INF563 Topological Data Analysis - Exercise Session Stability of global topological signatures

Our goal here is to prove the following stability theorem for persistence diagrams of Rips filtrations:

Theorem 1. For any compact metric spaces $\left(X, \mathrm{~d}_{X}\right)$ and $\left(Y, \mathrm{~d}_{Y}\right)$, we have

$$
\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} \mathcal{R}\left(X, \mathrm{~d}_{X}\right), \operatorname{Dg} \mathcal{R}\left(Y, \mathrm{~d}_{Y}\right)\right) \leq 2 \mathrm{~d}_{\mathrm{GH}}(X, Y)
$$

To simplify things a bit in the following, we will assume that X and Y are finite. Then, we can use the following well-known embedding result:

Lemma 1. Any finite metric space $\left(Z, \mathrm{~d}_{Z}\right)$ embeds isometrically into $\left(\mathbb{R}^{n}, \ell^{\infty}\right)$, where n denotes the cardinality of Z.

Question 1. Prove Lemma 1.
Hint: letting $Z=\left\{z_{1}, \cdots, z_{n}\right\}$, for each point z_{i} consider the vector $\left(\mathrm{d}_{Z}\left(z_{i}, z_{1}\right), \mathrm{d}_{Z}\left(z_{i}, z_{2}\right)\right.$, $\left.\cdots, \mathrm{d}_{Z}\left(z_{i}, z_{n}\right)\right) \in \mathbb{R}^{n}$, then show that the ℓ^{∞}-distances between the vectors are the same as the distances between the original points of Z.

Let $\left(X, \mathrm{~d}_{X}\right)$ and $\left(Y, \mathrm{~d}_{Y}\right)$ be two metric spaces, and let $\varepsilon>\mathrm{d}_{\mathrm{GH}}(X, Y)$.
Question 2. Show that $\left(X, \mathrm{~d}_{X}\right)$ and $\left(Y, \mathrm{~d}_{Y}\right)$ can be jointly embedded isometrically into $\left(\mathbb{R}^{d}, \ell^{\infty}\right)$, for some $d>0$, such that the Hausdorff distance between their images is at most ε.
Hint: look at the proof outline shown in Figure 1.

Figure 1: Outline of the proof of Theorem 1.
We call respectively X^{\prime} and Y^{\prime} the images of X and Y through the joint isometric embedding.
Question 3. Show that $\mathcal{R}\left(X^{\prime}, \ell^{\infty}\right)$ is isomorphic to $\mathcal{R}\left(X, \mathrm{~d}_{X}\right)$ as a simplicial filtration.
Hint: this means that there is a bijection $X \rightarrow X^{\prime}$ that induces a bijection between the simplices of the two filtrations, such that the times of appearance of the simplices are preserved.

Similarly, $\mathcal{R}\left(Y^{\prime}, \ell^{\infty}\right)$ is isomorphic to $\mathcal{R}\left(Y, \mathrm{~d}_{Y}\right)$. Thus, we have:

$$
\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} \mathcal{R}\left(X, \mathrm{~d}_{X}\right), \operatorname{Dg} \mathcal{R}\left(Y, \mathrm{~d}_{Y}\right)\right)=\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} \mathcal{R}\left(X^{\prime}, \ell^{\infty}\right), \operatorname{Dg} \mathcal{R}\left(Y^{\prime}, \ell^{\infty}\right)\right) .
$$

We call respectively $f_{X^{\prime}}$ and $f_{Y^{\prime}}$ the distance functions of X^{\prime} and $Y^{\prime}: \forall p \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& f_{X^{\prime}}(p)=\min _{x^{\prime} \in X^{\prime}}\left\|p-x^{\prime}\right\|_{\infty} \\
& f_{Y^{\prime}}(p)=\min _{y^{\prime} \in Y^{\prime}}\left\|p-y^{\prime}\right\|_{\infty}
\end{aligned}
$$

Question 4. Show that $\left\|f_{X^{\prime}}-f_{Y^{\prime}}\right\|_{\infty} \leq \varepsilon$.
Hint: recall that $\mathrm{d}_{\mathrm{H}}\left(X^{\prime}, Y^{\prime}\right) \leq \varepsilon$.
Question 5. Deduce that $\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} f_{X^{\prime}}, \operatorname{Dg} f_{Y^{\prime}}\right) \leq \varepsilon$, where $\operatorname{Dg} h$ denotes the persistence diagram of the filtration of the sublevel sets of h.

Question 6. Deduce now that $\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} \mathcal{C}\left(X^{\prime}, \ell^{\infty}\right), \operatorname{Dg} \mathcal{C}\left(Y^{\prime}, \ell^{\infty}\right)\right) \leq \varepsilon$, where $\mathcal{C}\left(Z^{\prime}, \ell^{\infty}\right)$ denotes the Čech filtration of Z in the ℓ^{∞}-distance.
Hint: relate the sublevel sets of $f_{X^{\prime}}$ to the unions of ℓ^{∞}-balls centered at the points of X^{\prime}, then apply the Nerve Theorem. Same for Y^{\prime}.

Question 7. Deduce finally that $\mathrm{d}_{\mathrm{b}}^{\infty}\left(\operatorname{Dg} \mathcal{R}\left(X^{\prime}, \ell^{\infty}\right), \operatorname{Dg} \mathcal{R}\left(Y^{\prime}, \ell^{\infty}\right)\right) \leq 2 \varepsilon$.
Hint: relate the Čech and Rips filtrations to each other in $\left(\mathbb{R}^{d}, \ell^{\infty}\right)$.
Question 8. Conclude.

