Topological Data Analysis and Machine Learning

The TDA pipeline

Topological

$$\longrightarrow$$

Persistence

Descriptors

Def: *p*-th diagram distance (extended metric):

$$d_p(\operatorname{Dgm} f, \operatorname{Dgm} g) := \inf_{\Gamma \subseteq \operatorname{Dgm} f \times \operatorname{Dgm} g} c_p(\Gamma)$$

Def: bottleneck distance:

$$d_{\infty}(\operatorname{Dgm} f, \operatorname{Dgm} g) := \lim_{p \to \infty} d_p(\operatorname{Dgm} f, \operatorname{Dgm} g)$$

The TDA pipeline

Vectorization: map diagrams to (possibly infinite) Hilbert space and use kernel trick

The TDA pipeline

Topological

Persistence

Vectorization

Data

Descriptors

Vectors

[Chen et al. '19]

Detour: Supervised Machine Learning

Input: n observations + responses $(x_1, y_1), \dots, (x_n, y_n) \in X \times Y$

classification

X = images, $Y = \{\text{cat, dog, horse}\}$

Detour: Supervised Machine Learning

Input: n observations + responses $(x_1, y_1), \dots, (x_n, y_n) \in X \times Y$

Goal: build a predictor $f: X \to Y$ from $(x_1, y_1), \cdots, (x_n, y_n)$

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

 \mathcal{F} is the class of predictors

 $L: X \times X \to \mathbb{R}$ is the loss function

 $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(f)$$

 \mathcal{F} is the class of predictors

 $L: X \times X \to \mathbb{R}$ is the loss function

 $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

$L(y_i, f(x_i))$	Name	
$1_{y_i \neq f(x_i)}$	zero-one	\rightarrow Bayes
$\max\{0, 1 - y_i f(x_i)\}$	hinge	\rightarrow Support Vector Machines
$\exp(-y_i f(x_i))$	exponential	ightarrow Adaptive boosting
$\log(1 + \exp(-y_i f(x_i)))$	logistic	ightarrow Logistic regression
$(y_i - f(x_i))^2$	squared	ightarrow Least squares

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

 \mathcal{F} is the class of predictors

 $L: X \times X \to \mathbb{R}$ is the loss function

 $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

→ use regularizer to avoid overfitting

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$$

 \mathcal{F} is the class of predictors

 $L: X \times X \to \mathbb{R}$ is the loss function

 $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

$$\mathcal{F} = \{ f_w : w \in \mathbb{R}^d \}$$

	$\Omega(w)$	Name
•	$ w _{2}^{2}$	ℓ_2 (Tikhonov) $ ightarrow$ differ
	$\ w\ _1$	ℓ_1 (LASSO) $ ightarrow$ sparse
	$\alpha \ w\ _2^2 + (1-\alpha)\ w\ _1$	elastic net

Optimization problem (supervised regression / classification):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(f)$$

 \mathcal{F} is the class of predictors

 $L: X \times X \to \mathbb{R}$ is the loss function

 $\Omega: \mathcal{F} \to \mathbb{R}$ is the **regularizer**

Complexity of the minimization grows with the one of ${\mathcal F}$

Easy to control when \mathcal{F} is a Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

 $\forall x \in X$, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Terminology:

- ullet feature space ${\mathcal H}$, feature map Φ
- feature vector $\Phi(x)$
- kernel $k = \langle \Phi(\cdot), \Phi(\cdot) \rangle_{\mathcal{H}} : X \times X \to \mathbb{R}$

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Terminology:

- feature space \mathcal{H} , feature map Φ
- feature vector $\Phi(x)$

• kernel $k = \langle \Phi(\cdot), \Phi(\cdot) \rangle_{\mathcal{H}} : X \times X \to \mathbb{R}$

Case
$$X$$
 Hilbert space:

$$\mathcal{H}=X^*$$
 , $\Phi(x)=\langle x,\cdot
angle_X$

 Φ isometric isomorphism [Riesz] $\langle \cdot, \cdot \rangle_{\mathcal{H}} := \langle \Phi^{-1}(\cdot), \Phi^{-1}(\cdot) \rangle_{X}$

$$\langle \cdot, \cdot \rangle_{\mathcal{H}} := \langle \Phi^{-1}(\cdot), \Phi^{-1}(\cdot) \rangle_X$$

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

$$\leadsto \Phi(x) = k(x, \cdot)$$

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

Thm: [Moore 1950] $k: X \times X \to \mathbb{R}$ is a kernel iff it is *positive* (semi-)definite, i.e. $\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X$, the Gram matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite.

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Prop: Given X, the kernel of a RKHS on X is unique. Conversely, k is the kernel of at most one RKHS on X.

Thm: [Moore 1950] $k: X \times X \to \mathbb{R}$ is a kernel iff it is *positive* (semi-)definite, i.e. $\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X$, the Gram matrix $(k(x_i, x_i))_{i,j}$ is positive semi-definite.

