INF556 - Topological Data Analysis

Topological Data Analysis and Machine Learning

The TDA pipeline

Data

Descriptors

Def: p-th diagram distance (extended metric):

$$
\mathrm{d}_{p}(\operatorname{Dgm} f, \operatorname{Dgm} g):=\inf _{\Gamma \subseteq \operatorname{Dgm} f \times \operatorname{Dgm} g} c_{p}(\Gamma)
$$

Def: bottleneck distance:

$$
\mathrm{d}_{\infty}(\operatorname{Dgm} f, \operatorname{Dgm} g):=\lim _{p \rightarrow \infty} \mathrm{~d}_{p}(\operatorname{Dgm} f, \operatorname{Dgm} g)
$$

The TDA pipeline

Vectorization: map diagrams to (possibly infinite) Hilbert space and use kernel trick

The TDA pipeline

Detour: Supervised Machine Learning

Input: n observations + responses $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right) \in X \times Y$

Detour: Supervised Machine Learning

Input: n observations + responses $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right) \in X \times Y$
Goal: build a predictor $f: X \rightarrow Y$ from $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

\mathcal{F} is the class of predictors
$L: X \times X \rightarrow \mathbb{R}$ is the loss function
$\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

\mathcal{F} is the class of predictors
$L: X \times X \rightarrow \mathbb{R}$ is the loss function
$\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

$L\left(y_{i}, f\left(x_{i}\right)\right)$	Name	
$\mathbb{1}_{y_{i} \neq f\left(x_{i}\right)}$	zero-one	\rightarrow Bayes
$\max \left\{0,1-y_{i} f\left(x_{i}\right)\right\}$	hinge	\rightarrow Support Vector Machines
$\exp \left(-y_{i} f\left(x_{i}\right)\right)$	exponential \rightarrow Adaptive boosting	
$\log \left(1+\exp \left(-y_{i} f\left(x_{i}\right)\right)\right)$	logistic	\rightarrow Logistic regression
$\left(y_{i}-f\left(x_{i}\right)\right)^{2}$	squared \rightarrow Least squares	

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

\mathcal{F} is the class of predictors
$L: X \times X \rightarrow \mathbb{R}$ is the loss function
$\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

\rightarrow use regularizer to avoid overfitting

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

\mathcal{F} is the class of predictors
$L: X \times X \rightarrow \mathbb{R}$ is the loss function
$\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

$$
\mathcal{F}=\left\{f_{w}: w \in \mathbb{R}^{d}\right\}
$$

Empirical Risk Minimization

Optimization problem (supervised regression / classification):

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega(f)
$$

\mathcal{F} is the class of predictors
$L: X \times X \rightarrow \mathbb{R}$ is the loss function
$\Omega: \mathcal{F} \rightarrow \mathbb{R}$ is the regularizer

Complexity of the minimization grows with the one of \mathcal{F}
Easy to control when \mathcal{F} is a Reproducing Kernel Hilbert Space

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

Terminology:

- feature space \mathcal{H}, feature map Φ
- feature vector $\Phi(x)$
- kernel $k=\langle\Phi(\cdot), \Phi(\cdot)\rangle_{\mathcal{H}}: X \times X \rightarrow \mathbb{R}$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Terminology:

- feature space \mathcal{H}, feature map Φ
- feature vector $\Phi(x)$

Case X Hilbert space: $\mathcal{H}=X^{*}, \Phi(x)=\langle x, \cdot\rangle_{X}$ Φ isometric isomorphism [Riesz] $\langle\cdot, \cdot\rangle_{\mathcal{H}}:=\left\langle\Phi^{-1}(\cdot), \Phi^{-1}(\cdot)\right\rangle_{X}$

- kernel $k=\langle\Phi(\cdot), \Phi(\cdot)\rangle_{\mathcal{H}}: X \times X \rightarrow \mathbb{R}$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

$$
\rightsquigarrow \Phi(x)=k(x, \cdot)
$$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

Thm: [Moore 1950] $k: X \times X \rightarrow \mathbb{R}$ is a kernel iff it is positive (semi-)definite, i.e. $\forall n \in \mathbb{N}, \forall x_{1}, \cdots, x_{n} \in X$, the Gram matrix $\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}$ is positive semi-definite.

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

Thm: [Moore 1950] $k: X \times X \rightarrow \mathbb{R}$ is a kernel iff it is positive (semi-)definite, i.e. $\forall n \in \mathbb{N}, \forall x_{1}, \cdots, x_{n} \in X$, the Gram matrix $\left(k\left(x_{i}, x_{j}\right)\right)_{i, j}$ is positive semi-definite.
Examples in $X=\left(\mathbb{R}^{d},\langle\cdot, \cdot\rangle\right)$:

- linear: $k(x, y)=\langle x, y\rangle \quad \mathcal{H}=\left(\mathbb{R}^{d}\right)^{*}, \Phi(x)=\langle x, \cdot\rangle$

- Gaussian: $k(x, y)=\exp \left(-\frac{\|x-y\|_{2}^{2}}{2 \sigma^{2}}\right), \sigma>0 . \quad \mathcal{H} \subset L_{2}\left(\mathbb{R}^{d}\right)$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001] Given RKHS \mathcal{H} with kernel k, there is a function $f^{*} \in \mathcal{H}$ minimizing

$$
\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega\left(\|f\|_{\mathcal{H}}\right)
$$

of the form $f^{*}(\cdot)=\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, \cdot\right)$, where $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{R}$.

