INF556 — Topological Data Analysis

Statistics on Persistence Diagrams

Persistence diagrams as descriptors for data

Pros:

- strong invariance and stability: $d_p(\operatorname{Dg} X, \operatorname{Dg} Y) \leq \operatorname{cst} d_{\operatorname{GH}}(X, Y)$
- information of a different nature
- flexible and versatile

Cons:

- slow to compare
- space of diagrams is not linear
- positive intrinsic curvature

Statistics for persistence diagrams

Statistics:

- signal vs noise discrimination
- convergence rates
- confidence indices/intervals, principal components, etc.

Statistics for persistence diagrams

3 approaches for statistics:

- Fréchet means in diagrams space
- embedding into Hilbert spaces
- push-forwards from data space

Statistics for persistence diagrams

3 approaches for statistics:

- Fréchet means in diagrams space
- embedding into Hilbert spaces
- push-forwards from data space

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates ~> means as minimizers of variance (Fréchet means)

Given diagrams D_1, \cdots, D_n :

$$\bar{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i} \mathrm{d}_{p}(D, D_{i})^{2}$$

Prop.: minimizers do exist

(diagram space is complete and separable)

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates ~> means as minimizers of variance (Fréchet means)

Given diagrams
$$D_1, \dots, D_n$$
:
 $\overline{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_i \mathrm{d}_p (D, \ D_i)^2$

Problem: non-unique argmin, local minima, num. issues (non-convex energy, highly curved space)

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

No coordinates ~> means as minimizers of variance (Fréchet means)

Given diagrams D_1, \dots, D_n : $\overline{D} \in \underset{D}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_i d_p (D, D_i)^2$

barcode distance is a transportation type distance ↔ connection to Optimal Transport

Problem: non-unique argmin, local minima, num. issues (non-convex energy, highly curved space)

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA, clustering (k-means, EM, Mean-Shift, etc.)

OT Approach: recast problem in measure space I

[Lacombe, Cuturi, O. 2018]

$$B \mapsto \mu_B$$

$$B \longrightarrow \int_{a}^{a} \int_{a}^{b} \int_{a}^{b}$$

 \rightsquigarrow use relaxations from Optimal Transport (OT):

measures: $\mu_B \mapsto \mu_B * \mathcal{U}_{[0,\varepsilon]^2}$

[M. Agueh, G. Carlier: "Barycenters in the Wasserstein Space", 2011]

metric:
$$W_{2,\gamma}(\mu_{B_i},\mu_{B_j})^2 := \inf_{\nu} \int ||x-y||^2 d\nu(x,y) + \gamma H(\nu)$$

[M. Cuturi, A. Doucet: "Fast computation of Wasserstein barycenters", 2014]

strictly convex problem
⇒ unique mean
easy to compute

Rank function is defined as $\lambda(x, y) = \operatorname{rank} \iota_x^y$

Boundaries of rank function: $\lambda_i(t) = \sup\{s \ge 0 : \lambda(t - s, t + s) \ge i\}$ Landscape $\Lambda : \mathbb{R}^2 \to \mathbb{R}$ is defined as: $\Lambda(i, t) = \lambda_{\lfloor i \rfloor}(t)$

Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015] $\|\Lambda(Dg) - \Lambda(Dg')\|_{\infty} \le d_{\infty}(Dg, Dg')$

> Λ is Lipschitz hence Borel measurable

Thm: (central limit theorem) [Bubenik 2015] If $\mathbb{E}(\|\Lambda(\mu)\|) < +\infty$ and $\mathbb{E}(\|\Lambda(\mu)\|^2) < +\infty$, then $\sqrt{n} \left(\bar{\Lambda}^n - \mathbb{E}(\Lambda(\mu))\right) \xrightarrow{d} \mathcal{N}(0, \Sigma(\Lambda(\mu))).$

Questions:

- Statistical properties of the estimator $\operatorname{Dg} \mathcal{F}(\widehat{X}_n)$?
- Convergence to the ground truth $Dg \mathcal{F}(X)$? Deviation bounds?

$$\Rightarrow \text{ for any } \varepsilon > 0,$$
$$\mathbb{P}\left(\mathrm{d}_{\infty}\left(\mathrm{Dg}\,\mathcal{F}(\widehat{X}_{n}), \mathrm{Dg}\,\mathcal{F}(X),\right) > \varepsilon\right) \leq \mathbb{P}\left(\mathrm{d}_{\mathrm{H}}(\widehat{X}_{n}, X) > \frac{\varepsilon}{2}\right)$$

Deviation inequality

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^b, 1)$.