Examples in $X=(\mathbb{R}^d,\langle\cdot,\cdot\rangle)$:

- linear: $k(x,y) = \langle x,y \rangle$ $\mathcal{H} = (\mathbb{R}^d)^*, \ \Phi(x) = \langle x,\cdot \rangle$
- $\bullet \text{ polynomial: } k(x,y) = (1+\langle x,y\rangle)^N = \sum_{n_1+\dots+n_d=N} \left(\begin{smallmatrix} N \\ n_1,\dots,n_d \end{smallmatrix} \right) \underbrace{x_1^{n_1}\dots x_d^{n_d}}_{\textstyle \propto \Phi(x)} y_1^{n_1}\dots y_d^{n_d}$
- Gaussian: $k(x,y)=\exp\left(-\frac{\|x-y\|_2^2}{2\sigma^2}\right)$, $\sigma>0$. $\mathcal{H}\subset L_2(\mathbb{R}^d)$

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001] Given RKHS \mathcal{H} with kernel k, there is a function $f^* \in \mathcal{H}$ minimizing

$$\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(||f||_{\mathcal{H}})$$

of the form $f^*(\cdot) = \sum_{j=1}^n \alpha_j k(x_j, \cdot)$, where $\alpha_1, \dots, \alpha_n \in \mathbb{R}$.

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.:

$$\forall x \in X$$
, $\forall f \in \mathcal{H}$, $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

reproducing property

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001] Given RKHS \mathcal{H} with kernel k, there is a function $f^* \in \mathcal{H}$ minimizing

$$\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(||f||_{\mathcal{H}})$$

of the form $f^*(\cdot) = \sum_{j=1}^n \alpha_j k(x_j, \cdot)$, where $\alpha_1, \dots, \alpha_n \in \mathbb{R}$.

$$\Rightarrow \operatorname{arg\,min}_{\alpha} \frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \sum_{j=1}^{n} \alpha_{j} k(x_{j}, x_{i})\right) + \Omega\left(\sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})\right)$$

where
$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix}$$
 and $K = (k(x_i, x_j))_{ij}$

only the $k(x_i, x_j)$ are required to minimize (kernel trick)

Kernel Trick

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels \(\lorsigma\) concatenation of feature spaces

$$k_1(x,y) + k_2(x,y) = \left\langle \begin{pmatrix} \Phi_1(x) \\ \Phi_2(x) \end{pmatrix}, \begin{pmatrix} \Phi_1(y) \\ \Phi_2(y) \end{pmatrix} \right\rangle$$

- product of kernels ←→ tensor product of feature spaces

$$k_1(x,y)k_2(x,y) = \langle \Phi_1(x)\Phi_2(x)^T, \Phi_1(y)\Phi_2(y)^T \rangle$$

Three approaches:

- build kernel from kernels (algebraic operations)
- ullet define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)

Three approaches:

- build kernel from kernels (algebraic operations)
- ullet define explicit feature map $\Phi:X o \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971]

If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.:

$$\forall n \in \mathbb{N}, \ \forall x_1, \dots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$$

then $k(x,y) = \exp\left(-\frac{d(x,y)}{2\sigma^2}\right)$ is positive definite for all $\sigma > 0$.

Three approaches:

- build kernel from kernels (algebraic operations)
- ullet define explicit feature map $\Phi:X o \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971]

If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.:

$$\forall n \in \mathbb{N}, \ \forall x_1, \dots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$$

then $k(x,y) = \exp\left(-\frac{d(x,y)}{2\sigma^2}\right)$ is positive definite for all $\sigma > 0$.

Q: does this apply to persistence diagrams?

A: no, d_p is **not** cnsd

Vectorizations for persistence diagrams

• images [Adams et al. '15]

- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
 - \rightarrow histograms [Bendich et al. '14]

- \rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
- \rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
- → sliced Wasserstein distances [Carrière et al. '17]
- test functions
 - → polynomials [Di Fabio, Ferri '15] [Kališnik '16]
 - \rightarrow deep sets [Carrière et al. '20]

Theoretical guarantees

		metric			discrete
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$\left\ (\mathbb{R}^d, \ .\ _2) ight\ $	$\left\ \left(\mathbb{R}^d, \ .\ _2 ight)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C(d_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c(\mathbf{d}_p)$	×	×	*	*	×
injectivity	×	×			
universality	×			×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