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^{X}$ Hilbert, with inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
Then, \mathcal{H} is a RKHS on X if $\exists \Phi: X \rightarrow \mathcal{H}$ s.t.:

$$
\forall x \in X, \forall f \in \mathcal{H}, f(x)=\langle f, \Phi(x)\rangle_{\mathcal{H}}
$$

reproducing property

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001]
Given RKHS \mathcal{H} with kernel k, there is a function $f^{*} \in \mathcal{H}$ minimizing

$$
\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\Omega\left(\|f\|_{\mathcal{H}}\right)
$$

of the form $f^{*}(\cdot)=\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, \cdot\right)$, where $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{R}$.

$$
\begin{aligned}
& \rightsquigarrow \quad \underset{\alpha}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)\right)+\Omega\left(\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)\right) \\
& \text { where } \alpha=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \text { and } K=\left(k\left(x_{i}, x_{j}\right)\right)_{i j} \quad \begin{array}{l}
\text { only the } k\left(x_{i}, x_{j}\right) \text { are } \\
\text { required to minimize } \\
\text { (kernel trick) }
\end{array} \\
& \hline
\end{aligned}
$$

Kernel Trick

Building kernels

Three approaches:

- build kernel from kernels (algebraic operations)
- sum of kernels \longleftrightarrow concatenation of feature spaces

$$
k_{1}(x, y)+k_{2}(x, y)=\left\langle\binom{\Phi_{1}(x)}{\Phi_{2}(x)},\binom{\Phi_{1}(y)}{\Phi_{2}(y)}\right\rangle
$$

- product of kernels \longleftrightarrow tensor product of feature spaces

$$
k_{1}(x, y) k_{2}(x, y)=\left\langle\Phi_{1}(x) \Phi_{2}(x)^{T}, \Phi_{1}(y) \Phi_{2}(y)^{T}\right\rangle
$$

Building kernels

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \rightarrow \mathcal{H}$ (vectorization)

Building kernels

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \rightarrow \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971]
If $d: X \times X \rightarrow \mathbb{R}_{+}$symmetric is conditionally negative semidefinite, i.e.:

$$
\forall n \in \mathbb{N}, \forall x_{1}, \cdots, x_{n} \in X, \sum_{i=1}^{n} \alpha_{i}=0 \Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

then $k(x, y)=\exp \left(-\frac{d(x, y)}{2 \sigma^{2}}\right)$ is positive definite for all $\sigma>0$.

Building kernels

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \rightarrow \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971]
If $d: X \times X \rightarrow \mathbb{R}_{+}$symmetric is conditionally negative semidefinite, i.e.:

$$
\forall n \in \mathbb{N}, \forall x_{1}, \cdots, x_{n} \in X, \sum_{i=1}^{n} \alpha_{i}=0 \Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right) \leq 0
$$

then $k(x, y)=\exp \left(-\frac{d(x, y)}{2 \sigma^{2}}\right)$ is positive definite for all $\sigma>0$.

Q: does this apply to persistence diagrams?
A: no, d_{p} is not cnsd

Vectorizations for persistence diagrams

- images [Adams et al. '15]

- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
\rightarrow histograms [Bendich et al. '14]
\rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
\rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
\rightarrow sliced Wasserstein distances [Carrière et al. '17]
- test functions
\rightarrow polynomials [Di Fabio, Ferri '15] [Kališnik '16]

\rightarrow deep sets [Carrière et al. '20]

Theoretical guarantees

	metric				discrete measures				
			polynomials	landscapes					
ambient Hilbert space	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\ell_{2}(\mathbb{R})$	$L_{2}(\mathbb{N} \times \mathbb{R})$	$L_{2}\left(\mathbb{R}^{2}\right)$				
positive (semi-)definiteness	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \leq C\left(\mathrm{~d}_{p}\right)$	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \geq c\left(\mathrm{~d}_{p}\right)$			$\stackrel{N}{2}$	3	$\stackrel{N}{2}$				
injectivity			V	V	V				
universality	3		3	3	V				
algorithmic cost	$\begin{array}{\|l\|} \hline \text { f. map: } O\left(n^{2}\right) \\ \text { kernel: } O(d) \end{array}$	f. map: $O\left(n^{2}\right)$ kernel: $O(d)$	f. map: $O(n d)$ kernel: $O(d)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$				

Theoretical guarantees

	images	metric spaces	polynomials	landscapes	discrete measures				
ambient Hilbert space	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\ell_{2}(\mathbb{R})$	$L_{2}(\mathbb{N} \times \mathbb{R})$	$L_{2}\left(\mathbb{R}^{2}\right)$				
positive (semi-)definiteness	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \leq C\left(\mathrm{~d}_{p}\right)$	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \geq c\left(\mathrm{~d}_{p}\right)$	3		3	3	2				
injectivity			V	V	V				
universality			\sum		V				
algorithmic cost	$\begin{aligned} & \text { f. map: } O\left(n^{2}\right) \\ & \text { kernel: } O(d) \end{aligned}$	f. map: $O\left(n^{2}\right)$ kernel: $O(d)$	f. map: $O(n d)$ kernel: $O(d)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$				

Theoretical guarantees

	metric				discrete measures				
	images	spaces	polynomials	landscapes					
ambient Hilbert space	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\ell_{2}(\mathbb{R})$	$L_{2}(\mathbb{N} \times \mathbb{R})$	$L_{2}\left(\mathbb{R}^{2}\right)$				
positive (semi-)definiteness	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \leq C\left(\mathrm{~d}_{p}\right)$	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \geq c\left(\mathrm{~d}_{p}\right)$	3			3	3				
injectivity			V	V	V				
universality	3		3	2	V				
algorithmic cost	$\begin{aligned} & \text { f. map: } O\left(n^{2}\right) \\ & \text { kernel: } O(d) \end{aligned}$	$\begin{aligned} & \text { f. map: } O\left(n^{2}\right) \\ & \text { kernel: } O(d) \end{aligned}$	f. map: $O(n d)$ kernel: $O(d)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$				

Vectorizations for persistence diagrams

- images [Adams et al. '15]
- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
\rightarrow histograms [Bendich et al. '14]
\rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
\rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
\rightarrow sliced Wasserstein distances [Carrière et al. '17]
- test functions
\rightarrow polynomials [Di Fabio, Ferri '15] [Kališnik '16]

