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Q What do you see?
Why?
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Reconstruction Paradigm

Q What do you see?
Why?

without the numbers...

http://jolicoloriage.free.fr
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Reconstruction Paradigm (Cont'd)

Q Given a point cloud, build a faithful (implicit, PL, ...)
approximation of the shape underlying the data.




Reconstruction Paradigm (Cont'd)

Reconstruction problem is ill-posed by nature.




Reconstruction Paradigm (Cont'd)

Reconstruction problem is ill-posed by nature.

— make assumptions on the underlying shape, e.g.: fix dimension, topo-
logical type, regularity (differentiability), Hausdorff distance to input...




Reconstruction Paradigm (Cont'd)

Reconstruction problem is ill-posed by nature.

— make assumptions on the underlying shape, e.g.: fix dimension, topo-
logical type, regularity (differentiability), Hausdorff distance to input...




Reconstruction Paradigm (Cont'd)
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Reconstruction problem is ill-posed by nature.

— make assumptions on the underlying shape, e.g.: fix dimension, topo-
logical type, regularity (differentiability), Hausdorff distance to input...

— for a suitable choice of hypotheses, the solution becomes unique up
to a set of local regular deformations (solution never unique!)
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Other (weaker) forms of reconstruction
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topological inference




Other (weaker) forms of reconstruction

clustering
topological inference

reconstruction




Where do the data come from?

3D scans

Sources

LASER

stereo vision
mechanical sensor

Applications

Reverse engineering
Prototyping
Quality control

‘ Ummnmj)\ S e~ ia Y,

Stanford Michelangelo Project




Where does the data come from?

Medical Imaging

Sources
MRI scan
echograph

Applications

Diagnostic
Endoscopy simulation
Chirurgical intervention planning




Where does the data come from?

Geography, Ge

ology

Sources

ground probing
seismograph

Applications

Maps making / Terrailing
Prospection (tunnels, oil)



Where does the data come from?

Higher-Dimensions |

Sources

Data bases
Simulations

Applications
Machine Learning
Path planning e
Pattern recognition é . '§ 3
Image processing e S




Various reconstruction techniques

Delaunay-based

- Crust / Power Crust

- Cocone

- Gabriel / a-shape / [-skeleton
- flow complex

Implicitization
- Local polynomial fitting
- Natural Neighbors (Voronoi-based)
- Radial Basis Functions

Projection operators

- Moving Least Squares
- Extremal surfaces

For arbitrary dimensions and co-dimensions

- Unions of balls / nerves
- Witness Complex
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What Delaunay has to do with reconstruction

e P

— a faithful approximation of the curve appears as a subcomplex of the Delaunay

— this should hold whenever the point cloud is sufficiently densely sampled along the curve

Q What is this good subcomplex? Can it be defined in some canonical way?
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Approximation power of the restricted Delaunay

— Our assumptions:

1. the underlying shape S is a closed curve or surface with positive reach os

2. the point cloud P is an e-sample of S with € € O(ps).




Approximation power of the restricted Delaunay

— Our assumptions:

— analogy with 1-d signal theory (Shannon’s reconstruction theorem):
1. the underlying shape S is a closed curve or surface with positive reach os

1. the underlying signal is a weighted sum of sinusoids

2. the point cloud P is an e-sample of S with € € O(ps).

2. the sampling has > 2 samples per period (signal has bounded bandwidth)




Approximation power of the restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If S is a curve or surface with positive reach, and if P is an e-sample of S
with € < ps (curve) or € < 0.1ps (surface), then:

e Delgs(P) is homeomorphic to S,
° dH(Delg<P)78) c O(EZ),
e Vf € Dels(P), Yv € f, Znsn,S € O(e),

e .- (similar areas, curvature estimation, etc.)




Approximation power of the restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If S is a curve or surface with positive reach, and if P is an e-sample of S
with € < ps (curve) or € < 0.1ps (surface), then:

e Delgs(P) is homeomorphic to S,
° dH(Delg<P)78) c O(EZ),
e Vf € Dels(P), Yv € f, Znsn,S € O(e),

e .- (similar areas, curvature estimation, etc.)