Theoretical guarantees

metric images spaces polynomials landscapes				
$(\mathbb{R}^d,\ .\ _2)$	$(\mathbb{R}^d,\ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
✓				
×	×	×	×	×
×	×			
×	×	×	×	
f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$
	$(\mathbb{R}^d,\ .\ _2)$	images spaces $ (\mathbb{R}^d, . _2) (\mathbb{R}^d, . _2) $ $ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	imagesspacespolynomials $(\mathbb{R}^d, . _2)$ $(\mathbb{R}^d, . _2)$ $\ell_2(\mathbb{R})$ \checkmark <tr< td=""><td>imagesspacespolynomialslandscapes$(\mathbb{R}^d, \ .\ _2)$$(\mathbb{R}^d, \ .\ _2)$$\ell_2(\mathbb{R})$$L_2(\mathbb{N} \times \mathbb{R})$$\checkmark$$\uparrow$</td></tr<>	imagesspacespolynomialslandscapes $(\mathbb{R}^d, \ .\ _2)$ $(\mathbb{R}^d, \ .\ _2)$ $\ell_2(\mathbb{R})$ $L_2(\mathbb{N} \times \mathbb{R})$ \checkmark \uparrow

Theoretical guarantees

	images	metric spaces	polynomials	landscapes	discrete measures
ambient Hilbert space	$(\mathbb{R}^d,\ .\ _2)$	$(\mathbb{R}^d,\ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C(\mathbf{d}_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c(d_p)$	×	×	×	×	*
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

Vectorizations for persistence diagrams

• images [Adams et al. '15]

- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
 - \rightarrow histograms [Bendich et al. '14]

- \rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
- \rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
- → sliced Wasserstein distances [Carrière et al. '17]
- test functions
 - → polynomials [Di Fabio, Ferri '15] [Kališnik '16]
 - \rightarrow deep sets [Carrière et al. '20]

Discretize plane into one or several grid(s):

For each pixel P, compute $I(P) = \# \operatorname{Dgm} \cap P$

Concatenate all I(P) into a single vector PI(Dgm)

Stability
$$\rightarrow$$
 weigh points: $w_t(x,y) = \underbrace{\hspace{1cm}}^1$
 \rightarrow blur image (convolve with Gaussian)

Prop: [Adams et al. 2017]

- $\|\operatorname{PI}(\operatorname{Dgm}) \operatorname{PI}(\operatorname{Dgm}')\|_{\infty} \le C(w, \phi_p) \operatorname{d}_1(\operatorname{Dgm}, \operatorname{Dgm}')$
- $\|\operatorname{PI}(\operatorname{Dgm}) \operatorname{PI}(\operatorname{Dgm}')\|_2 \le \sqrt{d}C(w, \phi_p) d_1(\operatorname{Dgm}, \operatorname{Dgm}')$

Vectorizations for persistence diagrams

• images [Adams et al. '15]

- finite metric spaces [Carrière et al. '15]
- landscapes [Bubenik '12] [Bubenik, Dłotko '15]
- discrete measures:
 - \rightarrow histograms [Bendich et al. '14]

- \rightarrow convolutions [Chepushtanova et al. '15] [Kusano et al. '16-'17]
- \rightarrow heat diffusion [Reininghaus et al. '15] [Kwit et al. '15]
- → sliced Wasserstein distances [Carrière et al. '17]
- test functions
 - → polynomials [Di Fabio, Ferri '15] [Kališnik '16]
 - \rightarrow deep sets [Carrière et al. '20]

Convolution-based vectorization

Persistence diagrams as discrete measures:

Convolution-based vectorization

Persistence diagrams as discrete measures:

Pb: μ_D is unstable (points on diagonal disappear)

$$w(x) := \arctan(c d(x, \Delta)^r), c, r > 0$$

Convolution-based vectorization

Persistence diagrams as discrete measures:

Pb: μ_D is unstable (points on diagonal disappear)

$$w(x) := \arctan(c d(x, \Delta)^r), c, r > 0$$

Def: $\phi(D)$ is the density function of $\mu_D^w * \mathcal{N}(0, \sigma)$ w.r.t. Lebesgue measure:

$$\left(\begin{array}{l} \phi(D) := \frac{1}{\sqrt{2\pi}\sigma} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right) \\ k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)} \end{array} \right)$$

Convolution-based vectorization

Persistence diagrams as discrete measures:

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

- $\|\phi(D) \phi(D')\|_{\mathcal{H}} \leq \operatorname{cst} d_p(D, D')$.
- ullet ϕ is injective and $\exp(k)$ is universal

$$\left(\begin{array}{l} \phi(D) := \frac{1}{\sqrt{2\pi}\sigma} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right) \\ k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)} \end{array} \right)$$

Convolution-based vectorization

Persistence diagrams as discrete measures:

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

- $\|\phi(D) \phi(D')\|_{\mathcal{H}} \leq \operatorname{cst} d_{p}(D, D').$
- ullet ϕ is injective and $\exp(k)$ is universal

Pb: convolution reduces discriminativity \rightarrow use discrete measure instead

$$\left(\begin{array}{l} \phi(D) := \frac{1}{\sqrt{2\pi}\sigma} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right) \\ k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)} \end{array} \right)$$

Theoretical guarantees

	images	metric spaces	polynomials	landscapes	discrete measures
ambient Hilbert space	$(\mathbb{R}^d,\ .\ _2)$	$(\mathbb{R}^d,\ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C(\mathbf{d}_p)$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c(d_p)$	×	×	×	×	×
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

One kernel to rule them all...