\rightarrow deep sets [Carrière et al. '20]

Persistence Images [Adams et al. 2017]

Persistence Images [Adams et al. 2017]

Discretize plane into one or several grid(s):

For each pixel P, compute $I(P)=\# \operatorname{Dgm} \cap P$
Concatenate all $I(P)$ into a single vector $\mathrm{PI}(\mathrm{Dgm})$

Persistence Images [Adams et al. 2017]

$\begin{aligned} \text { Stability } & \rightarrow \text { weigh points: } w_{t}(x, y)=\text { blur image } \\ & \rightarrow \text { ? } 1\end{aligned}$ (convolve with Gaussian)

Persistence Images [Adams et al. 2017]

Prop: [Adams et al. 2017]

- $\left\|\mathrm{PI}(\mathrm{Dgm})-\mathrm{PI}\left(\mathrm{Dgm}^{\prime}\right)\right\|_{\infty} \leq C\left(w, \phi_{p}\right) \mathrm{d}_{1}\left(\mathrm{Dgm}, \mathrm{Dgm}^{\prime}\right)$
- $\left\|\mathrm{PI}(\mathrm{Dgm})-\mathrm{PI}\left(\mathrm{Dgm}^{\prime}\right)\right\|_{2} \leq \sqrt{d} C\left(w, \phi_{p}\right) \mathrm{d}_{1}\left(\mathrm{Dgm}, \mathrm{Dgm}^{\prime}\right)$

Vectorizations for persistence diagrams

- images [Adams et al. '15]

- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
\rightarrow histograms [Bendich et al. '14]
\rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
\rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
\rightarrow sliced Wasserstein distances [Carrière et al. '17]
- test functions
\rightarrow polynomials [Di Fabio, Ferri '15] [Kališnik '16]

\rightarrow deep sets [Carrière et al. '20]

Convolution-based vectorization

Persistence diagrams as discrete measures:

Convolution-based vectorization

Persistence diagrams as discrete measures:

$\mathbf{P b}: \mu_{D}$ is unstable (points on diagonal disappear)
$w(x):=\arctan \left(c \mathrm{~d}(x, \Delta)^{r}\right), c, r>0$

Convolution-based vectorization

Persistence diagrams as discrete measures:

$\mathbf{P b}: \mu_{D}$ is unstable (points on diagonal disappear)
$w(x):=\arctan \left(c \mathrm{~d}(x, \Delta)^{r}\right), c, r>0$
Def: $\phi(D)$ is the density function of $\mu_{D}^{w} * \mathcal{N}(0, \sigma)$ w.r.t. Lebesgue measure:

$$
\left(\begin{array}{l}
\phi(D):=\frac{1}{\sqrt{2 \pi} \sigma} \sum_{x \in D} \arctan \left(c \mathrm{~d}(x, \Delta)^{r}\right) \exp \left(-\frac{\|\cdot-x\|^{2}}{2 \sigma^{2}}\right) \\
k\left(D, D^{\prime}\right):=\left\langle\phi(D), \phi\left(D^{\prime}\right)\right\rangle_{L_{2}\left(\Delta \times \mathbb{R}_{+}\right)}
\end{array}\right.
$$

Convolution-based vectorization

Persistence diagrams as discrete measures:

- $\left\|\phi(D)-\phi\left(D^{\prime}\right)\right\|_{\mathcal{H}} \leq \operatorname{cst} d_{p}\left(D, D^{\prime}\right)$.
- ϕ is injective and $\exp (k)$ is universal

$$
\left(\begin{array}{l}
\phi(D):=\frac{1}{\sqrt{2 \pi} \sigma} \sum_{x \in D} \arctan \left(c \mathrm{~d}(x, \Delta)^{r}\right) \exp \left(-\frac{\|\cdot-x\|^{2}}{2 \sigma^{2}}\right) \\
k\left(D, D^{\prime}\right):=\left\langle\phi(D), \phi\left(D^{\prime}\right)\right\rangle_{L_{2}\left(\Delta \times \mathbb{R}_{+}\right)}
\end{array}\right.
$$

Convolution-based vectorization

Persistence diagrams as discrete measures:

- $\left\|\phi(D)-\phi\left(D^{\prime}\right)\right\|_{\mathcal{H}} \leq \operatorname{cst} d_{p}\left(D, D^{\prime}\right)$.
- ϕ is injective and $\exp (k)$ is universal

Pb: convolution reduces discriminativity \rightarrow use discrete measure instead

$$
\phi(D):=\frac{1}{\sqrt{2 \pi} \sigma} \sum_{x \in D} \arctan \left(c \mathrm{~d}(x, \Delta)^{r}\right) \exp \left(-\frac{\|\cdot-x\|^{2}}{2 \sigma^{2}}\right)
$$

$k\left(D, D^{\prime}\right):=\left\langle\phi(D), \phi\left(D^{\prime}\right)\right\rangle_{L_{2}\left(\Delta \times \mathbb{R}_{+}\right)}$

Theoretical guarantees

	metric				discrete measures				
	images	spaces	polynomials	landscapes					
ambient Hilbert space	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\left(\mathbb{R}^{d},\\|\cdot\\|_{2}\right)$	$\ell_{2}(\mathbb{R})$	$L_{2}(\mathbb{N} \times \mathbb{R})$	$L_{2}\left(\mathbb{R}^{2}\right)$				
positive (semi-)definiteness	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \leq C\left(\mathrm{~d}_{p}\right)$	V	V	V	V	V				
$\\|\phi(\cdot)-\phi(\cdot)\\|_{\mathcal{H}} \geq c\left(\mathrm{~d}_{p}\right)$	3			3	3				
injectivity			V	V	V				
universality	3		3	2	V				
algorithmic cost	$\begin{aligned} & \text { f. map: } O\left(n^{2}\right) \\ & \text { kernel: } O(d) \end{aligned}$	$\begin{aligned} & \text { f. map: } O\left(n^{2}\right) \\ & \text { kernel: } O(d) \end{aligned}$	f. map: $O(n d)$ kernel: $O(d)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$				

One kernel to rule them all...

