paradigm

 \rightarrow When the dimensionality of the data is unknown or there is noise, the reconstruction result depends on the scale at which the data is looked at.

 \rightarrow need for multi-scale reconstruction techniques

Multi-scale approach in a nutshell

 \rightarrow build a one-parameter family of complexes approximating the input at various scales

Multi-scale approach in a nutshell

 \rightarrow build a one-parameter family of complexes approximating the input at various scales

 \rightarrow connections with manifold learning and topological persistence

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$

Let $q := \operatorname{argmax}_{w \in W} \operatorname{d}(w, L);$

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$

Let $q := \operatorname{argmax}_{w \in W} d(w, L);$ $L := L \cup \{q\};$ update simplicial complex;

END_WHILE

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$

Let $q := \operatorname{argmax}_{w \in W} \operatorname{d}(w, L);$ $L := L \cup \{q\};$ update simplicial complex;

END_WHILE

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$

Let $q := \operatorname{argmax}_{w \in W} \operatorname{d}(w, L);$

 $L := L \cup \{q\};$

update simplicial complex;

END_WHILE

Output: the sequence of simplicial complexes

The simplicial complex to maintain

 \rightarrow maintain the witness complex $C^W(L)$ [de Silva 2003]:

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

The simplicial complex to maintain

 \rightarrow maintain the witness complex $C^W(L)$ [de Silva 2003]:

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

The simplicial complex to maintain

 \rightarrow maintain the witness complex $C^W(L)$ [de Silva 2003]:

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| = ||w - v_j|| \le ||w - u||$ for all $i, j = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$ (Delaunay test)

Def. $w \in W$ weakly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| \le ||w - u||$ for all $i = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

The simplicial complex to maintain

 \rightarrow maintain the witness complex $C^W(L)$ [de Silva 2003]:

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| = ||w - v_j|| \le ||w - u||$ for all $i, j = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$ (Delaunay test)

Def. $w \in W$ weakly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| \le ||w - u||$ for all $i = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Def. $C^W(L)$ is the largest abstract simplicial complex built over L, whose faces are weakly witnessed by points of W.

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\Rightarrow C^{W}(L) \text{ is a subcomplex of } Del(L)$ $\Rightarrow C^{W}(L) \text{ is embedded in } \mathbb{R}^{d}$

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\Rightarrow C^{W}(L) \text{ is a subcomplex of } Del(L)$ $\Rightarrow C^{W}(L) \text{ is embedded in } \mathbb{R}^{d}$

Thm. 2 [de Silva, Carlsson 2004] - The size of $C^W(L)$ is O(d|W|)- The time to compute $C^W(L)$ is O(d|W||L|)

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L), \exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\Rightarrow C^{W}(L) \text{ is a subcomplex of } Del(L)$ $\Rightarrow C^{W}(L) \text{ is embedded in } \mathbb{R}^{d}$

Thm. 2 [de Silva, Carlsson 2004] - The size of $C^W(L)$ is O(d|W|)- The time to compute $C^W(L)$ is O(d|W||L|)

Thm. 3 [Guibas, Oudot 2007] [Attali, Edelsbrunner, Mileyko 2007] Under some conditions, $C^W(L) = Del_S(L) \approx S$

 \rightarrow connection with reconstruction:

- $W \subset \mathbb{R}^d$ is given as input
- $L \subseteq W$ is generated
- \bullet underlying manifold ${\mathcal S}$ unknown
- \bullet only distance comparisons

 \Rightarrow algorithm is applicable in any metric space

 \rightarrow connection with reconstruction:

- $W \subset \mathbb{R}^d$ is given as input
- $\bullet \ L \subseteq W$ is generated
- \bullet underlying manifold ${\mathcal S}$ unknown
- only distance comparisons

 \Rightarrow algorithm is applicable in any metric space

• In \mathbb{R}^d , $\mathcal{C}^W(L)$ can be maintained by updating, for each witness w, the list of d + 1 nearest landmarks of w.

 $\Rightarrow \begin{array}{rcl} \text{space} & \leq & O\left(d|W|\right) \\ \text{time} & \leq & O\left(d|W|^2\right) \end{array}$

Input: a finite point set $W \subset \mathbb{R}^d$.