Sliced Wasserstein Kernel [Carrière, Cuturi, O. 2017]

No feature map

Provably stable

Provably discriminative

Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

$$\mu_D := \sum_{x \in D} \delta_x$$

Pb: $d_p(D, D') \not\propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

$$\mu_D := \sum_{x \in D} \delta_x$$

Pb: $d_p(D, D') \not\propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

$$ightarrow$$
 given D,D' , let
$$\bar{\mu}_D:=\sum_{x\in D}\delta_x+\sum_{y\in D'}\delta_{\pi_{\Delta}(y)}$$

$$\bar{\mu}_{D'}:=\sum_{y\in D'}\delta_y+\sum_{x\in D}\delta_{\pi_{\Delta}(x)}$$

Then, $d_p(D, D') \leq W_p(\bar{\mu}_D, \bar{\mu}_{D'}) \leq 2 d_p(D, D')$

$$\mu_D := \sum_{x \in D} \delta_x$$

Pb: $d_p(D,D') \not\propto W_p(\mu_D,\mu_{D'})$ (W_p does not even make sense here)

$$o$$
 given D,D' , let
$$ar{\mu}_D:=\sum_{x\in D}\delta_x+\sum_{y\in D'}\delta_{\pi_{\Delta}(y)} \ ar{\mu}_{D'}:=\sum_{y\in D'}\delta_y+\sum_{x\in D}\delta_{\pi_{\Delta}(x)} \$$

Then, $d_p(D,D') \leq W_p(\bar{\mu}_D,\bar{\mu}_{D'}) \leq 2 d_p(D,D')$ Pb: $\bar{\mu}_D$ depends on D'

$$\mu_D := \sum_{x \in D} \delta_x$$

Pb: $d_p(D, D') \not\propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

Solution: transfer mass negatively to μ_D :

$$\tilde{\mu}_D := \sum_{x \in D} \delta_x - \sum_{x \in D} \delta_{\pi_{\Delta}(x)} \in \mathcal{M}_0(\mathbb{R}^2)$$

→ signed discrete measure of total mass zero

$$\mu_D := \sum_{x \in D} \delta_x$$

Pb: $d_p(D, D') \not\propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

Solution: transfer mass negatively to μ_D :

$$\tilde{\mu}_D := \sum_{x \in D} \delta_x - \sum_{x \in D} \delta_{\pi_{\Delta}(x)} \in \mathcal{M}_0(\mathbb{R}^2)$$

→ signed discrete measure of total mass zero

metric: Kantorovich norm $\|\cdot\|_K$

Hahn decomposition thm.: For any $\mu \in \mathcal{M}_0(X, \Sigma)$ there exist measurable sets P, N such that:

(i)
$$P \cup N = X$$
 and $P \cap N = \emptyset$

(ii)
$$\mu(B) \geq 0$$
 for every measureable set $B \subseteq P$

(iii)
$$\mu(B) \leq 0$$
 for every measureable set $B \subseteq N$

Moreover, the decomposition is essentially unique.

$$\forall B \in \Sigma$$
, let $\mu^+(B) := \mu(B \cap P)$ and $\mu^-(B) := -\mu(B \cap N) \in \mathcal{M}_+(X)$

Def.:
$$\|\mu\|_K := \mathbf{W_1}(\mu^+, \mu^-)$$

Prop.:
$$\forall \mu, \nu \in \mathcal{M}_0(X)$$
, $W_1(\mu^+ + \nu^-, \nu^+ + \mu^-) = \|\mu - \nu\|_K$

Hahn decomposition thm.: For any $\mu \in \mathcal{M}_0(X, \Sigma)$ there exist measurable sets P, N such that:

(i)
$$P \cup N = X$$
 and $P \cap N = \emptyset$

(ii)
$$\mu(B) \geq 0$$
 for every measureable set $B \subseteq P$

(iii)
$$\mu(B) \leq 0$$
 for every measureable set $B \subseteq N$

Moreover, the decomposition is essentially unique.

$$\forall B \in \Sigma$$
, let $\mu^+(B) := \mu(B \cap P)$ and $\mu^-(B) := -\mu(B \cap N) \in \mathcal{M}_+(X)$

Def.:
$$\|\mu\|_K := \mathbf{W_1}(\mu^+, \mu^-)$$

Prop.:
$$\forall \mu, \nu \in \mathcal{M}_0(X)$$
, $W_1(\underline{\mu^+ + \nu^-}, \underline{\nu^+ + \mu^-}) = \|\mu - \nu\|_K$ for persistence diagrams: $\overline{\mu_D}$ $\overline{\mu_{D'}}$

$$W_1(\bar{\mu}_D, \bar{\mu}_{D'}) = \|\tilde{\mu}_D - \tilde{\mu}_{D'}\|_K$$

A Wasserstein Gaussian kernel for PDs?