Sliced Wasserstein Kernel [Carrière, Cuturi, O. 2017]

No feature map
Provably stable
Provably discriminative
Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

Persistence diagrams as discrete measures (II)

$\mathbf{P b}: \mathrm{d}_{p}\left(D, D^{\prime}\right) \not \not \propto W_{p}\left(\mu_{D}, \mu_{D^{\prime}}\right)\left(W_{p}\right.$ does not even make sense here)

Persistence diagrams as discrete measures (II)

$\mathbf{P b}: \mathrm{d}_{p}\left(D, D^{\prime}\right) \not \not \propto W_{p}\left(\mu_{D}, \mu_{D^{\prime}}\right)\left(W_{p}\right.$ does not even make sense here)
\rightarrow given D, D^{\prime}, let $\quad \bar{\mu}_{D}:=\sum_{x \in D} \delta_{x}+\sum_{y \in D^{\prime}} \delta_{\pi_{\Delta}(y)}$

$$
\bar{\mu}_{D^{\prime}}:=\sum_{y \in D^{\prime}} \delta_{y}+\sum_{x \in D} \delta_{\pi_{\Delta}(x)}
$$

Then, $\mathrm{d}_{p}\left(D, D^{\prime}\right) \leq W_{p}\left(\bar{\mu}_{D}, \bar{\mu}_{D^{\prime}}\right) \leq 2 \mathrm{~d}_{p}\left(D, D^{\prime}\right)$

Persistence diagrams as discrete measures (II)

$\mathbf{P b}: \mathrm{d}_{p}\left(D, D^{\prime}\right) \not \propto W_{p}\left(\mu_{D}, \mu_{D^{\prime}}\right)\left(W_{p}\right.$ does not even make sense here)
\rightarrow given D, D^{\prime}, let $\quad \bar{\mu}_{D}:=\sum_{x \in D} \delta_{x}+\sum_{y \in D^{\prime}} \delta_{\pi_{\Delta}(y)}$

$$
\bar{\mu}_{D^{\prime}}:=\sum_{y \in D^{\prime}} \delta_{y}+\sum_{x \in D} \delta_{\pi_{\Delta}(x)}
$$

Then, $\mathrm{d}_{p}\left(D, D^{\prime}\right) \leq W_{p}\left(\bar{\mu}_{D}, \bar{\mu}_{D^{\prime}}\right) \leq 2 \mathrm{~d}_{p}\left(D, D^{\prime}\right)$

Persistence diagrams as discrete measures (II)

$\mu_{D}:=\sum_{x \in D} \delta_{x}$
$\mathbf{P b}: \mathrm{d}_{p}\left(D, D^{\prime}\right) \not \not \propto W_{p}\left(\mu_{D}, \mu_{D^{\prime}}\right)$ (W_{p} does not even make sense here)
Solution: transfer mass negatively to μ_{D} :

$$
\tilde{\mu}_{D}:=\sum_{x \in D} \delta_{x}-\sum_{x \in D} \delta_{\pi_{\Delta}(x)} \quad \in \mathcal{M}_{0}\left(\mathbb{R}^{2}\right)
$$

\rightarrow signed discrete measure of total mass zero

Persistence diagrams as discrete measures (II)

$\mathbf{P b}: \mathrm{d}_{p}\left(D, D^{\prime}\right) \not \propto W_{p}\left(\mu_{D}, \mu_{D^{\prime}}\right)\left(W_{p}\right.$ does not even make sense here)
Solution: transfer mass negatively to μ_{D} :

$$
\tilde{\mu}_{D}:=\sum_{x \in D} \delta_{x}-\sum_{x \in D} \delta_{\pi_{\Delta}(x)} \quad \in \mathcal{M}_{0}\left(\mathbb{R}^{2}\right)
$$

\rightarrow signed discrete measure of total mass zero
metric: Kantorovich norm $\|\cdot\|_{K}$

Persistence diagrams as discrete measures (II)

Hahn decomposition thm.: For any $\mu \in \mathcal{M}_{0}(X, \Sigma)$ there exist measurable sets P, N such that:
(i) $P \cup N=X$ and $P \cap N=\emptyset$
(ii) $\mu(B) \geq 0$ for every measureable set $B \subseteq P$
(iii) $\mu(B) \leq 0$ for every measureable set $B \subseteq N$

Moreover, the decomposition is essentially unique.

$\forall B \in \Sigma$, let $\mu^{+}(B):=\mu(B \cap P)$ and $\mu^{-}(B):=-\mu(B \cap N) \in \mathcal{M}_{+}(X)$

Def.: $\|\mu\|_{K}:=\mathbf{W}_{\mathbf{1}}\left(\mu^{+}, \mu^{-}\right)$
Prop.: $\forall \mu, \nu \in \mathcal{M}_{0}(X), \quad W_{1}\left(\mu^{+}+\nu^{-}, \nu^{+}+\mu^{-}\right)=\|\mu-\nu\|_{K}$

Persistence diagrams as discrete measures (II)

Hahn decomposition thm.: For any $\mu \in \mathcal{M}_{0}(X, \Sigma)$ there exist measurable sets P, N such that:
(i) $P \cup N=X$ and $P \cap N=\emptyset$
(ii) $\mu(B) \geq 0$ for every measureable set $B \subseteq P$
(iii) $\mu(B) \leq 0$ for every measureable set $B \subseteq N$

Moreover, the decomposition is essentially unique.