— to be explicited: e-sampling, reach




e-samples

Def: P is an e-sample of S if Vo € S, min{||z — p|| | p € P} <e.




Shapes with positive reach (rederer 1953

Def: Mg is the closure of the set of points of R? that have > 2 nearest neighbors on S.
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Shapes with positive reach [rederer 1958]

Def: Mg is the closure of the set of points of R? that have > 2 nearest neighbors on S.
Def: Vz € S, Ifs(x) = min{||Jz — m|| | m € Ms}

Del: gs = min{d(z, Ms) | x € S}
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Shapes with positive reach (rederer 1953

0

0s = +00 0s =T 0s =0
(convex) CY1 but not C?) (C* but not C11)




Shapes with positive reach (Cont'd)

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vz € S, Ve € n,S, ||z — || < lfs(z) = B(e,|[lz —¢|]) NS = 0.




Shapes with positive reach (Cont'd)

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vz € S, Ve € n,S, ||z — || < lfs(z) = B(e,|[lz —¢|]) NS = 0.

Topological Ball Lemma:

If S is a k-manifold, then VB(c,r) s.t.
B(e,r)NMs =0, B(c,r) NS is either
empty or a topological k-ball.




Approximation power of the restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If S is a curve or surface with positive reach, and if P is an e-sample of S
with € < ps (curve) or € < 0.1ps (surface), then:

e Delgs(P) is homeomorphic to S,
° dH(Delg<P)78) c O(EZ),
e Vf € Dels(P), Yv € f, Znsn,S € O(e),

e .- (similar areas, curvature estimation, etc.)
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Proof for curves:

— show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa
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Approximation power of the restricted Delaunay

Proof for curves:

— show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa

Let c € pg" N S. r=|lc—pll=|c—q|l =d(e,P) <e < s <1fs(c)
= B(e,7) NS is a topological arc
if s € P\ {p,q} belongs to this arc, then the arc is

tangent to 0B(c,r) in p, q or s (say s)

= d(c,P) =r = ||c —s| > ls(s) > e.

(contradiction with the hypothesis of the theorem)




Approximation power of the restricted Delaunay

Proof for curves:

— show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa

Let ¢ € arcs(pg) N Op*. ¢ € ps* for some s € P\ {p}




Approximation power of the restricted Delaunay

Proof for curves:

— show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa

Let ¢ € arcs(pg) N Op*. ¢ € ps* for some s € P\ {p}
= ps € Delg(P)
= p, s consecutive along S, with ¢ € arcg(ps)

(by previous part of the proof)
=s=q




Approximation power of the restricted Delaunay

Proof for curves:
— show that every edge of Dels(P) connects consecutive points of P along S, and vice-versa

= Dels(P) is homeomorphic to S between each pair of consecutive points of P

Since Dels(P) is embedded in Del(P), it does
not self-intersect = global homeomorphism







Computing the restricted Delaunay

Q How to compute Delg(P) when S is unknown?
— a whole family of algorithms use various Delaunay extraction criteria:

- crust
- power crust
- cocone

- tight cocone




Crust algorithm

[Amenta et al. 1997-98|







1. Compute Delaunay triangulation of P

Crust algorithm

[Amentd et al. 1997198] / \




Crust algorit
[Ament) et al. 199798
L] °
PY [ ]
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3. Add poles to the set of vertices

Crust algorithm

[Amenta et al. 1997-98|













— in 2-d, crust = Delg(P) =~ S

Crust algorithm

[Amenta et al. 1997-98]




Crust algorithm = i 2-d, crust = Dels(P) ~ S

[Amenta et al. 1997-98|

— in 3-d, crust O Delg(P) =~ S




Crust algorithm = i 2-d, crust = Dels(P) ~ S

[Amenta et al. 1997-98|

— in 3-d, crust O Delg(P) =~ S

= manifold extraction step in post-processing
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Why?




Back to the reconstruction paradigm

— When the dimensionality of the data is unknown or there is noise, the
reconstruction result depends on the scale at which the data is looked at.