Thm.: [Kimeldorf, Wahba 1971]

If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.:

$$\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$$

then $k(x,y) := \exp\left(-\frac{d(x,y)}{2\sigma^2}\right)$ is positive semidefinite.

Pb: W_1 is not cnsd, neither is d_1

Solutions:

- relax the measures (e.g. convolution)
- relax the metric (e.g. regularization, slicing)

Special case: $X=\mathbb{R}$, μ,ν discrete measures of mass n

$$\mu := \sum_{i=1}^n \delta_{x_i}, \quad \nu := \sum_{i=1}^n \delta_{y_i}$$

Sort the atoms of μ, ν along the real line: $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all i

Then:
$$W_1(\mu, \nu) = \sum_{i=1}^n |x_i - y_i| = ||(x_1, \dots, x_n) - (y_1, \dots, y_n)||_1$$

Special case: $X=\mathbb{R}$, μ,ν discrete measures of mass n

$$\mu := \sum_{i=1}^n \delta_{x_i}, \quad \nu := \sum_{i=1}^n \delta_{y_i}$$

Sort the atoms of μ, ν along the real line: $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all i

Then:
$$W_1(\mu, \nu) = \sum_{i=1}^n |x_i - y_i| = ||(x_1, \dots, x_n) - (y_1, \dots, y_n)||_1$$

 $\to W_1$ is consd and easy to compute (same with $\|\cdot\|_K$ for signed measures)

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu, \nu) := \frac{1}{2\pi} \int_{\theta \in \mathbb{S}^1} W_1(\pi_\theta \# \mu, \, \pi_\theta \# \nu) \, d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

$$ightarrow$$
 from integral geometry: $\int_{\mathrm{Gr}(1,2)} \cdots$

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu, \nu) := \frac{1}{2\pi} \int_{\theta \in \mathbb{S}^1} W_1(\pi_\theta \# \mu, \, \pi_\theta \# \nu) \, d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

Props: (inherited from W_1 over \mathbb{R}) [Rabin, Peyré, Delon, Bernot 2011]

- satisfies the axioms of a metric
- well-defined barycenters, fast to compute via stochastic gradient descent, etc.
- conditionally negative semidefinite

Def: Given $\sigma > 0$, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:

$$k_{SW}(\mu, \nu) := \exp\left(-\frac{SW_1(\mu, \nu)}{2\sigma^2}\right)$$

Corollary: [Kolouri, Zou, Rohde](from SW cnsd) k_{SW} is positive semidefinite.

Def: Given $\sigma > 0$, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:

$$k_{SW}(\mu,\nu) := \exp\left(-\frac{SW_1(\mu,\nu)}{2\sigma^2}\right)$$

Corollary: [Kolouri, Zou, Rohde](from SW cnsd) k_{SW} is positive semidefinite.

 \rightarrow application to persistence diagrams:

$$D \mapsto \mu_D := \sum_{x \in D} \delta_x$$
$$\mapsto \tilde{\mu}_D := \mu_D - \pi_\Delta \# \mu_D$$

$$k_{SW}(D, D') := \exp\left(-\frac{SW_1(D, D')}{2\sigma^2}\right)$$

Def: Given $\sigma > 0$, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:

$$k_{SW}(\mu,\nu) := \exp\left(-\frac{SW_1(\mu,\nu)}{2\sigma^2}\right)$$

Corollary: [Kolouri, Zou, Rohde](from SW cnsd) k_{SW} is positive semidefinite.

 \rightarrow application to persistence diagrams:

$$D \mapsto \mu_D := \sum_{x \in D} \delta_x$$
$$\mapsto \tilde{\mu}_D := \mu_D - \pi_\Delta \# \mu_D$$

$$k_{SW}(D,D'):=\exp\left(-\frac{SW_1(D,D')}{2\sigma^2}\right) \quad \ \ \, \text{- positive semidefinite}$$
 - simple and fast to compute

Thm.: [Carrière, Cuturi, O. 2017]

The metrics d_1 and SW_1 on the space \mathcal{D}_N of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D' \in \mathcal{D}_N$,

$$\frac{1}{2+4N(2N-1)} d_1(D,D') \leq SW_1(D,D') \leq 2\sqrt{2} d_1(D,D')$$

→ application to persistence diagrams:

$$D \mapsto \mu_D := \sum_{x \in D} \delta_x$$
$$\mapsto \tilde{\mu}_D := \mu_D - \pi_\Delta \# \mu_D$$

$$SW_1(D, D') := \int_{\theta \in S^1} \|\pi_{\theta} \# \tilde{\mu}_D - \pi_{\theta} \# \tilde{\mu}_{D'} \|_K d\theta$$

$$k_{SW}(D, D') := \exp\left(-\frac{SW_1(D, D')}{2\sigma^2}\right)$$

Thm.: [Carrière, Cuturi, O. 2017]

