
Reeb Graph and Mapper

[Singh, Mémoli, Carlsson 2007]

[Reeb 1946]



Motivations

get a higher-level understanding of
the structure of data

visualize topology on
the data directly

avoid paying the
algorithmic price
of persistence

exhibit relations between
clusters, variables, etc.
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principle: summarize the topological structure of a map f : X → R through a graph
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Mapper in the continuous setting

2

Input:

- continuous function f : X → Y

- cover I of im(f) by open intervals: imf ⊆
⋃

I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

(Y = R in this talk)



serves as a proxy for the geometry of the underlying space

there are some variants but this one is the most common

Mapper in practice
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Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

• Compute neighborhood graph G = (P,E)

(intersections materialized
by data points)

- continuous function f : P → Y

- cover I of im(f) by open intervals: imf ⊆
⋃

I∈I I

→ connected cover V

(Y = R in this talk)



in practice, the result may be different from the continuous setting due to the neighborhood graphMapper in practice

3
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δ

G = δ-neighborhood graph

Mf (G, I)



Mapper in applications
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3d shapes classification
[Singh, Mémoli, Carlsson 2007]
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breast cancer subtype identification
[Nicolau et al. 2011]



recovery from spinal cord injuries

Mapper in applications
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[Nielson et al. 2015]



protein folding pathways

Mapper in applications

4[Yao et al. 2009]



Mapper in applications
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[Rucco et al. 2014]

diagnosis of
pulmonary embolism



implicit networks in the US
house of representatives

Mapper in applications
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[Lum et al. 2013]



classification of NBA players

Mapper in applications
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[Alagappan 2012]



Mapper in applications
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Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015

Using Topological Data Analysis for Diagnosis Pulmonary Em-
bolism, Rucco et al., arXiv preprint, 2014

Topological Methods for Exploring Low-density States in
Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009

CD8 T-cell reactivity to islet antigens is unique to type 1 while
CD4 T-cell reactivity exists in both type 1 and type 2 diabetes,
Sarikonda et al., J. Autoimmunity, 2013

Innate and adaptive T cells in asthmatic patients: Relationship
to severity and disease mechanisms, Hinks et al., J. Allergy Clinical
Immunology, 2015



Mapper in applications
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Two types of applications:

• clustering

• feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops



in practice, Mapper is used for 2 purposes: clustering and feature selection1. clustering

compute the Mapper of your data

detect topological patterns (”loops”, ”flares”) / subpopulations

use subpopulations to cluster data

Mapper in applications
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Scheme:



this is just to ascertain that if there is only noise in the data then no flares/loops appear)

in practice, Mapper is used for 2 purposes: clustering and feature selection1. clustering

compute the Mapper of your data

detect topological patterns (”loops”, ”flares”) / subpopulations

use subpopulations to cluster data

→ selection of parameters

→ done by hand in general

→ [Lum et al. 13] use persistence of eccentricity on Mapper graph

→ visualize various features on the Mapper, check subpopulations
for having the same feature level

→ [Lum et al. 13] also use Monte-Carlo simulations with multivari-
ate Gaussian distributions to validate the presence of flares

Mapper in applications
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Scheme:



Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Goal: detect clusters in the US House of Representatives

Points: member of the House

Filters: 1st and 2nd eigenvectors of the SVD of the coordinate matrix

Mapper colored by Republican/Democrat



Number of clusters
for each political
party through the
years

PCA was only able
to show the Republi-
can/Democrat divide

f : 1st and 2nd ev
r = 1/120, g = 22%, k =??