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:
If
$$\mu$$
 is (a, b) -standard then for any $\varepsilon > 0$:
 $\mathbb{P}\left(d_{\infty}\left(\operatorname{Dg}\mathcal{F}(\widehat{X}_{n}), \operatorname{Dg}\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b})$

Deviation inequality / rate of convergence

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^b, 1)$.

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:
If
$$\mu$$
 is (a, b) -standard then for any $\varepsilon > 0$:
 $\mathbb{P}\left(d_{\infty}\left(\operatorname{Dg}\mathcal{F}(\widehat{X}_{n}), \operatorname{Dg}\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b})$
Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:
 $\sup_{\mu\in\mathcal{P}}\mathbb{E}\left[d_{\infty}\left(\operatorname{Dg}\mathcal{F}(\widehat{X}_{n}), \operatorname{Dg}\mathcal{F}(X)\right)\right] \leq C\left(\frac{\log n}{n}\right)^{1/b},$

where C depends only on a, b. Moreover, the estimator $Dg \mathcal{F}(\widehat{X}_n)$ is **minimax optimal** (up to a $\log n$ factor) on the space \mathcal{P} of (a, b)-standard probability measures on X. 4

Numerical illustrations

- μ : unif. measure on Lissajous curve X. - \mathcal{F} : distance to X in \mathbb{R}^2 .
- sample k = 300 sets of n points for n = [2100:100:3000].
- compute

$$\widehat{\mathbb{E}}_n = \widehat{\mathbb{E}}[\mathrm{d}_{\infty}(\mathrm{Dg}\,\mathcal{F}(\widehat{X_n}), \mathrm{Dg}\,\mathcal{F}(X))].$$

- plot $\log(\widehat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

Numerical illustrations

- μ : unif. measure on a torus X. - \mathcal{F} : distance to X in \mathbb{R}^3 . - sample k = 300 sets of n points for n = [12000 : 1000 : 21000].

- compute

$$\widehat{\mathbb{E}}_n = \widehat{\mathbb{E}}[\mathrm{d}_{\infty}(\mathrm{Dg}\,\mathcal{F}(\widehat{X_n}), \mathrm{Dg}\,\mathcal{F}(X))].$$

- plot $\log(\widehat{\mathbb{E}}_n)$ as a function of $\log(\log(n)/n)$.

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{Dg} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty}\left(\mathrm{Dg}\,\mathcal{F}(\widehat{X}_n), \mathrm{Dg}\,\mathcal{F}(X) \right) > c_n(\alpha) \right) \le \alpha$$

 \rightarrow confidence region: d_{∞} -ball of radius $c_n(\alpha)$ around $Dg \mathcal{F}(\widehat{X}_n)$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{Dg} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty}\left(\mathrm{Dg}\,\mathcal{F}(\widehat{X}_n), \mathrm{Dg}\,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

Note: we already have an inequality of this kind but...

$$\mathbb{P}\left(\mathrm{d}_{\infty}\left(\mathrm{Dg}\,\mathcal{F}(\widehat{X}_{n}),\mathrm{Dg}\,\mathcal{F}(X)\right) > \varepsilon\right) \leq \frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b})$$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{Dg} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{Dg} \,\mathcal{F}(\widehat{X}_n), \mathrm{Dg} \,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

Bootstrap: (ideally)

- draw $X^* = X_1^*, \cdots, X_n^*$ iid from $\mu_{\widehat{X}_n}$ (empirical measure on \widehat{X}_n)
- compute $d^* = d_{\infty} \left(\operatorname{Dg} \mathcal{F}(X^*), \operatorname{Dg} \mathcal{F}(\widehat{X}_n) \right)$
- repeat N times to get d_1^*, \cdots, d_N^*
- let q_{α} be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^{N} \delta_{d_i^*}$

Principle [Efron 1979]: variations of $Dg \mathcal{F}(X^*)$ around $Dg \mathcal{F}(\widehat{X}_n)$ are same as variations of $Dg \mathcal{F}(\widehat{X}_n)$ around $Dg \mathcal{F}(X)$.