$\forall B \in \Sigma$, let $\mu^{+}(B):=\mu(B \cap P)$ and $\mu^{-}(B):=-\mu(B \cap N) \in \mathcal{M}_{+}(X)$
Def.: $\|\mu\|_{K}:=\mathbf{W}_{\mathbf{1}}\left(\mu^{+}, \mu^{-}\right)$
Prop.: $\forall \mu, \nu \in \mathcal{M}_{0}(X), \quad W_{1}\left(\mu^{+}+\nu^{-}, \nu^{+}+\mu^{-}\right)=\|\mu-\nu\|_{K}$ for persistence diagrams:

$$
W_{1}\left(\bar{\mu}_{D}, \bar{\mu}_{D^{\prime}}\right)=\left\|\tilde{\mu}_{D}-\tilde{\mu}_{D^{\prime}}\right\|_{K}
$$

A Wasserstein Gaussian kernel for PDs?

Thm.: [Kimeldorf, Wahba 1971]
If $d: X \times X \rightarrow \mathbb{R}_{+}$symmetric is conditionally negative semidefinite, i.e.:
$\forall n \in \mathbb{N}, \forall x_{1}, \cdots, x_{n} \in X, \sum_{i=1}^{n} \alpha_{i}=0 \Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} d\left(x_{i}, x_{j}\right) \leq 0$,
then $k(x, y):=\exp \left(-\frac{d(x, y)}{2 \sigma^{2}}\right)$ is positive semidefinite.
$\mathrm{Pb}: W_{1}$ is not cnsd, neither is d_{1}
Solutions:

- relax the measures (e.g. convolution)
- relax the metric (e.g. regularization, slicing)

Sliced Wasserstein metric

Special case: $X=\mathbb{R}, \mu, \nu$ discrete measures of mass n
$\mu:=\sum_{i=1}^{n} \delta_{x_{i}}, \quad \nu:=\sum_{i=1}^{n} \delta_{y_{i}}$
Sort the atoms of μ, ν along the real line: $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for all i
Then: $W_{1}(\mu, \nu)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=\left\|\left(x_{1}, \cdots, x_{n}\right)-\left(y_{1}, \cdots, y_{n}\right)\right\|_{1}$

Sliced Wasserstein metric

Special case: $X=\mathbb{R}, \mu, \nu$ discrete measures of mass n
$\mu:=\sum_{i=1}^{n} \delta_{x_{i}}, \quad \nu:=\sum_{i=1}^{n} \delta_{y_{i}}$
Sort the atoms of μ, ν along the real line: $x_{i} \leq x_{i+1}$ and $y_{i} \leq y_{i+1}$ for all i
Then: $W_{1}(\mu, \nu)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=\left\|\left(x_{1}, \cdots, x_{n}\right)-\left(y_{1}, \cdots, y_{n}\right)\right\|_{1}$

$\rightarrow W_{1}$ is cnsd and easy to compute (same with $\|\cdot\|_{K}$ for signed measures)

Sliced Wasserstein metric

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$,

$$
S W_{1}(\mu, \nu):=\frac{1}{2 \pi} \int_{\theta \in \mathbb{S}^{1}} W_{1}\left(\pi_{\theta} \# \mu, \pi_{\theta} \# \nu\right) d \theta
$$

where $\pi_{\theta}=$ orthogonal projection onto line passing through origin with angle θ.

\rightarrow from integral geometry: $\int_{\operatorname{Gr}(1,2)} \cdots$

Sliced Wasserstein metric

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$,

$$
S W_{1}(\mu, \nu):=\frac{1}{2 \pi} \int_{\theta \in \mathbb{S}^{1}} W_{1}\left(\pi_{\theta} \# \mu, \pi_{\theta} \# \nu\right) d \theta
$$

where $\pi_{\theta}=$ orthogonal projection onto line passing through origin with angle θ.

Props: (inherited from W_{1} over \mathbb{R}) [Rabin, Peyré, Delon, Bernot 2011]

- satisfies the axioms of a metric
- well-defined barycenters, fast to compute via stochastic gradient descent, etc.
- conditionally negative semidefinite

Sliced Wasserstein kernel

Def: Given $\sigma>0$, for any $\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$:

$$
k_{S W}(\mu, \nu):=\exp \left(-\frac{S W_{1}(\mu, \nu)}{2 \sigma^{2}}\right)
$$

Corollary: [Kolouri, Zou, Rohde](from $S W$ cnsd) $k_{S W}$ is positive semidefinite.

Sliced Wasserstein kernel

Def: Given $\sigma>0$, for any $\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$:

$$
k_{S W}(\mu, \nu):=\exp \left(-\frac{S W_{1}(\mu, \nu)}{2 \sigma^{2}}\right)
$$

Corollary: [Kolouri, Zou, Rohde](from $S W$ cnsd) $k_{S W}$ is positive semidefinite.
\rightarrow application to persistence diagrams:

$$
\begin{aligned}
D & \mapsto \mu_{D}
\end{aligned}:=\sum_{x \in D} \delta_{x}, ~ \mapsto \tilde{\mu}_{D}:=\mu_{D}-\pi_{\Delta} \# \mu_{D}
$$

$$
\begin{aligned}
& S W_{1}\left(D, D^{\prime}\right):=\int_{\theta \in \mathcal{S}^{1}}\left\|\pi_{\theta} \# \tilde{\mu}_{D}-\pi_{\theta} \# \tilde{\mu}_{D^{\prime}}\right\|_{K} d \theta \\
& k_{S W}\left(D, D^{\prime}\right):=\exp \left(-\frac{S W_{1}\left(D, D^{\prime}\right)}{2 \sigma^{2}}\right)
\end{aligned}
$$

Sliced Wasserstein kernel

Def: Given $\sigma>0$, for any $\mu, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{2}\right)$:

$$
k_{S W}(\mu, \nu):=\exp \left(-\frac{S W_{1}(\mu, \nu)}{2 \sigma^{2}}\right)
$$