Same scheme: detect new clusters for NBA players (same paper)



2. feature selection

compute the Mapper of your data

detect topological patterns (”loops”, ”flares”)

select features that best discriminate the corresponding subpopulations

Mapper in applications

6

Scheme:



i.e. features such that Dn is small when comparing the empirical cdf of the data points in the feature and the cdf of all the data points

2. feature selection

compute the Mapper of your data

detect topological patterns (”loops”, ”flares”)

select features that best discriminate the corresponding subpopulations

→ selection of parameters

→ done mostly by hand

→ [Lum et al. 13] use persistence of eccentricity on Mapper graph

→ use 2-sample tests (typically Kolmogorov-Smirnov) on
feature(substructure) vs feature(whole data set), then select
features with low p-value (best discriminate subpopulation)

Mapper in applications

6

Scheme:



niveau d’expression des genes des recepteurs d’oestrogene → un niveau bas indique un etat cancereux

parmi les features testees ensuite, le niveau de chemokine explique le mieux la sous-population qui guerit)

Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Goal: detect factors that influence survival after therapy in
breast cancer patients

Points: breast cancer patients that went through specific therapy

Filters: eccentricity

Mapper colored by ESR1 level since it is understood that low-ESR1
groups are correlated to poor prognosis



la cc consideree ne contient que des patients qui ont survecu

f : eccentricity
r = 1/30, g = 33%, k =??



coloring with ESR1 level exhibits subcluster of survivors with low-ESR1
level (lower arm of the ”Y”)

genes with lowest p-value after KS test are the ones responsible for
chemokine

”Y” letter for survivors and ccs for non-survivors indicate structure

coloring with chemokine level confirms this

PCA/Single-linkage
clustering cannot
see this



In all these applications, Mapper has been used a bit like a magical tool. The main problem was the choice of parameters, which was difficult beause: 1) the method is extremely sensitive to the choice of parameters 2) there was no objective measure of quality of the outcome, which could have been used to drive the parameter selection So, what are the parameters?Choice of parameters

7

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

lens | filter
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Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

→ uniform cover I:
- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

lens | filter



Choice of parameters
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→ in practice: trial-and-error

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015



Here is a simple experiment to gain insights into the choice of parameters.Choice of parameters

7

f̂
=
de
ns
ity

est
im
ato

r

f
x =

x-coordinate

Example: P ⊂ R2 sampled from a
known probability distribution



What we see here is that the parameters are not completely independent. First of all, the choice of scale is bound to the choice of function since it depends on the structure of the level sets.Choice of parameters

7
δ = 1% δ = 10% δ = 25%

r = 0.3, g = 20%

f = f̂

f = fx



Meanwhile, the resolution and gain are related to each other.Choice of parameters

7
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We see that some features are more delicate than others. For instance, here the loop is a fairly stable feature, while the central cluster appears alternatively as an independent cluster or as a flare

Meanwhile, the resolution and gain are related to each other.Choice of parameters

7
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Choice of parameters

7

Recent contributions:

→ clarify the roles of r and g in the continuous setting

→ relate discrete and continuous Mappers under conditions on δ

→ introduce metrics between mappers

→ establish stability and convergence results for Mappers

2 approaches:

• connection to topological persistence and representation theory
[Carrière, O. 2016]< [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2008]

• connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2015]
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principle: summarize the topological structure of a map f : X → R through a graph



Reeb Graph
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x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

X
f //

∼

��

R

Rf (X)

<<
R

fX



Reeb Graph

8

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

X
f //

∼

��

R

Rf (X)

<<
R

fX

Prop: Rf (X) is a 1-d stratified space
(graph) e.g. when (X, f) is Morse,
or more generally of Morse type



Reeb Graph

8

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

R
fX

mapper ≡ pixelized Reeb graph

→ build a descriptor for Reeb graphs



Descriptor for Reeb graph

9

Ext+0

Ord+0

Rel−1

Ext−1

DgRf : bag-of-features descriptor for Rf (X):

Ord0Rf ←→ downward branches

Rel1Rf ←→ upward branches

Ext0Rf ←→ trunks (cc)

Ext1Rf ←→ loops

ordinary / relative

extended



Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

10
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Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Ord: appears/dies in sublevels

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels 10



Descriptor for Reeb graph
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Ord+0
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Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Theorem (decomposition): [Crawley-Boevey’12] < · · · < [Gabriel’72]

Every extended persistence module M decomposes as a direct sum:

M ∼=
⊕
I∈I

kI

where each summand kI is an interval module, i.e. kI :=

0
0 // · · · 0 // 0 0 // k 1 // · · · 1 // k 0 // 0 0 // · · · 0 // 0︸ ︷︷ ︸

t∈I

Moreover, the decomposition is essentially unique [Azumaya’51].