The metrics d_1 and SW_1 on the space \mathcal{D}_N of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D' \in \mathcal{D}_N$,

$$\frac{1}{2+4N(2N-1)} d_1(D,D') \le SW_1(D,D') \le 2\sqrt{2} d_1(D,D')$$

Corollary: the feature map ϕ associated with k_{SW} is weakly metric-preserving: $\exists g, h$ nonzero except at 0 such that $g \circ d_1 \leq \|\phi(\cdot) - \phi(\cdot)\|_{\mathcal{H}} \leq h \circ d_1$.

Metric distortion in practice

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

(training data)

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Error rates (%):

	TDA	geometry/stats	TDA + geometry/stats
Human	26.0	21.3	11.3
Airplane	27.4	18.7	9.3
Ant	7.7	9.7	1.5
FourLeg	27.0	25.6	15.8
Octopus	14.8	5.5	3.4
Bird	28.0	24.8	13.5
Fish	20.4	20.9	7.7

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$\begin{cases} x_{n+1} &= x_n + r y_n (1 - y_n) \mod 1 \\ y_{n+1} &= y_n + r x_{n+1} (1 - x_{n+1}) \mod 1 \end{cases}$$

Application to supervised orbits classification

Goal: classify orbits of *linked twisted map*, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

$$\begin{cases} x_{n+1} = x_n + r y_n (1 - y_n) \mod 1 \\ y_{n+1} = y_n + r x_{n+1} (1 - x_{n+1}) \mod 1 \end{cases}$$

Accuracies (%) using only TDA descriptors (kernels on barcodes):

	k_{PSS}	k_{PWG}	k_{SW}	
Orbit	64.0 ± 0.0	78.7 ± 0.0	83.7 ± 1.1	(PDs as discrete measures)

Running times (in seconds on N-sized parameter space from 100 orbits):

	k_{PSS}	k_{PWG}	$k_{ m SW}$
Orbit	$N \times 9183.4 \pm 65.6$	$N \times 69.2 \pm 0.9$	$385.8 \pm 0.2 + NC$

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]

 \rightarrow apply degree-0 persistence on 1st sign component

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]

 \rightarrow apply degree-0 persistence on 1st sign component

Accuracies (%) using only TDA descriptors (kernels on barcodes):

	k_{PSS}	k_{PWG}	k_{SW}	
Orbit	98.7 ± 0.06	96.7 ± 0.4	96.1 ± 0.1	(PDs as discrete measures)

Running times (in seconds on N-sized parameter space from 100 orbits):

	k_{PSS}	$k_{ m PWG}$	$k_{ m SW}$
Orbit	$N \times 10337.4 \pm 140.5$	$N \times 45.9 \pm 0.6$	$126.4 \pm 0.2 + NC$

Back to the TDA pipeline

Thm (Rademacher): pipeline is differentiable almost everywhere

Back to the TDA pipeline

Thm (Rademacher): pipeline is differentiable almost everywhere

Questions:

- class of differentiability?
- derivatives? chain rule?
- non-differentiablity set?

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\le f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\leq f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Output: boundary matrix

	1	2	3	$\mid 4 \mid$	5	6	7
1				*		*	
$\frac{2}{3}$				*	*		
					*	*	
$\overline{4}$							*
5							*
6							*
7							

Input: $f:X \to \mathbb{R}$ where X finite simplicial complex

and $f(\tau) \leq f(\sigma)$ for all faces $\tau \subseteq \sigma \in X$

Output: boundary matrix in column-echelon form

	1	2	3	4	5	6	7
1				*		*	
$\frac{2}{3}$				*	*		
3					*	*	
$\overline{4}$							*
5							*
6							*
7							

	1	$\mid 2 \mid$	3	$\mid 4 \mid$	5	6	7
1				*			
3				1	*		
3					1		
4							*
$\frac{4}{5}$							*
6							1
7							

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\leq f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Output: boundary matrix in column-echelon form

- pivots pair up simplices \rightarrow finite intervals: [2,4), [3,5), [6,7)
- unpaired simplices ightarrow infinite intervals: $[1,+\infty)$

	1	$\mid 2 \mid$	3	$\mid 4 \mid$	5	6	7
1				*		*	
$\frac{2}{3}$				*	*		
					*	*	
$\overline{4}$							*
5							*
6							*
7							

	1	2	3	$\mid 4 \mid$	5	6	7
1				*			
2				(1)	*		
$\begin{array}{c} 2 \\ \hline 3 \\ \hline 4 \end{array}$					1		
4							*
5							*
6							1
7							

The persistence algorithm

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\leq f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Output: boundary matrix in column-echelon form

Key observations: \rightarrow finite intervals: [2,4), [3,5), [6,7)