Corollary: [Kolouri, Zou, Rohde](from $S W$ cnsd) $k_{S W}$ is positive semidefinite.
\rightarrow application to persistence diagrams:

$$
\begin{aligned}
D & \mapsto \mu_{D}
\end{aligned}:=\sum_{x \in D} \delta_{x}, ~ \mapsto \tilde{\mu}_{D}:=\mu_{D}-\pi_{\Delta} \# \mu_{D}
$$

$$
\begin{aligned}
& S W_{1}\left(D, D^{\prime}\right):=\int_{\theta \in \mathcal{S}^{1}}\left\|\pi_{\theta} \# \tilde{\mu}_{D}-\pi_{\theta} \# \tilde{\mu}_{D^{\prime}}\right\|_{K} d \theta \\
& k_{S W}\left(D, D^{\prime}\right):=\exp \left(-\frac{S W_{1}\left(D, D^{\prime}\right)}{2 \sigma^{2}}\right) \\
& \text { - positive semidefinite } \\
& \text { - simple and fast to compute }
\end{aligned}
$$

Sliced Wasserstein kernel

Thm.: [Carrière, Cuturi, O. 2017]
The metrics d_{1} and $S W_{1}$ on the space \mathcal{D}_{N} of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D^{\prime} \in \mathcal{D}_{N}$,

$$
\frac{1}{2+4 N(2 N-1)} d_{1}\left(D, D^{\prime}\right) \leq S W_{1}\left(D, D^{\prime}\right) \leq 2 \sqrt{2} d_{1}\left(D, D^{\prime}\right)
$$

\rightarrow application to persistence diagrams:

$$
\begin{aligned}
D & \mapsto \mu_{D}
\end{aligned}:=\sum_{x \in D} \delta_{x}, ~ \mapsto \tilde{\mu}_{D}:=\mu_{D}-\pi_{\Delta} \# \mu_{D}
$$

$$
\begin{aligned}
& S W_{1}\left(D, D^{\prime}\right):=\int_{\theta \in \mathcal{S}^{1}}\left\|\pi_{\theta} \# \tilde{\mu}_{D}-\pi_{\theta} \# \tilde{\mu}_{D^{\prime}}\right\|_{K} d \theta \\
& k_{S W}\left(D, D^{\prime}\right):=\exp \left(-\frac{S W_{1}\left(D, D^{\prime}\right)}{2 \sigma^{2}}\right)
\end{aligned}
$$

Sliced Wasserstein kernel

Thm.: [Carrière, Cuturi, O. 2017]
The metrics d_{1} and $S W_{1}$ on the space \mathcal{D}_{N} of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D^{\prime} \in \mathcal{D}_{N}$,

$$
\frac{1}{2+4 N(2 N-1)} d_{1}\left(D, D^{\prime}\right) \leq S W_{1}\left(D, D^{\prime}\right) \leq 2 \sqrt{2} d_{1}\left(D, D^{\prime}\right)
$$

Corollary: the feature map ϕ associated with $k_{S W}$ is weakly metric-preserving: $\exists g, h$ nonzero except at 0 such that $g \circ d_{1} \leq\|\phi(\cdot)-\phi(\cdot)\|_{\mathcal{H}} \leq h \circ d_{1}$.

Metric distortion in practice

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples
Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples
Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape
(training data)

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples
Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Error rates (\%):

	TDA	geometry $/$ stats	TDA + geometry/stats
Human	26.0	21.3	$\mathbf{1 1 . 3}$
Airplane	27.4	18.7	$\mathbf{9 . 3}$
Ant	7.7	9.7	$\mathbf{1 . 5}$
FourLeg	27.0	25.6	$\mathbf{1 5 . 8}$
Octopus	14.8	5.5	$\mathbf{3 . 4}$
Bird	28.0	24.8	$\mathbf{1 3 . 5}$
Fish	20.4	20.9	$\mathbf{7 . 7}$

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+r y_{n}\left(1-y_{n}\right) \quad \bmod 1 \\
y_{n+1}=y_{n}+r x_{n+1}\left(1-x_{n+1}\right) \quad \bmod 1
\end{array}\right.
$$

$$
\text { Label }=1
$$

Label $=2$

Label $=3$

Label $=5$

Label $=4$

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+r y_{n}\left(1-y_{n}\right) \quad \bmod 1 \\
y_{n+1}=y_{n}+r x_{n+1}\left(1-x_{n+1}\right) \quad \bmod 1
\end{array}\right.
$$

Accuracies (\%) using only TDA descriptors (kernels on barcodes):

	k_{PSS}	k_{PWG}	k_{SW}
Orbit	64.0 ± 0.0	78.7 ± 0.0	$\mathbf{8 3 . 7} \pm 1.1$

Running times (in seconds on N-sized parameter space from 100 orbits):

	$k_{\text {PSS }}$	$k_{\text {PWG }}$	$k_{\text {SW }}$
Orbit	$N \times 9183.4 \pm 65.6$	$N \times 69.2 \pm 0.9$	$385.8 \pm 0.2+N C$

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]
\rightarrow apply degree-0 persistence on 1st sign component

Label $=$ Canvas

Label $=$ Carpet
Label $=$ Tile

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]
\rightarrow apply degree-0 persistence on 1st sign component

Accuracies (\%) using only TDA descriptors (kernels on barcodes):

| | $k_{\text {PSS }}$ | $k_{\text {PWG }}$ | $k_{\text {SW }} \boldsymbol{4}$ |
| :--- | :--- | :--- | :--- | (PDs as discrete measures)

Running times (in seconds on N-sized parameter space from 100 orbits):

	$k_{\text {PSS }}$	$k_{\text {PWG }}$	$k_{\text {SW }}$
Orbit	$N \times 10337.4 \pm 140.5$	$N \times 45.9 \pm 0.6$	$126.4 \pm 0.2+N C$

Back to the TDA pipeline

Thm (Rademacher): pipeline is differentiable almost everywhere

Back to the TDA pipeline

Thm (Rademacher): pipeline is differentiable almost everywhere

Questions:

- class of differentiability?
- derivatives? chain rule?
- non-differentiablity set?