10
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Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

ordinary / relative

extended

Theorem (stability): [Bauer, Ge, Wang 2013]

dB(DgRf ,DgRg) ≤ 6 dGH(Rf ,Rg)

10
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Theorem (stability): [Bauer, Ge, Wang 2013]
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Descriptor for Reeb graph
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Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

ordinary / relative

extended

Theorem (stability): [Bauer, Ge, Wang 2013]

dB(DgRf ,DgRg) ≤ 6 dGH(Rf ,Rg)

cost(m)

10



Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

ordinary / relative

extended

Note: dB(Dg ·,Dg ·) is only a pseudometric on Reeb graphs

10



by ”locally” is meant ”locally in the Gromov-Hausdorff distance”

Descriptor for Reeb graph

Ext+0

Ord+0

Rel−1

Ext−1

ordinary / relative

extended

Note: dB(Dg ·,Dg ·) is only a pseudometric on Reeb graphs

Thm: [Carrière, O. 2017]

dB(Dg ·,Dg ·) is locally a metric equivalent to dGH

10
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Descriptor for Mapper

R

Reminder: mapper ≡ pixelized Reeb graph

R
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Def: Given X, f, I:

DgMf :=
(
OrdRf \QOrd

I

)
∪
(
RelRf \QRel

I

)
∪
(
ExtRf \QExt

I

)



Message: each staircase is a union of stairs; each stair is defined from a single interval or pair of intervals in the cover

11

QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

QOrd
I =

⋃
I∈I

Q+

Ĩ∪I+
QExt

I =
⋃

I,J∈I
I∩J ̸=∅

Q−
I∪J

Ĩ
I+

I−

Def: Given X, f, I:

DgMf :=
(
OrdRf \QOrd

I

)
∪
(
RelRf \QRel

I

)
∪
(
ExtRf \QExt

I

)
QRel

I =
⋃
I∈I

Q−
I−∪Ĩ
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Thm: [Carrière, O. 2016]

Dg Mf provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops
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Descriptor for Mapper

Thm: [Carrière, O. 2016]

Dg Mf provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops



thus, before the limit, the bag-of-features signatures of the Mapper and Reeb graph become the same. In fact, we can prove that both combinatorial graphs eventually become quasi-isomorphic.

11

Descriptor for Mapper

Corollary: Dg Mf = Dg Rf whenever the resolution r of I is smaller
than the smallest distance from Dg Rf \∆ to the diagonal ∆.
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Stability of Mapper

Definition: Dg Mf :=
(
OrdRf \QOrd

I
)
∪
(
RelRf \QRel

I
)
∪
(
ExtRf \QExt

I
)

Observation: distance to staircase boundary measures (in-)stability of each
feature of Mf (X, I) w.r.t. perturbations of (X, f, I)
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DgMf DgMg←→

Definition: Given X, I:

dI(DgMf , DgMg) := inf
m

costI(m)

m :

costI(m)

Stability of Mapper
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DgMf DgMg←→

Definition: Given X, I:

dI(DgMf , DgMg) := inf
m

costI(m)

m :

Thm: [Carrière, O. 2016]

For any Morse-type functions f, g : X → R:

dI(DgMf (X, I), DgMg(X, I)) ≤ ∥f − g∥∞

costI(m)

Extensions to:

� perturbations of X

� perturbations of I

Stability of Mapper



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

X̂n ∼ µ⊗n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Statistics via push-forwards
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compared to the previous setup, now we have a ground truth to compare to → no more need for a well-defined mean

basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

X̂n ∼ µ⊗n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Questions:

• Statistical properties of the estimator DgF(X̂n) ?