— need for multi-scale reconstruction techniques




Multi-scale approach in a nutshell
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Multi-scale approach in a nutshell
— connections with manifold learning and topological persistence

— build a one-




Multi-scale algorithm [Guibas, oudot 2007]
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Multi-scale algorithm [Guibas, oudot 2007]

Input: a finite point set W C R™

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;

WHILE L C W

Let g := argmax,,cppyd(w, L);
L:=LU{q};
update simplicial complex;

END_WHILE

Output: the sequence of simplicial complexes
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— maintain the witness complex CV (L) [de Silva 2003]:

Let L C R? (landmarks) s.t. |L| < 400 and W C R? (witnesses)
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The simplicial complex to maintain

— maintain the witness complex CV (L) [de Silva 2003]:

Let L C R? (landmarks) s.t. |L| < 400 and W C R? (witnesses)
Def. w € W strongly witnesses [vg,--- ,vg] if |Jw —

vl = [Jw —vj]| < |lw—u| for all ¢, =0,---,k and all
u € L\ {vg,---,vx} (Delaunay test)

Def. w € W weakly witnesses [vg, - - -, vg] if ||w—v;]| <
|lw—wul| forall i =0,--- ,k and all w € L\ {vg, -+ ,v}.

Def. CY(L) is the largest abstract simplicial complex built
over L, whose faces are weakly witnessed by points of W.
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The witness complex (properties)

Thm. 1 [de Silva 2003] VYW, L, Vo € CW(L), 3c € R? that strongly witnesses o.

= CY(L) is a subcomplex of Del(L)
= CW(L) is embedded in R?

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W|)
- The time to compute C" (L) is O(d|W||L|)

Thm. 3 [Guibas, Oudot 2007]
[Attali, Edelsbrunner, Mileyko 2007]
Under some conditions, C" (L) = Dels(L) ~ S



The witness complex (properties)

— connection with reconstruction:

e W C R? is given as input

e . C W is generated

e underlying manifold & unknown
e only distance comparisons

= algorithm is applicable in any metric space




The witness complex (properties)

— connection with reconstruction:

e W C R? is given as input

e . C W is generated

e underlying manifold & unknown
e only distance comparisons

= algorithm is applicable in any metric space

e In RY, C" (L) can be maintained by updating,
for each witness w, the list of d + 1 nearest land-
marks of w.

space < O (d|[W])
time < ()((ZWV\Q)
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Input: a finite point set W  R<.

Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p]};

Invariant: Yw € W, the list of d 4+ 1 nearest landmarks of w is maintained
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The full algorithm

Input: a finite point set W  R<.

Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p]};

Invariant: Yw € W, the list of d 4+ 1 nearest landmarks of w is maintained
throughout the process.

WHILE L C W

insert argmax,,cyyd(w, L) in L;
update the lists of nearest neighbors;
update CW(L);

END_WHILE

Output: the sequence of complexes C' (L)
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— case of curves:

*
Conjecture [Carlsson, de Silva 2004]: ‘J ’/f SN
CY(L) coincides with Dels(L)... P

\

.. under some conditions on W and L

I/IJ'




Theoretical guarantees

— case of curves:

Thm. 3 If S is a closed curve with positive reach, W C R? s.t. dg(W,S) < 6,
L C W e-sparse e-sample of W with § << ¢ << g5, then CW (L) = Dels(L) ~ S.
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— case of curves:

Thm. 3 If S is a closed curve with positive reach, W C R? s.t. dg(W,S) < 6,

L C W e-sparse e-sample of W with[§ <] then CY (L) = Dels(L) = S.

€l

0 . . .
1/95 1/57‘ 1/61

— There is a plateau in the diagram of Betti numbers of C"V (L).
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Theoretical guarantees

— case of surfaces:

Thm [Attali, Edelsbrunner, Mileyko]
If ¢ << 0s, then VIV C S, CW (L) C Dels(L).