- ullet pairing depends only on simplex (pre-)order induced by f
- under fixed pairing, barcode endpoints depend linearly on

Т	J -	vail	162		*	
2			*	*		
3				*	*	
4						*
5						*
6						*
7						

		*		
2		(1)	*	
3			\bigcirc	
4				*
5				*
6				(1)
7				

The persistence algorithm

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\leq f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Output: boundary matrix in column-echelon form

The persistence algorithm

Input: $f\colon X\to\mathbb{R}$ where X finite simplicial complex and $f(\tau)\leq f(\sigma)$ for all faces $\tau\subseteq\sigma\in X$

Output: boundary matrix in column-echelon form

X: fixed simplicial complex with m simplices

 $\mathsf{Filter}(X)$: affine cone of filter functions on X

Prop: $p \circ \text{Pers}$ is piecewise affine, with an affine underlying partition of Filter(X).

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams

p: lexicographic ordering of bars / q: pairing of consecutive coordinates

$$q \circ p = \mathrm{id}_{\mathsf{Bar}}$$

X: fixed simplicial complex with m simplices

 $\mathsf{Filter}(X)$: affine cone of filter functions on X

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams

Prop: $p \circ \text{Pers}$ is piecewise affine, with an affine underlying partition of Filter(X).

Consequence: if F is semialgebraic or subanalytic, then so is $p \circ \operatorname{Pers} \circ F$.

p: lexicographic ordering of bars p: lexicographic ordering of bars p: lexicographic ordering of bars p: p: pairing of consecutive coordinates

F: parametrized family of filter functions

X: fixed simplicial complex with m simplices

Filter(X): affine cone of filter functions on X

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams

Prop: $p \circ \text{Pers}$ is piecewise affine, with an affine underlying partition of Filter(X).

Consequence: if $\mathcal{L} \circ V \circ q$ is also semialgebraic or subanalytic, then so is $\mathcal{L} \circ V \circ$ $\operatorname{Pers} \circ F$

p: lexicographic ordering of bars / q: pairing of consecutive coordinates

F: parametrized family of filter functions V: vectorization \mathcal{L} : loss function

X: fixed simplicial complex with m simplices

Filter(X): affine cone of filter functions on X

Pers: persistence map (algorithm)

Bar: space of persistence barcodes / diagrams

p: lexicographic ordering of bars / q: pairing

F: parametrized family of filter functions

Prop: $p \circ \text{Pers}$ is piecewise affine, with an affine underlying partition of Filter(X).

Consequence: if $\mathcal{L} \circ V \circ q$ is also semialgebraic or subanalytic, then so is $\mathcal{L} \circ V \circ$ Pers $\circ F$, with chain rule on top strata:

$$\nabla_m \left(\mathcal{L} \circ V \circ \operatorname{Pers} \circ F \right) =$$

 $\nabla_{p \circ \operatorname{Pers} \circ F(m)} \left(\mathcal{L} \circ V \circ q \right) \mathbf{J}_m \left(p \circ \operatorname{Pers} \circ F \right)$

V: vectorization \mathcal{L} : loss function

Point cloud continuation

Goal: given a labeled point cloud $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

Point cloud continuation

Goal: given a labeled point cloud $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

▶ [from 2016] order on X induced by f is stable when P is generic (all distances differ)

Point cloud continuation

Goal: given a labeled point cloud $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- ▶ [from 2016] order on X induced by f is stable when P is generic (all distances differ)
- ▶ [from 2021] $p \circ \text{Pers} \circ F$ is semialgebraic, and genericity $\Rightarrow P \in \text{top-dimensional stratum}$

Point cloud continuation

Goal: given a labeled point cloud $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

- ▶ [from 2016] order on X induced by f is stable when P is generic (all distances differ)
- ▶ [from 2021] $p \circ \operatorname{Pers} \circ F$ is semialgebraic, and genericity $\Rightarrow P \in \mathsf{top}\text{-dimensional stratum}$
- ▶ apply inverse function theorem to $p \circ \operatorname{Pers} \circ F$

Point cloud continuation

Goal: given a labeled point cloud $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and its corresponding barcode/diagram D, describe changes in P under small perturbations of D.

▶ application to the study of the rigidity of glass [Hiraoka et al. '16]

Towards nonsmooth optimization

Prop: When $\Phi = \mathcal{L} \circ V \circ \operatorname{Pers} \circ F \colon \mathcal{M} \to \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined *Clarke subdifferential*:

$$\partial \Phi(x) := \operatorname{Conv}\{\lim_{x' \to x} \nabla \Phi(x') \mid \Phi \text{ differentiable at } x'\}.$$

Towards nonsmooth optimization

Prop: When $\Phi = \mathcal{L} \circ V \circ \operatorname{Pers} \circ F \colon \mathcal{M} \to \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined *Clarke subdifferential*:

$$\partial \Phi(x) := \operatorname{Conv}\{\lim_{x' \to x} \nabla \Phi(x') \mid \Phi \text{ differentiable at } x'\}.$$

Stochastic subgradient descent step:

iterates
$$x_{k+1} := x_k - \alpha_k (g_k + \zeta_k),$$
 centered noise

where $g_k \in \partial \Phi(x_k)$ (subgradient).