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$

insert $\operatorname{argmax}_{w \in W} d(w, L)$ in L;

update the lists of nearest neighbors;

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$ insert $\operatorname{argmax}_{w \in W} \operatorname{d}(w, L)$ in L; update the lists of nearest neighbors; update $\operatorname{C}^W(L)$; END_WHILE

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$ insert $\operatorname{argmax}_{w \in W} d(w, L)$ in L; update the lists of nearest neighbors; update $C^W(L)$; END_WHILE

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d + 1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$ insert $\operatorname{argmax}_{w \in W} \operatorname{d}(w, L)$ in L; update the lists of nearest neighbors; update $\operatorname{C}^W(L)$; END_WHILE

Output: the sequence of complexes $C^W(L)$

 \rightarrow case of curves:

Conjecture [Carlsson, de Silva 2004]: $C^W(L)$ coincides with $Del_{\mathcal{S}}(L)...$

 \rightarrow case of curves:

Conjecture [Carlsson, de Silva 2004]: $C^W(L)$ coincides with $Del_{\mathcal{S}}(L)...$

 \ldots under some conditions on W and L

 \rightarrow case of curves:

Thm. 3 If S is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, S) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_S$, then $C^W(L) = \text{Del}_S(L) \approx S$.

 \rightarrow case of curves:

 \rightarrow There is a plateau in the diagram of Betti numbers of $C^W(L)$.

 \rightarrow case of curves:

Thm. 3 If S is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, S) \leq \delta$, $L \subseteq W$ ε -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_S$, then $C^W(L) = \text{Del}_S(L) \approx S$.

• $\operatorname{Del}_{\mathcal{S}}(L) \subseteq \mathrm{C}^W(L)$

 \rightarrow case of curves:

Thm. 3 If S is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, S) \leq \delta$, $L \subseteq W$ ε -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_S$, then $C^W(L) = \text{Del}_S(L) \approx S$.

• $\operatorname{Del}_{\mathcal{S}}(L) \subseteq \mathrm{C}^W(L)$

 \rightarrow case of curves:

Thm. 3 If S is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, S) \leq \delta$, $L \subseteq W$ ε -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_S$, then $C^W(L) = \text{Del}_S(L) \approx S$.

• $\operatorname{Del}_{\mathcal{S}}(L) \subseteq \mathrm{C}^W(L)$

 \rightarrow case of curves:

Thm. 3 If S is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, S) \leq \delta$, $L \subseteq W$ ε -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_S$, then $C^W(L) = \text{Del}_S(L) \approx S$.

- $\operatorname{Del}_{\mathcal{S}}(L) \subseteq \mathrm{C}^W(L)$
- $C^W(L) \subseteq Del_{\mathcal{S}}(L)$

 \rightarrow case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko] If $\varepsilon \ll \varrho_{\mathcal{S}}$, then $\forall W \subseteq \mathcal{S}$, $C^W(L) \subseteq Del_{\mathcal{S}}(L)$.

 $\Rightarrow C^{\mathcal{S}}(L) = Del_{\mathcal{S}}(L)$

 $\varepsilon=0.2,~\varrho_{\mathcal{S}}\approx 0.25$

 \rightarrow case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko] If $\varepsilon \ll \varrho_{\mathcal{S}}$, then $\forall W \subseteq \mathcal{S}$, $C^W(L) \subseteq Del_{\mathcal{S}}(L)$.

 $\Rightarrow \operatorname{C}^{\mathcal{S}}(L) = \operatorname{Del}_{\mathcal{S}}(L)$

 $\mathbf{Pb} \quad \operatorname{Del}_{\mathcal{S}}(L) \nsubseteq \operatorname{C}^W(L) \text{ if } W \subsetneq \mathcal{S}$

 $\varepsilon = 0.2, \ \varrho_S \approx 0.25$

 \rightarrow case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko] If $\varepsilon \ll \varrho_{\mathcal{S}}$, then $\forall W \subseteq \mathcal{S}$, $C^W(L) \subseteq Del_{\mathcal{S}}(L)$.