= C%(L) = Dels(L)

Pb  Dels(L) Z CV(L)if W C S

Solution relax witness test
[Guibas, Oudot]

= CY (L) = Dels(L)+ slivers
= C)V(L) ¢ Del(L)
= C%(L) not embedded.

Post-process extract manifold M
from CY (L) N Del(L)
[Amenta, Choi, Dey, Leekha]
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Tangle Cube t(diam.=4s rch=8.25, genus=5, delta=@.82, no




Some results (cont'd)

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)

O camera (Euclidean view) —[0[X]

a1

8.1
input model provided courtesy of IMATI by the Aim@Shape repository
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Some results (cont'd)

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)

[Q camera (Euclidean view) |0 X|

a1

8.1
input model provided courtesy of IMATI by the Aim@Shape repository




Some results (cont'd)

B.41 8.1
input model provided courtesy of IMATI by the Aim@Shape repository



Some results (cont'd)

Asklepios tdiam.=128, 1lrl=d4, genus=4, delta=1, noise
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Some results (cont'd)

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)
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Some results (cont'd)
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Some results (cont'd)

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)
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Some results (cont'd

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)
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Some results (cont'd)

Asklepios ¢diam.=128, lrl=4, genus=4, delta=1, noise=8, 45,588 witnesses)

a1

8.1
input model provided courtesy of IMATI by the Aim@Shape repository




Some results (cont'd)

Happy Buddha (diam.=8.1, roch=?, genus=184, delta=?, roise=?, 1,631,368 witnesses)

[0 camera (Euclidean view) |0 X]|

180

input data set courtesy of the Graphics Lab@Stanford




Some results (cont’d

Happy Buddha (diam.=8. genus=184, delta=?, noise=?, 1,631,368 witnesses)

T Camers (Euciidean view

Camera (Euclidean view

L
180

input data set courtesy of the Graphics Lab@Stanford




Some results (cont'd)

Happy Buddha (diam.=8.1, roch=?, genus=184, delta=?, roise=?, 1,631,368 witnesses)

—[O/X]

180

input data set courtesy of the Graphics Lab@Stanford




Some results (cont'd)

Curve on Torus <diam.=18, rch=0.84:1, delta=0.81, noise=@, 50,800 witnesses)




Higher dimensions

— Carlsson and de Silva’s conjecture:

Under some sampling conditions, C (L) = Dels(L) ~ S




Higher dimensions

— Carlsson and de Silva’s conjecture:

non longer true

e Dels(L) may not be included in C" (L)
on d-manifolds, d > 2 [Guibas, Oudot]
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Higher dimensions

— Carlsson and de Silva’s conjecture:

non longer true

e Dels (L) may not be included in C" (L)
on d-manifolds, d > 2 [Guibas, Oudot]

e C"(L) may not be included in Dels (L)
on d-manifolds, d > 3 [Oudot]

e Dels(L) may not be homeomorphic to f
nor even homotopy equivalent [Oudot]

— source of problems: slivers




Higher dimensions

— Carlsson and de Silva’s conjecture:

non longer true

e Dels (L) may not be included in C" (L)

on d-manifolds, d > 2 [Guibas, Oudot] dilate W so that it includes S

[Boissonnat, Guibas, Oudot]

e C"(L) may not be included in Dels (L)
on d-manifolds, d > 3 [Oudot] assign weights to the landmarks
to remove slivers

e Dels(L) may not be homeomorphic to S,/ [Cheng, Dey, Ramos]
nor even homotopy equivalent [Oudot]

— source of problems: slivers




Higher dimensions

— Carlsson and de Silva’s conjecture:

non longer true

e Dels (L) may not be included in C" (L)

on d-manifolds, d > 2 [Guibas, Oudot] dilate W so that it includes S

[Boissonnat, Guibas, Oudot]

e C"(L) may not be included in Dels (L)
on d-manifolds, d > 3 [Oudot] assign weights to the landmarks
to remove slivers

e Dels(L) may not be homeomorphic to S,/ [Cheng, Dey, Ramos]
nor even homotopy equivalent [Oudot]

— source of problems: slivers

Higher-dimensional reconstruction is still widely open