Statistics via push-forwards
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• Convergence to the ground truth DgF(X) ? Deviation bounds?

[Chazal et al.] [Wasserman et al.]

DgF(X)

F(X)

ground
truth



the problem is now reduced to a classical problem of support estimation in dH

compared to the previous setup, now we have a ground truth to compare to → no more need for a well-defined mean

X̂n ∼ µ⊗n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Stability thm: dB(DgF(X̂n),DgF(X)) ≤ 2dH(X̂n, X) [Chazal et al. 2009/13]

P
(
dB

(
DgF(X̂n),DgF(X),

)
> ε
)
≤ P

(
dH(X̂n, X) >

ε

2

)⇒ for any ε > 0,

Statistics via push-forwards

14

[Chazal et al.] [Wasserman et al.]

DgF(X)

F(X)

ground
truth



The diagram estimator converges in mean to the ground truth diagram at a rate of (log n/n)1/b, where n is the number of data points, and this holds for all possible initial (a,b)-standard probability distributions µ (the constants are independent of the choice of µ)

Whatever the initial (a,b)-standard probability distribution, the diagram estimator converges in probability to the ground truth diagram at an exponential rate in n, where n is the number of data points

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Hyp: µ is (a, b)-standard:

∀x ∈ X, ∀r > 0, µ(B(x, r)) ≥ min(arb, 1)

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

15

P
(
dB

(
DgF(X̂n),DgF(X)

)
> ε
)
≤ 8b

aεb
exp(−naεb)

Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:

sup
µ∈P

E
[
dB

(
DgF(X̂n), DgF(X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator DgF(X̂n) is minimax optimal
(up to logn factors) on the space P of (a, b)-standard probability measures on X.

/ rate of convergence

DgF(X̂n)



Note: the analysis is asymptotic

Confidence regions

16

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(
dB

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

→ confidence region: dB-ball of radius cn(α) around DgF(X̂n)

signal

noise



Note: the analysis is asymptotic

Confidence regions

16

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(
dB

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Note: we already have an inequality of this kind but...

P
(
dB

(
DgF(X̂n),DgF(X)

)
> ε
)
≤ 8b

aεb
exp(−naεb)

unknown



Note: the analysis is asymptotic

up to a rescaling by
√
n, this is the cumulative density function of the empirical measure associated with d∗1, · · · , d∗n

Confidence regions

16

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(
dB

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Bootstrap:

� draw X∗ = X∗
1 , · · · , X∗

n iid from µX̂n
(empirical measure on X̂n)

� compute d∗ = dB

(
DgF(X∗),DgF(X̂n)

)
� repeat N times to get d∗1, · · · , d∗N
� let qα be the (1− α) quantile of 1

N

∑N
i=1 I(

√
nd∗i ≥ t)

Principle [Efron 1979]: variations of DgF(X∗) around DgF(X̂n) are

same as variations of DgF(X̂n) around DgF(X).

(ideally)

basically, the class of distance functions needs to be so-called DonskerNote: requires some conditions on (X, dX , µ), hence the
√
n.



Note: the analysis is asymptotic

up to a rescaling by
√
n, this is the cumulative density function of the empirical measure associated with d∗1, · · · , d∗n

Confidence regions

16

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(
dB

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Bootstrap:

� draw X∗ = X∗
1 , · · · , X∗

n iid from µX̂n
(empirical measure on X̂n)

� compute d∗ = dB

(
DgF(X∗),DgF(X̂n)

)
� repeat N times to get d∗1, · · · , d∗N
� let qα be the (1− α) quantile of 1

N

∑N
i=1 I(

√
nd∗i ≥ t)

Theorem [Balakrishnan et al. 2013] [Chazal et al. 2014]:

lim sup
n→∞

P
(
dB

(
DgF(X̂n),DgF(X)

)
>

qα√
n

)
≤ α.