Note: requires some conditions on (X, d_X, μ) ...

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n \to \mathcal{F}(\widehat{X}_n) \to \operatorname{Dg} \mathcal{F}(\widehat{X}_n)$$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\infty} \left(\mathrm{Dg} \,\mathcal{F}(\widehat{X}_n), \mathrm{Dg} \,\mathcal{F}(X) \right) > c_n(\alpha) \right) \leq \alpha$$

Bootstrap: (in fact)

- draw $X^* = X_1^*, \cdots, X_n^*$ iid from $\mu_{\widehat{X}_n}$ (empirical measure on \widehat{X}_n)
- compute $d^* = d_{\infty} \left(Dg \mathcal{F}(X^*), Dg \mathcal{F}(\widehat{X}_n) \right) d_H(X^*, \widehat{X}_n)$

• repeat N times to get
$$d_1^*, \cdots, d_N^*$$

• let q_{α} be the $(1 - \alpha)$ quantile of $\frac{1}{N} \sum_{i=1}^{N} \delta_{d_i^*}$

Theorem [Balakrishnan et al. 2013] + [Chazal et al. 2014]: $\limsup_{n \to \infty} \mathbb{P}\left(d_{\infty}\left(\operatorname{Dg} \mathcal{F}(\widehat{X}_{n}), \operatorname{Dg} \mathcal{F}(X)\right) > q_{\alpha}\right) \leq \alpha.$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^r \to \phi(D_n^1), \cdots, \phi(D_n^r)$$

 \downarrow
empirical mean feature vector $\longrightarrow \overline{v} = \frac{1}{r} \sum_{i=1}^r \phi(D_n^i)$

Goal: given $\alpha \in (0,1)$, estimate $c_n(\alpha) \ge 0$ such that

$$\limsup_{n \to \infty} \mathbb{P} \left(\left\| \bar{v} - \underbrace{\mathbb{E}_{(\phi \circ \text{Dg} \circ \mathcal{F})^*(\mu^{\otimes n})}[v]}_{n \to \infty} \right\|_{\mathcal{H}} > c_n(\alpha) \right) \leq \alpha$$

mean feature vector according to the measure induced by $\mu^{\otimes n}$
(call it $\Lambda_{\mu,n}$ for landscapes)

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^r \to \Lambda(D_n^1), \cdots, \Lambda(D_n^r)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{r} \sum_{i=1}^r \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_r^*$ iid from $\frac{1}{r} \sum_{i=1}^r \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{r} \sum_{i=1}^r \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$
- repeat N times to get d_1^*, \cdots, d_N^*
- let q_{α} be the (1α) quantile of $\frac{1}{N} \sum_{i=1}^{N} \delta_{d_i^*}$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^r \to \Lambda(D_n^1), \cdots, \Lambda(D_n^r)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{r} \sum_{i=1}^r \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_r^*$ iid from $\frac{1}{r} \sum_{i=1}^r \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{r} \sum_{i=1}^r \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$

• repeat N times to get
$$d_1^*, \cdots, d_N^*$$

• let q_{α} be the $(1 - \alpha)$ quantile of $\frac{1}{N} \sum_{i=1}^{N} \delta_{d_i^*}$

Theorem [Chazal et al. 2014]:

$$\limsup_{r \to \infty} \mathbb{P}\left(\left\| \bar{\Lambda} - \Lambda_{\mu, n} \right\|_{\infty} > q_{\alpha} \right) \le \alpha.$$