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix

	1	2	3	4	5	6	7
1				$*$		$*$	
2				$*$	$*$		
3					$*$	$*$	
4							$*$
5							$*$
6							$*$
7							

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

	1	2	3	4	5	6	7
1				$*$		$*$	
2				$*$	$*$		
3					$*$	$*$	
4							$*$
5							$*$
6							$*$
7							

	1	2	3	4	5	6	7
1				$*$			
2				1	$*$		
3					1		
4							$*$
5							$*$
6							1
7							

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

\bigcirc pivots pair up simplices \rightarrow finite intervals: $[2,4),[3,5),[6,7)$
\square unpaired simplices \rightarrow infinite intervals: $[1,+\infty)$

	1	2	3	4	5	6	7
1				$*$		$*$	
2				$*$	$*$		
3					$*$	$*$	
4							$*$
5							$*$
6							$*$
7							

	1	2	3	4	5	6	7
1				$*$			
2				1	$*$		
3					1		
4							$*$
5							$*$
6							1
7							

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

Key observations:

- pairing depends only on simplex (pre-)order induced by f
- under fixed pairing, barcode endpoints depend linearly on f-values

3					$*$	$*$	
4							$*$
5							$*$
6							$*$
7							

3					1		
4							$*$
5							$*$
6							1
7							

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

The persistence algorithm

Input: $f: X \rightarrow \mathbb{R}$ where X finite simplicial complex and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

Mathematical formulation LLeggonie et al '21| [Gariere e tal

X : fixed simplicial complex with m simplices

Filter (X) : affine cone of filter functions on X

Prop: $p \circ$ Pers is piecewise affine, with an affine underlying partition of Filter (X).

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams
p : lexicographic ordering of bars / q : pairing of consecutive coordinates
$q \circ p=\mathrm{id}_{\mathrm{Bar}}$

Mathematical formulation [Leygonie et al. '21] [Carrière et al.

X : fixed simplicial complex with m simplices

Filter (X) : affine cone of filter functions on X

Pers: persistence map (algorithm)

Prop: $p \circ$ Pers is piecewise affine, with an affine underlying partition of Filter (X).

Consequence: if F is semialgebraic or subanalytic, then so is $p \circ$ Pers o F.

Bar: space of persistence barcodes / diagrams
p : lexicographic ordering of bars / q : pairing of consecutive coordinates
F : parametrized family of filter functions

Mathematical formulation [Leygonie et al. '21] [Carrière et al.

X : fixed simplicial complex with m simplices

Filter (X) : affine cone of filter functions on X

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams

Prop: $p \circ$ Pers is piecewise affine, with an affine underlying partition of Filter (X).

Consequence: if $\mathcal{L} \circ V \circ q$ is also semialgebraic or subanalytic, then so is $\mathcal{L} \circ V \circ$ Pers oF
p : lexicographic ordering of bars / q : pairing of consecutive coordinates
F : parametrized family of filter functions $\quad V$: vectorization $\quad \mathcal{L}$: loss function

Mathematical formulation [Leygonie et al. '21] [Carrière et al. '21]

X : fixed simplicial complex with m simplices

Filter (X) : affine cone of filter functions on X

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams
p : lexicographic ordering of bars / q : pairin
F : parametrized family of filter functions
q : pairin

Application to inverse problems [Gameiro et al. 16]

Point cloud continuation
Goal: given a labeled point cloud $P=\left\{p_{1}, \cdots, p_{n}\right\} \subset \mathbb{R}^{d}$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

Application to inverse problems [Gameio ectal. 16]

Point cloud continuation

Goal: given a labeled point cloud $P=\left\{p_{1}, \cdots, p_{n}\right\} \subset \mathbb{R}^{d}$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- [from 2016] order on X induced by f is stable when P is generic (all distances differ)

Application to inverse problems [Gameio ectal. 16]

Point cloud continuation

Goal: given a labeled point cloud $P=\left\{p_{1}, \cdots, p_{n}\right\} \subset \mathbb{R}^{d}$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- [from 2016] order on X induced by f is stable when P is generic (all distances differ)
- [from 2021] $p \circ$ Pers $\circ F$ is semialgebraic, and genericity $\Rightarrow P \in$ top-dimensional stratum

Application to inverse problems [Gameio ectal. 16]

Point cloud continuation

Goal: given a labeled point cloud $P=\left\{p_{1}, \cdots, p_{n}\right\} \subset \mathbb{R}^{d}$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- [from 2016] order on X induced by f is stable when P is generic (all distances differ)
- [from 2021] $p \circ$ Pers $\circ F$ is semialgebraic, and genericity $\Rightarrow P \in$ top-dimensional stratum
- apply inverse function theorem to $p \circ$ Pers $\circ F$

Application to inverse problems [Gameiro etal 16]

Point cloud continuation

Goal: given a labeled point cloud $P=\left\{p_{1}, \cdots, p_{n}\right\} \subset \mathbb{R}^{d}$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- application to the study of the rigidity of glass [Hiraoka et al. '16]

liquid silica

amorphous silica

crystalline silica

Towards nonsmooth optimization

Prop: When $\Phi=\mathcal{L} \circ V \circ$ Pers $\circ F: \mathcal{M} \rightarrow \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined Clarke subdifferential:

$$
\partial \Phi(x):=\operatorname{Conv}\left\{\lim _{x^{\prime} \rightarrow x} \nabla \Phi\left(x^{\prime}\right) \mid \Phi \text { differentiable at } x^{\prime}\right\} .
$$

Towards nonsmooth optimization

Prop: When $\Phi=\mathcal{L} \circ V \circ$ Pers $\circ F: \mathcal{M} \rightarrow \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined Clarke subdifferential:

$$
\partial \Phi(x):=\operatorname{Conv}\left\{\lim _{x^{\prime} \rightarrow x} \nabla \Phi\left(x^{\prime}\right) \mid \Phi \text { differentiable at } x^{\prime}\right\} .
$$

Stochastic subgradient descent step:

where $g_{k} \in \partial \Phi\left(x_{k}\right)$ (subgradient).