(in fact)

dH(X
∗, X̂n)
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Questions:

• Statistical properties of the estimator Mf (X̂n, δn, I(gn, rn)) ?

• Convergence to the ground truth Rf (X) in dB? Deviation bounds?

f

I(gn, rn)

Statistics for Mapper

δn



The extra difficulty here is that there are some parameters to tune: δn, rn and gn. In cases where a, b are known, we can choose optimal parameter values.

17

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Theorem [Carrière, Michel, O. 2017]:

If µ is (a, b)-standard, f is c-Lipschitz, δn = 4
(
2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = cδn

gn
,

then ∀ε > 0:

sup
µ∈P

E
[
dB

(
DgMf (X̂n, δn, I(gn, rn)), DgRf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c. Moreover, the estimator DgMf (X̂n, δn, I(gn, rn))
is minimax optimal (up to logn factors) on the space P of (a, b)-standard probability
measures on X.

f

I(gn, rn)

Statistics for Mapper

δn



The extra difficulty here is that there are some parameters to tune: δn, rn and gn. In cases where a, b are known, we can choose optimal parameter values.
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Theorem [Carrière, Michel, O. 2017]:

If µ is (a, b)-standard, f is c-Lipschitz, δn = 4
(
2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = cδn

gn
,

then ∀ε > 0:

sup
µ∈P

E
[
dB

(
DgMf (X̂n, δn, I(gn, rn)), DgRf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b, c. Moreover, the estimator DgMf (X̂n, δn, I(gn, rn))
is minimax optimal (up to logn factors) on the space P of (a, b)-standard probability
measures on X.

f

I(gn, rn)

Statistics for Mapper

δn



Take s(n) = o( n
logn

)

17

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take (sn) =
n

log(n)1+β

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper

δn



With this new value of δn (set up without knowing the constants a, b), the estimator remains minimax optimal up to logn factors. Note that the Lipschitz constant c of f must be known to set up rn...

Take s(n) = o( n
logn

)

17

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take (sn) =
n

log(n)1+β

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper

δn

Theorem [Carrière, Michel, O. 2016]:

If µ is (a, b)-standard, f is c-Lipschitz, δn as above, gn ∈
(
1
3
, 1

2

)
, rn = cδn

gn
,

then ∀ε > 0:

sup
µ∈P

E
[
dB

(
DgMf (X̂n, δn, I(gn, rn)), DgRf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c.



as has been done for persistence diagrams

With this new value of δn (set up without knowing the constants a, b), the estimator remains minimax optimal up to logn factors. Note that the Lipschitz constant c of f must be known to set up rn...

Take s(n) = o( n
logn

)

17

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take (sn) =
n

log(n)1+β

δn := dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Statistics for Mapper

δn

Theorem [Carrière, Michel, O. 2016]:

If µ is (a, b)-standard, f is c-Lipschitz, δn as above, gn ∈
(
1
3
, 1

2

)
, rn = cδn

gn
,

then ∀ε > 0:

sup
µ∈P

E
[
dB

(
DgMf (X̂n, δn, I(gn, rn)), DgRf (X)

)]
≤ C

(
log(n)2+β

n

)1/b

,

where C depends only on a, b, c. → iterate subsampling to get confidence regions



Mapper computed after denoising (density thresholding) with x-coordinate function as filter

synthetic experiments to start with

Mapper computed from scratch with height function, everything is fine

Experiments

18

confidence level: 85%



Same thing here.

Mapper computed with minus the height function → quasi-horizontal branches have confidence intervals intersecting the diagonal (not shown in the diagram)

Experiments

18

confidence level: 85%



1st principal component is used as filter. Mapper structure ok but bootstrap fails (confidence intervals intersect diagonal) due to low number of observations

Miller-Raven diabetes study: two flares corresponding to two groups of diseases

Experiments

18

confidence level: 85%
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