Setup:
$$(X, d_X, \mu) \to \widehat{X}_n^1, \cdots, \widehat{X}_n^r \to \Lambda(D_n^1), \cdots, \Lambda(D_n^r)$$

 \downarrow
 $\overline{\Lambda} = \frac{1}{r} \sum_{i=1}^r \Lambda(D_n^i)$

Bootstrap with landscapes:

- draw $\Lambda_1^*, \cdots, \Lambda_r^*$ iid from $\frac{1}{r} \sum_{i=1}^r \delta_{\Lambda(D_n^i)}$
- compute $\bar{\Lambda}^* = \frac{1}{r} \sum_{i=1}^r \Lambda_i^*$ and $d^* = \|\bar{\Lambda}^* \bar{\Lambda}\|_{\infty}$

• repeat N times to get
$$d_1^*, \cdots, d_N^*$$

• let q_{α} be the $(1 - \alpha)$ quantile of $\frac{1}{N} \sum_{i=1}^{N} \delta_{d_i^*}$

Theorem [Chazal et al. 2015]:

$$\|\bar{\Lambda} - \Lambda(\operatorname{Dg} \mathcal{F}(X))\|_{\infty} \leq \|\bar{\Lambda} - \Lambda_{\mu,n}\|_{\infty} + \|\Lambda_{\mu,n} - \Lambda(\operatorname{Dg} \mathcal{F}(X))\|_{\infty}$$
variance term
bias term $\leq C \left(\frac{\log n}{an}\right)^{1/b}$ when μ is (a, b) -standard

Subsampling

Setup: $(X, d_X, \mu) \rightarrow \widehat{X}_m$ with m large (e.g. $m \ge 10^6$ or 10^9 or 10^{12})

Subsampling

Setup: $(X, d_X, \mu) \to \widehat{X}_m$ with m large (e.g. $m \ge 10^6$ or 10^9 or 10^{12})

Subsampling with landscapes: Let $n \ll m$

- draw X^* from $\mu_{\widehat{X}_m}^{\otimes n}$ (*n* points iid from empirical measure on \widehat{X}_m)
- compute $\Lambda^* = \Lambda(\operatorname{Dg} \mathcal{F}(X^*))$
- repeat N times to get $\Lambda_1^*,\cdots,\Lambda_N^*$
- compute $\bar{\Lambda}^* = \frac{1}{N} \sum_{i=1}^N \Lambda_i^*$

Subsampling

Setup: $(X, d_X, \mu) \to \widehat{X}_m$ with m large (e.g. $m \ge 10^6$ or 10^9 or 10^{12})

Subsampling with landscapes: Let $n \ll m$

- draw X^* from $\mu_{\widehat{X}_m}^{\otimes n}$ (*n* points iid from empirical measure on \widehat{X}_m)
- compute $\Lambda^* = \Lambda(\operatorname{Dg} \mathcal{F}(X^*))$
- repeat N times to get $\Lambda_1^*,\cdots,\Lambda_N^*$
- compute $\bar{\Lambda}^* = \frac{1}{N} \sum_{i=1}^N \Lambda_i^*$

Theorem [Chazal et al. 2015]:

$$\left\|\Lambda_{\mu_{\widehat{X}_m},n} - \Lambda_{\mu,n}\right\|_{\infty} \le n^{1/p} W_p(\mu_{\widehat{X}_m},\mu)$$

 \to by approximating $\Lambda_{\mu_{\widehat{X}_m},n}$, the empirical mean $\bar{\Lambda}^*$ also approximates $\Lambda_{\mu,n}$

Some applications

Application 1: 3D shapes classification

From N = 100 subsamples of size m = 300

Some applications

Application 2: walking behaviors classification from smartphone accelerometer data

spatial time series (accelerometer data from the smarphone of users).
 no registration/calibration preprocessing step needed to compare!

- statistical analysis based on stability theorem(s):
 - cvgence rates
 - confidence regions (bootstrap, subsampling)
 - stats. on diagrams (Fréchet means [Turner et al. 2012])
 - stats. on feature vectors (landscapes)