 $\Rightarrow C^{\mathcal{S}}(L) = Del_{\mathcal{S}}(L)$

 $\mathbf{Pb} \quad \operatorname{Del}_{\mathcal{S}}(L) \nsubseteq \operatorname{C}^W(L) \text{ if } W \subsetneq \mathcal{S}$

 $\varepsilon = 0.2, \ \varrho_S \approx 0.25$

order-2 Voronoi diagram

 \rightarrow case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko] If $\varepsilon \ll \varrho_{\mathcal{S}}$, then $\forall W \subseteq \mathcal{S}$, $C^W(L) \subseteq Del_{\mathcal{S}}(L)$.

 $\Rightarrow C^{\mathcal{S}}(L) = Del_{\mathcal{S}}(L)$

 $\mathbf{Pb} \quad \operatorname{Del}_{\mathcal{S}}(L) \nsubseteq \operatorname{C}^{W}(L) \text{ if } W \subsetneq \mathcal{S}$

 $\varepsilon = 0.2, \ \varrho_S \approx 0.25$

order-2 Voronoi diagram

 \rightarrow case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko] If $\varepsilon \ll \varrho_{\mathcal{S}}$, then $\forall W \subseteq \mathcal{S}$, $C^W(L) \subseteq Del_{\mathcal{S}}(L)$.

 $\Rightarrow C^{\mathcal{S}}(L) = Del_{\mathcal{S}}(L)$

 $\mathbf{Pb} \quad \operatorname{Del}_{\mathcal{S}}(L) \nsubseteq \operatorname{C}^W(L) \text{ if } W \subsetneq \mathcal{S}$

Solution relax witness test [Guibas, Oudot]

 $\begin{array}{l} \Rightarrow \operatorname{C}^W_\nu(L) = \operatorname{Del}_{\mathcal{S}}(L) + \text{ slivers} \\ \Rightarrow \operatorname{C}^W_\nu(L) \nsubseteq \operatorname{Del}(L) \\ \Rightarrow \operatorname{C}^W_\nu(L) \text{ not embedded.} \end{array}$

Post-process extract manifold M from $C^W_{\nu}(L) \cap \text{Del}(L)$ [Amenta, Choi, Dey, Leekha]

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

 \rightarrow Carlsson and de Silva's conjecture:

Under some sampling conditions, $C^W(L) = Del_{\mathcal{S}}(L) \approx \mathcal{S}$

 \rightarrow Carlsson and de Silva's conjecture:

• $\operatorname{Del}_{\mathcal{S}}(L)$ may not be included in $\operatorname{C}^{W}(L)$ on *d*-manifolds, $d \geq 2$ [Guibas, Oudot]

 \rightarrow Carlsson and de Silva's conjecture:

 \rightarrow source of problems: slivers

 \rightarrow Carlsson and de Silva's conjecture:

• $\operatorname{Del}_{\mathcal{S}}(L)$ may not be included in $\operatorname{C}^{W}(L)$ on *d*-manifolds, $d \geq 2$ [Guibas, Oudot]

dilate W so that it includes S[Boissonnat, Guibas, Oudot]

- $C^W(L)$ may not be included in $Del_{\mathcal{S}}(L)$ on *d*-manifolds, $d \ge 3$ [Oudot]
- $\operatorname{Del}_{\mathcal{S}}(L)$ may not be homeomorphic to \mathcal{S} , nor even homotopy equivalent [Oudot]

 \rightarrow source of problems: slivers

assign weights to the landmarks to remove slivers [Cheng, Dey, Ramos]

 \rightarrow Carlsson and de Silva's conjecture:

• $\operatorname{Del}_{\mathcal{S}}(L)$ may not be included in $\operatorname{C}^{W}(L)$ on *d*-manifolds, $d \geq 2$ [Guibas, Oudot]

• $C^W(L)$ may not be included in $Del_{\mathcal{S}}(L)$ on *d*-manifolds, $d \ge 3$ [Oudot]

• $\operatorname{Del}_{\mathcal{S}}(L)$ may not be homeomorphic to \mathcal{S} , [nor even homotopy equivalent [Oudot]]

 \rightarrow source of problems: slivers

dilate W so that it includes S[Boissonnat, Guibas, Oudot]

assign weights to the landmarks to remove slivers [Cheng, Dey, Ramos]

Higher-dimensional reconstruction is still widely open