Towards nonsmooth optimization

Prop: When $\Phi=\mathcal{L} \circ V \circ$ Pers $\circ F: \mathcal{M} \rightarrow \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined Clarke subdifferential:

$$
\partial \Phi(x):=\operatorname{Conv}\left\{\lim _{x^{\prime} \rightarrow x} \nabla \Phi\left(x^{\prime}\right) \mid \Phi \text { differentiable at } x^{\prime}\right\} .
$$

Stochastic subgradient descent step:

where $g_{k} \in \partial \Phi\left(x_{k}\right)$ (subgradient).

Thm: [Davis et al. '20]
Suppose Φ is definable (e.g. semiagebraic or subanalytic) and locally Lipschitz. Then, under standard conditions on the parameters, almost surely the limit points of the iterates of stochastic subgradient descent are critical for Φ and the sequence $\left\{\Phi\left(x_{k}\right)\right\}_{k}$ converges.

Example: image binarization [Carriere et al. '21]

Input: greyscaled image $I:\{1, \cdots, n\}^{2} \rightarrow[0,1]$.
Output: image $J:\{1, \cdots, n\}^{2} \rightarrow\{0,1\}$

Example: image binarization [Carriere et al. '21]

Input: greyscaled image $I:\{1, \cdots, n\}^{2} \rightarrow[0,1]$.
Output: image $J:\{1, \cdots, n\}^{2} \rightarrow\{0,1\}$

Image at epoch 3000

- minimize $\|J-I\|_{2}^{2}+\sum_{1 \leq i, j \leq n} \min \{|J(i, j)|,|1-J(i, j)|\}$

Example: image binarization [Carriere et al. '21]

Input: greyscaled image $I:\{1, \cdots, n\}^{2} \rightarrow[0,1]$.
Output: image $J:\{1, \cdots, n\}^{2} \rightarrow\{0,1\}$

- $X=$ grid $\{1, \cdots, n\}^{2}$ triangulated
- $F(I)=$ upper-star filtration of I

$$
\begin{aligned}
& F(I)(v)=I(v) \\
& F(I)(\{u, v\})=\min \{I(u), I(v)\}
\end{aligned}
$$

- minimize $\|J-I\|_{2}^{2}+\sum_{1 \leq i, j \leq n} \min \{|J(i, j)|,|1-J(i, j)|\}$

Example: image binarization [Carriere et al. '21]

Input: greyscaled image $I:\{1, \cdots, n\}^{2} \rightarrow[0,1]$.
Output: image $J:\{1, \cdots, n\}^{2} \rightarrow\{0,1\}$

- $X=\operatorname{grid}\{1, \cdots, n\}^{2}$ triangulated

- $F(I)=$ upper-star filtration of I

$$
\begin{aligned}
& F(I)(v)=I(v) \\
& F(I)(\{u, v\})=\min \{I(u), I(v)\}
\end{aligned}
$$

$-\mathcal{L} \circ V(D)=\sum_{(x, y) \in D_{0}}(y-x)^{2}$

- minimize $\|J-I\|_{2}^{2}+\sum_{1 \leq i, j \leq n} \min \{|J(i, j)|,|1-J(i, j)|\}+\mathcal{L} \circ V$ Pers $\circ F$

Example: image binarization [Carriere et al. '21]

Input: greyscaled image $I:\{1, \cdots, n\}^{2} \rightarrow[0,1]$.
Output: image $J:\{1, \cdots, n\}^{2} \rightarrow\{0,1\}$

- $X=\operatorname{grid}\{1, \cdots, n\}^{2}$ triangulated

- $F(I)=$ upper-star filtration of I

$$
\begin{aligned}
& F(I)(v)=I(v) \\
& F(I)(\{u, v\})=\min \{I(u), I(v)\}
\end{aligned}
$$

$-\mathcal{L} \circ V(D)=\sum_{(x, y) \in D_{0}}(y-x)^{2}$

- minimize $\|J-I\|_{2}^{2}+\mathcal{L} \circ V$ Pers $\circ F$

Example: orientation selection [Carriere et al. '21]

Input: MNIST dataset
Goal: given two classes $0 \leq i \neq j \leq 9$, optimize orientation $\theta_{i, j}$ so that RF performs best at distinguishing between the two classes from the barcodes of the projections along $\theta_{i, j}$.

Example: orientation selection [Carrière et al. '21]

Input: MNIST dataset
Goal: given two classes $0 \leq i \neq j \leq 9$, optimize orientation $\theta_{i, j}$ so that RF performs best at distinguishing between the two classes from the barcodes of the projections along $\theta_{i, j}$.

Results:

Dataset	Baseline	Before	After	Difference	Dataset	Baseline	Before	After	Difference
vs01	100.0	61.3	99.0	+37.6	vs26	99.7	98.8	98.2	-0.6
vs02	99.4	98.8	97.2	-1.6	vs28	99.1	96.8	96.8	0.0
vs06	99.4	87.3	98.2	+10.9	vs29	99.1	91.6	98.6	+7.0
vs09	99.4	86.8	98.3	+11.5	vs34	99.8	99.4	99.1	-0.3
vs16	99.7	89.0	97.3	+8.3	vs36	99.7	99.3	99.3	-0.1
vs19	99.6	84.8	98.0	+13.2	vs37	98.9	94.9	97.5	+2.6
vs24	99.4	98.7	98.7	0.0	vs57	99.7	90.5	97.2	+6.7
vs25	99.4	80.6	97.2	+16.6	vs79	99.1	85.3	96.9	+11.5

vsij: class i vs. class j
baseline: RF applied to raw images