Towards nonsmooth optimization

Prop: When $\Phi = \mathcal{L} \circ V \circ \operatorname{Pers} \circ F \colon \mathcal{M} \to \mathbb{R}$ is definable (e.g. semialgebraic or subanalytic), it has a well-defined *Clarke subdifferential*:

$$\partial \Phi(x) := \operatorname{Conv} \{ \lim_{x' \to x} \nabla \Phi(x') \mid \Phi \text{ differentiable at } x' \}.$$

Stochastic subgradient descent step:

iterates
$$x_{k+1} := x_k - lpha_k (g_k + \zeta_k),$$
 centered noise

where $g_k \in \partial \Phi(x_k)$ (subgradient).

Thm: [Davis et al. '20]

Suppose Φ is definable (e.g. semiagebraic or subanalytic) and locally Lipschitz. Then, under standard conditions on the parameters, almost surely the limit points of the iterates of stochastic subgradient descent are critical for Φ and the sequence $\{\Phi(x_k)\}_k$ converges.

Input: greyscaled image $I: \{1, \dots, n\}^2 \to [0, 1]$.

Input: greyscaled image $I: \{1, \dots, n\}^2 \to [0, 1]$.

▶ minimize
$$||J - I||_2^2 + \sum_{1 \le i,j \le n} \min\{|J(i,j)|, |1 - J(i,j)|\}$$

Input: greyscaled image $I: \{1, \dots, n\}^2 \to [0, 1]$.

- $ightharpoonup X = \operatorname{grid} \{1, \cdots, n\}^2 \text{ triangulated}$
- ightharpoonup F(I) = upper-star filtration of I

▶ minimize
$$||J - I||_2^2 + \sum_{1 \le i,j \le n} \min\{|J(i,j)|, |1 - J(i,j)|\}$$

Input: greyscaled image $I: \{1, \dots, n\}^2 \to [0, 1]$.

Output: image $J: \{1, \dots, n\}^2 \to \{0, 1\}$

- $ightharpoonup X = \operatorname{grid} \{1, \cdots, n\}^2 \text{ triangulated}$
- ightharpoonup F(I) = upper-star filtration of I

$$\blacktriangleright \mathcal{L} \circ V(D) = \sum_{(x,y) \in D_0} (y - x)^2$$

▶ minimize $||J - I||_2^2 + \sum_{1 \le i,j \le n} \min\{|J(i,j)|, |1 - J(i,j)|\} + \mathcal{L} \circ V \operatorname{Pers} \circ F$

Input: greyscaled image $I: \{1, \dots, n\}^2 \to [0, 1]$.

- $ightharpoonup X = \operatorname{grid} \{1, \cdots, n\}^2 \text{ triangulated}$
- ightharpoonup F(I) = upper-star filtration of I

$$\blacktriangleright \mathcal{L} \circ V(D) = \sum_{(x,y) \in D_0} (y - x)^2$$

Example: orientation selection [Carrière et al. '21]

Input: MNIST dataset

Goal: given two classes $0 \le i \ne j \le 9$, optimize orientation $\theta_{i,j}$ so that RF performs best at distinguishing between the two classes from the barcodes of the projections along $\theta_{i,j}$.

Example: orientation selection [Carrière et al. '21]

Input: MNIST dataset

Goal: given two classes $0 \le i \ne j \le 9$, optimize orientation $\theta_{i,j}$ so that RF performs best at distinguishing between the two classes from the barcodes of the projections along $\theta_{i,j}$.

Results:

Dataset	Baseline	Before	After	Difference	Dataset	Baseline	Before	After	Difference
vs01	100.0	61.3	99.0	+37.6	vs26	99.7	98.8	98.2	-0.6
vs02	99.4	98.8	97.2	-1.6	vs28	99.1	96.8	96.8	0.0
vs06	99.4	87.3	98.2	+10.9	vs29	99.1	91.6	98.6	+7.0
vs09	99.4	86.8	98.3	+11.5	vs34	99.8	99.4	99.1	-0.3
vs16	99.7	89.0	97.3	+8.3	vs36	99.7	99.3	99.3	-0.1
vs19	99.6	84.8	98.0	+13.2	vs37	98.9	94.9	97.5	+2.6
vs24	99.4	98.7	98.7	0.0	vs57	99.7	90.5	97.2	+6.7
vs25	99.4	80.6	97.2	+16.6	vs79	99.1	85.3	96.9	+11.5

vsij: class i vs. class j

baseline: RF applied to raw images