INF563 Topological Data Analysis — Exercise Session Stability of global topological signatures

Our goal here is to prove the following stability theorem for persistence diagrams of Rips filtrations:

Theorem 1. For any compact metric spaces (X, d_X) and (Y, d_Y) , we have

 $d_{\mathrm{b}}^{\infty}(\operatorname{Dg} \mathcal{R}(X, d_X), \ \operatorname{Dg} \mathcal{R}(Y, d_Y)) \leq 2 d_{\mathrm{GH}}(X, Y).$

To simplify things a bit in the following, we will assume that X and Y are finite. Then, we can use the following well-known embedding result:

Lemma 1. Any finite metric space (Z, d_Z) embeds isometrically into $(\mathbb{R}^n, \ell^{\infty})$, where n denotes the cardinality of Z.

Question 1. Prove Lemma 1.

Hint: letting $Z = \{z_1, \dots, z_n\}$, for each point z_i consider the vector $(d_Z(z_i, z_1), d_Z(z_i, z_2), \dots, d_Z(z_i, z_n)) \in \mathbb{R}^n$, then show that the ℓ^{∞} -distances between the vectors are the same as the distances between the original points of Z.

Let (X, d_X) and (Y, d_Y) be two metric spaces, and let $\varepsilon > d_{GH}(X, Y)$.

Question 2. Show that (X, d_X) and (Y, d_Y) can be jointly embedded isometrically into $(\mathbb{R}^d, \ell^{\infty})$, for some d > 0, such that the Hausdorff distance between their images is at most ε . **Hint:** look at the proof outline shown in Figure 1.

Figure 1: Outline of the proof of Theorem 1.

We call respectively X' and Y' the images of X and Y through the joint isometric embedding.

Question 3. Show that $\mathcal{R}(X', \ell^{\infty})$ is isomorphic to $\mathcal{R}(X, d_X)$ as a simplicial filtration. Hint: this means that there is a bijection $X \to X'$ that induces a bijection between the simplices of the two filtrations, such that the times of appearance of the simplices are preserved. Similarly, $\mathcal{R}(Y', \ell^{\infty})$ is isomorphic to $\mathcal{R}(Y, d_Y)$. Thus, we have:

$$d_{\mathrm{b}}^{\infty}(\mathrm{Dg}\ \mathcal{R}(X, \mathrm{d}_X), \mathrm{Dg}\ \mathcal{R}(Y, \mathrm{d}_Y)) = d_{\mathrm{b}}^{\infty}(\mathrm{Dg}\ \mathcal{R}(X', \ell^{\infty}), \mathrm{Dg}\ \mathcal{R}(Y', \ell^{\infty})).$$

We call respectively $f_{X'}$ and $f_{Y'}$ the distance functions of X' and Y': $\forall p \in \mathbb{R}^d$,

$$f_{X'}(p) = \min_{x' \in X'} \|p - x'\|_{\infty}$$
$$f_{Y'}(p) = \min_{y' \in Y'} \|p - y'\|_{\infty}$$

Question 4. Show that $||f_{X'} - f_{Y'}||_{\infty} \leq \varepsilon$. Hint: recall that $d_{\mathrm{H}}(X', Y') \leq \varepsilon$.

Question 5. Deduce that $d_b^{\infty}(\text{Dg } f_{X'}, \text{Dg } f_{Y'}) \leq \varepsilon$, where Dg h denotes the persistence diagram of the filtration of the sublevel sets of h.

Question 6. Deduce now that $d_{b}^{\infty}(\text{Dg }\mathcal{C}(X', \ell^{\infty}), \text{Dg }\mathcal{C}(Y', \ell^{\infty})) \leq \varepsilon$, where $\mathcal{C}(Z', \ell^{\infty})$ denotes the Čech filtration of Z in the ℓ^{∞} -distance.

Hint: relate the sublevel sets of $f_{X'}$ to the unions of ℓ^{∞} -balls centered at the points of X', then apply the Nerve Theorem. Same for Y'.

Question 7. Deduce finally that $d_b^{\infty}(\text{Dg }\mathcal{R}(X', \ell^{\infty}), \text{Dg }\mathcal{R}(Y', \ell^{\infty})) \leq 2\varepsilon$. Hint: relate the Čech and Rips filtrations to each other in $(\mathbb{R}^d, \ell^{\infty})$.

Question 8. Conclude.